28
Next Generation Redox Flow Battery Development at PNNL Vincent Sprenkle, Wei Wang, David Reed, Ed Thomsen, Zimin Nie, Bin Li, Xiaoliang Wei, Brian Koeppel, Baowei Chen, Alasdair Crawford, Vish Viswanathan. DOE Office of Electricity Energy Storage Program – Imre Gyuk Program Manager. MRES 2014 Boston, MA August 19 th , 2014

Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Next Generation Redox Flow Battery Development at PNNL

Vincent Sprenkle, Wei Wang, David Reed, Ed Thomsen, Zimin Nie, Bin Li, Xiaoliang Wei, Brian Koeppel, Baowei Chen, Alasdair Crawford, Vish Viswanathan. DOE Office of Electricity Energy Storage Program – Imre Gyuk Program Manager. MRES 2014 Boston, MA August 19th, 2014

Page 2: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

2

PNNL Electrical Energy Storage (EES) R&D strategy

Crosscutting science Advanced diagnostic

study, NMR, TEM, etc. Electrochemical

study

•  Mass/charge transport •  Electrochemical •  Flow, thermal, …

•  Basic chemistry •  Materials structure •  Physical properties

•  Electrochemical activity •  Reaction kinetics •  Performance

Computer Modeling

Technology Transfer

EES Technologies Novel redox flow batteries

Next gen Na-batteries Low cost, long life Li-ion,

New concepts, emerging technologies

Grid Analytics •  Roles of storage in

US grids •  Value, locations,

targets

Cost Analysis •  Cost and

performance requirements

Academic/National Lab/Industrial Collaborations

Page 3: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Next Generation Redox Flow Batteries Goal: Developed next generation redox flow battery (RFB) that can demonstrate substantial improvement in performance and economics, to accelerate its commercialization and market penetration, via collaborations with industries and universities

Key Aspects

Ø  Power and Energy are separate enabling greater flexibility and safety. Ø  Suitable for wide range of applications 10’s MW to ~ 5 kw Ø  Wide range of chemistries available. Ø  Low energy density ~ 30 Whr/kg

Page 4: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Vanadium Mixed Acid Electrolyte

Charge Discharge

Charge Discharge

Charge Discharge

Catholyte: VO2+ + Cl- + H2O – e VO2Cl + 2H+ εco=1.0 V

Anolyte: V3+ + e V2+ εao=-0.25

Overall: VO2+ + Cl- + H2O + V3+ VO2Cl + 2H+ + V2+ Eo=1.25 V

Ø  70% increase in capacity §  V2+, V3+, V4+, V5+ stable >2.8M,

in SO2- and Cl- mixed solutions

Ø  80% increase in operating temperature window. §  -5 – 50°C

Page 5: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Redox Flow Battery Objectives Develop the technologies, tools, and system understanding required to move the mixed acid electrolyte chemistry from basic chemistry to cost effective system solution.

Page 6: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Cost Model Program Screenshot:

6

Outputs

Inputs

Executable file released at PNNL Energy and Environment website http://energyenvironment.pnnl.gov/highlights/9_13_redox.asp

C++ Source Code released in Github Repository

https://github.com/PNNL-OE-Redox-Flow-Battery-Cost-Tool/PNNL-OE-Redox-Flow-Battery-Cost-Tool

Page 7: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Gen 2 V-V 1 MW /4 MWh At 80 mA/cm2

Ø  Separator for stack is one significant cost element.

