Nuclear architecture in plants

  • Published on

  • View

  • Download

Embed Size (px)



    The interphase nucleus of p!a_n.t_~ .~s usually imagined, albeit unconsciously, as a bowl of spaghetti - strands of interphase chromosomes running at random through the volume of the nucleus. During cell div- ision, these strands are organized into discrete meta- phase chromosomes, but most preparations still give the impression of little or no suprachromosomal or- ganizatic, n. Recent work, both in plants and animals, is questioning some of these hidden assumptions, and suggests that it may be possible to relate nuclear archi- tecture to aspects of gone expression and chromosome behaviour.

    Such assumptions were not made when chromo- somes were first described. Early drawings show sym- metrical arrangements of chromosomes and their arms throughout the cell cycle, and the physical disposition of chromosomes within the nucleus was regarded as important. For example, Fig. 1 shows a drawing from sections of nuclei in the desert plant Yucca, in which similarly sized chromosomes are together, and large chromosomes lie in a peripheral domain surrounding the smaller chromosome#.

    Nuclear architecture describes the structure and pattern of the nucleus. To understand the architecture, we must know about the three-dimensional organ- ization of the nucleus, including both the position and identity of each chromosome. These two simple ideals have rarely been achieved because the nucleus is dynamic (moving through the cell cycle, transcribing RNA and replicating DNA), small (typically 10 diameter) and its chromosomes thread-like (0.2 om diameter at interphase and 1 ~tm at metaphase) and often with similar morphologies. The techniques of chromosome spreading pioneered in plants by Darlington and colleague# largely changed the way chromosomes were examined. Spread and squashed preparations of metaphases are ideal for most cyto- genetics: they enable the counting of chromosomes, and the examination of chromosome morphology. Chromosomes can be easily ident~ed in banded, two-dimensional spreads of metaphases made for the light micro- scope, and three-dimensional position can be reconstructed from sections, but combining the two techniques is diffi- cult.

    Many attempts have been made to analyse the disposition of chromosomes at metaphase in spread preparations3. Although lalge numbers of dividing cells can be obtained easily, and almost any plant can be used, analysis of archi- tecture is difficult because the three- dimensional nucleus has been reduced to two dimensions. Large sample sizes may only increase the chance of assess- ing artefacts of spreading. In order to overcome the difficulty of identifying chromosomes, chromosomes with par- ticular morphologies, including hetero- chromatic blocks (large tandemly repeated DNA sequences, which may relate to the C-banding patterns seen on

    Nuclear architecture in plants J.S. HESLOP-HARRISON AND M.D. BENNETt

    Structure within the nucleus of plants is becoming imcreasiagIF clear in both metapbase and interphase nucleg Mthough there are conflicting data about the relative positions of individual and pairs of chromosomes. At interphase, imdltvidual chromosomes may gefteral~ occupy discrete domains that are wet Intermixed with other chromosomes. Aspects of mechanical chromosome behatvlour and even of gene expression may correlate with imterpbase chromosome positiot~ aml imply that a better understanding of nuclear architecture is required

    chromosomes), have often been examined. Avivi et al. 4 analysed the positions of mitotic wheat chromo- somes that were missing a whole arm (telocentric chromosomes), and so could be easily identified. However, we reported that large systematic errors were introduced when positions of telocentric chromosomes paired with norrnai chromosomes ('marked' bivalents) were analysed in squashes of wheat meiotic prep- arationsS. At metaphase I, we found that there was a strong tendency for any marked bivalent to lie near the edge of the metaphase spread preparation, regard- less of which particular chromosome type gave rise to the marked bivalent.

    Within the past ten years, interest has returned to e~amination of whole nuclei, from both plants and animals. In plants, extensive work has been carried out using serial section reconstructions at meiosis 6 and at mitosisT, s, particularly in the cereals. The newer techniques of confocal microscope reconstructions and computer processing of h~lages of sections9,10 are also being increasingly used. The problem of chromosome identification, at both interphase and metaphase, is

    ~0 A drawing by Miiller from 19091, showing sections u nuclei in the dc~,:rt plant Yucca, where similarly sized chromosomes are together through the division. Large chromosomes lie in a peripheral domain, surrounding the smaller chromosomes.

    ~G D~Cr~BER 1990 VOL. 6 NO. 12

    01990 Elsevier Science Publis~e~ Lid (UK) 0 l (~ 9479/~0/$02.00


    Two interphase nuclei from a wheat variety carrying a translocated chromosome arm originating from rye. (a) Nuclei stained with the DNA-specific dye DAPI, which fluoresces blue, show little internal differentiation. (b) The chromosome arm of rye origin has been probed in situ with labelled total genomic DNA from rye, and the sites of hybridization detected by bright red fluorescence. The two red rye chromosome arms that are visible in each nucleus occupy restricted domains, and the two homologous chromosome arms are not together 17, although the rye arm includes an active nucleolar organizing region. Magnification, x1100.

    being tackled by in situ hybridization with various DNA probes (e.g. in humans n and in plantsl2).

    The positions of homologous chromosomes in somatic tissues

    At meiosis, homologous pairs of chromosomes come together before crossing over occurs. Whether there is a tendency for homologous chromosomes to associate in somatic tissues of plants is controversial. In insects such as Drosophila, homologous chromo- somes are closely associatedl3. Many authors have analysed metaphase chromosome spreads in plants, and some of their data indicate that, in plants too, the centromeres of pairs of homologues are associated in root tips and other somatic tissue#. These authors regarded the evidence as demonstrating universal somatic association of homologues; they considered that the association at mitotic metaphase was relaxed, while an intimate association was maintained through- out interphase and prophase.

    We applied a relatively laborious alternative tech- nique to the examination of the positions of homol- ogue# 4. This involved glutaraldehyde fixation of untreated or ice-treated root tips, followed by serial thin sectioning and reconstruction of sets of electron micrographs. Unlike the techniques reviewed above, this method enabled the identification and three- dimensional location of all the chromosomes to be found in various grasses, including the cereals barley and maize. Extensive analyses of centromere positions showed no overall tendency for any homologous pairs of metaphase chromosomes to be associated. Indeed, on average the homologous pairs tended to be slightly further apart than heterologues.

    In the serial section analyses, one chromosome pair did tend to show association of homologues: the nucleolus organizing chromosome pair in maize. The nucleolus organizer carries the genes encoding rRNA. Using scanning confocal fluorescence microscopy to section nuclei optically, Oud et al. demonstrated

    FIGIR Interphase nuclei from the intergeneric hybrid plant, Hordeum vulgare (barley) x Secale africanum (a wild rye). (a) After DAPl staining, no differentiation of chromatin within the nuclei is visible. (b) The nuclei after fn situ hybridization of labelled rye DNA and detection of hybridization sites by yellow fluorescence, counterstained with the DNA stain propidium iodide (fluorescing orange-red). The nuclei tend to show parental genuine separation with the zone of chromatin of rye origin (yellow) distinct from the chromatin of barley origin (orange-red)