Ø  Lower system cost can be accomplished by:

•  Lower cost separator

•  Higher current density operation. (Same power for less stack)

Page 8: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

kW mixed acid system

#

1kW Stack

1kW / 1kWh VRFB System Tank

Pump

Stack

1kW Stack

1kW / 1kWh VRFB System

1kW / 1kWh VRFB System

Page 9: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Initial kW stack performance

#

0 20 40 60 8016

18

20

22

24

26

2 L/min 4 L/min 80 mA/cm2

160 mA/cm2

Volta

ge (V

)

Capacity (Ah)

6 L/min

2 4 60.6

0.8

1.0

1.2

1.4

1.6

Disc

harg

e en

ergy

(kW

h)

Flow rate (L/min)

80 mA/cm2

160 mA/cm2

Test Conditions •  Flow rates 2, 4, 6, and 7 slpm •  15-85 SOC @ 80 mA/cm2

0 20 40 60 80 1000

10

20

30

40

50 Positive tank Negative tank Ambient

246246

160 mA/cm2

Tem

pera

ture

(o C)

Cycle Number

80 mA/cm2

7 LPMFlow rate

0 20 40 60 80 10060

70

80

90

100

CE EE

246246

160 mA/cm2

Effic

ienc

ies

(%)

Cycle Number

80 mA/cm2

7 LPMFlow rate

(a) (b)

Temperature exceeds stability of

conventional vanadium electrolyte

Page 10: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

FY14 Redox Objectives and Goal

Operate at 240 mA/cm2 with improved energy efficiency and lower stack pressure drop.

Greater stack efficiency

Use of 212 membrane compared with 115.

Greater system efficiency Use of interdigitated flow field for reduced pressure drop.

Novel Catalysts.

Page 11: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Typical VRFB Stack Test Parameters

VRFB  System  

Stack  

•  780  cm2  ac)ve  area/cell  •   15  cell  stacks  •   10-­‐90%  SOC  •   Mixed  acid  electrolyte  

•   2M  V,  2M  S,  5M  Cl  •   Nafion®  membrane  

•   115  (5  mil)  •   212  (2  mil)  • 211  (1  mil)  

•  Current  density  A/cm2    •   80    •   160    •   240    •   320    

•   Flow  Rates  sccm/cell  •   133  •   267  •   400  (6  lpm  for  15  cell  stack)  •   800,  1200  for  IDD.  

Page 12: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

3-cell stack performance with Nafion® 115, 212, and 211 membrane (no IDD)

Stack Efficiency

3  Cell  Stack   Columbic Voltage Energy Discharge Discharge Pressure (psi) Pressure (psi) Flow Rate/cell

80 mA/cm2 Efficiency

(%) Efficiency

(%) Efficiency

(%) Capacity (Ah/L) Temp (°C) negative positive (cc/min)

        Nafion® 115 96.7   87.4   84.5   19.4   33.7   8.4   6.7   400 Nafion® 212 96.5   90.2   87.0   20.7   28.8   10.7   7.7   400 Nafion® 211 95.8   91.3   87.5   20.4   37.2   7.9   6.1   400 160 mA/cm² Nafion® 115 96.9   77.7   75.3   18.2   39.3 7.0 6.0 400 Nafion® 212 97.2   82.4   80.1   19.8   30.8 10.4 7.3 400 Nafion® 211 96.9   84.0   81.4   20.1   38.8 7.9 5.9 400 240 mA/cm² Nafion® 211 97.0 77.8 75.5 18.1 45.5 6.5 5.2 400

74 76 78 80 82 84 86 88 90

50 100 150 200 250

Stac

k En

ergy

Ef

ficie

ncy

(%)

Current Density (mA/cm²)

Nafion 115 Nafion 212

Ø  Replacement of 212 (2 mil) Nafion® with 211(1 mil) improved overall EE by 1-2%.

72

74

76

78

80

82

115 212 211

Stac

k Ef

f. (%

)

Nafion®

160 mA/cm2

Page 13: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

3-cell high current stack performance with Nafion® 212, and 211 membrane (IDD)

68

70

72

74

76

78

80

82

84

0 200 400 600 800 1000 1200 1400 1600 1800

Stac

k En

ergy

Effi

cien

cy (%

)

Flow Rate / Cell (cc/min)

212

240 mA/cm2

320 mA/cm2

160 mA/cm2 211

211

212

Ø  EE improvement with Nafion® 211(1 mil) consistently 1-2% over multiple flow and current densities.

Page 14: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Capacity fade of 3-cell stack with Nafion® 115, 212, and 211 membrane

Capacity Fade

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 10 20 30 40 50 60 70

Dis

char

ge C

apac

ity (%

)

Cycle

Nafion 115

Nafion 212

Nafion 211

•   3  cell  stack    •   780  cm2  ac)ve  area/cell  • 10-­‐90%  SOC  •   160  mA/cm2  

Ø  No significant difference capacity fade as a function of thickness

Page 15: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

15

    Thickness  (µm)  

Water  Uptake  (%)  

ConducKvity  (mS·∙cm-­‐1)  

Area  Resistance  (mΩ·∙cm2)  

Diffusion  Coefficient  of  VO2+  (10-­‐6  cm2·∙min-­‐1)  

VO2+  Ion  Flux  (*10-­‐7  mol·∙cm-­‐2·∙min-­‐1)  

SelecKvity  between  H+  and  VO2+  

NDM221   25   3.2   19   223   0.16   0.30   117  N115   127   17.8   78   179   1.20   0.89   65  

Current  density    (mA  cm-­‐2)  

NDM221   N115  CE  (%)   EE(%)   VE  (%)   CE(%)   EE(%)   VE(%)  

50   99.2   89.3   90.0   97.5   87.7   90.0  75   99.1   84.6   85.4   97.9   83.5   85.3  100   99.1   79.8   80.5   97.9   78.4   80.1  

Table  1.    Proper0es  of  the  NDM221  and  N115  membranes

Table  2.    Cell  performance  of  VRBs  with  NDM221  and  N115  membranes

Highly selective DuPont Nafion® membrane

Page 16: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

PTFE/SiO2 Composite separator delivers similar performance at ~5% of Nafion cost.

16 Xiaoliang Wei, et. al. Adv. Energy Mater.. doi: 10.1002/aenm.201201112

Ø  Nanoporous structure with average pore size of 38 nm and a porosity of 48%.

Ø  Pores function as the ion transport channels during operation

Page 17: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Current designs have switched from porous felt to interdigitated (IDD) flow field design for lower pressure drop

Inlet

Outlet

a)  Standard porous flow field, b) interdigitated flow field.

Side view of IDD flow

Side view of IDD flow

Page 18: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

3-cell IDD vs. standard flow configuration.

#

IDD design results in 2-3X decrease in pressure drop at equivalent flow

Standard IDD

Page 19: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

15-cell stack performance

15  Cell  Stack   Columbic Voltage Energy Discharge Discharge Average Pressure (psi) Pressure (psi) System Flow Rate/cell

80 mA/cm2 Efficiency (%) Efficiency (%) Efficiency (%) Capacity (Ah/

L) Energy (Wh) Power (W) negative positive Efficiency (%) (cc/min)             Nafion® 115 95.2   86.9 82.7   18.6   1476   1248   8.9   6.7   61.3  (est.)   400 Nafion® 212 95.6   89.9 86.0   21.1   1711   1263   9.3   7.0   61.4   400 Nafion® 212 (IDD) 94.8 88.6 84.0 18.2 1466 1256 3.1 2.5 76.1 400 Nafion® 212 (IDD) 94.4 89.7 84.7 19.7 1590 1261 7.2 6.4 56.9 800 160 mA/cm2

Nafion® 115 95.8   77.6   74.4   17.7   1305   2336  

6.5 5.4 65.0 (est.) 400 Nafion® 212 96.5   82.2   79.4   20.7   1585   2407   7.4 6.0 68.6 400 Nafion® 212 (IDD) 95.8 80.2 76.9 15.9 1204 2369 3.0 2.0 74.4 400 Nafion® 212 (IDD) 95.6 82.5 78.8 19.9 1524 2401 6.3 5.5 66.1 800 240 mA/cm2 Nafion® 212 97.0   75.7   73.5   18.7   1368   3457   6.5 5.4 67.5 400 Nafion® 212 (IDD) 95.9 74.4 71.4 14.0 1003 3442 2.6 1.8 66.7 400 Nafion® 212 (IDD) 96.0 76.8 73.7 17.3 1257 3444 5.9 5.2 65.8 800

Baseline

212 and IDD

Ø  Switching to Nafion 212 and IDD enabled doubling current density while maintaining ~ 80% stack efficiency and improved system efficiency.

§  System efficiency not reflective of loss on scale-up: pump power a greater % of loss for low kW systems.

Ø  Current goal is to maintain 80% energy efficiency at 240 mA/cm2.

240 mA/cm2

Page 20: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Current Stack performance (212 and IDF)

#

Page 21: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

VRFB voltage probe to determine cell losses.

NegaKve  Electrode  V2+/V3+  

PosiKve  Electrode  V4+/V5+  

Voltage  Probe  

Nafion  212  

TOP  VIEW  

Ø  Voltage measurement within laminated Nafion® membrane

§  Carbon paper electrode with gold contact

§  Simultaneous measurement of both half-cells and full cell EIS response

§  EIS performed with constant current bias for realistic conditions

AcKve  area  (10  cm2)  

Page 22: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

VRFB voltage probe measurements

Charging 50% SOC

Discharging 50% SOC

Ø  Negative/Positive Resistance = 1-layer of 212, electrode felt, electrolyte.

Ø  Ohmic resistance ~ 93% of total contribution at 50% SOC.

Page 23: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

23 Bin Li, et. al. Submitted

~11% increase in efficiency

25% increase in vanadium utilization

W-doped Nb2O5 nanorods catalyst

High performance electrode Nb2O5 based powerful catalyst

Page 24: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Impact of catalyst on VRFB performance

Standard

Bi3+

Nb2O5 Cha

rgin

g (5

0% S

OC

)

Ø  Bi3+ addition impacts anode - results in slight drop in negative electrode ohmic and polarization losses.

Ø  Nb2O5 addition to impacts both anode and cathode and results in significant drop to overall cell resistance.

Ø  Catalyst added to both anode and cathode.

Page 25: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

VRFB Voltage Probe – Charge-discharge behavior with modified electrode.

Standard Bi3+

Nb2O5

Charging

Discharging

Page 26: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Summary/Conclusions PNNL focused on understanding technologies necessary to reduce overall system cost of redox flow batteries.

Substitution of Nafion® 212 for 115 in 15-cell stack leads to ~5% increase in Energy Efficiency 10% decrease in operating temperature

Use of variable flow rate results in similar discharge capacity (6 lpm) with increased system efficiency

IDD design results in 2-3X decrease in pressure drop at equivalent flow field

Page 27: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Next Steps for stack development Ø Higher current density

u  reduced stack cost however ….. §  lower energy efficiency §  Lower discharge capacity §  Higher discharge temperature

Page 28: Next Generation Redox Flow Battery Development at PNNLnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Erik-Sprenkle-presentation.pdfNext Generation Redox Flow Battery Development at

Acknowledgements q  DOE-OE Energy Storage Program, Dr. Imre Gyuk

q  Stationary Energy Storage Staff at PNNL: Wei Wang, David Reed, Ed Thomsen, Zimin Nie, Qingtao Luo, Baowei Chen,, Xiaoliang Wei, Bin Li, Alasdair Crawford, Jun Liu, Yuyan Shao, Yuliang Chao, M. Vijayakumar, Birgit Schwenzer, CuiJin Yong Kim, Xiaochun Lu, Guosheng Li, Kerry Meinhardt, Brent Kirby, Vish Viswanathan, Daiwon Choi, Xioalin Li.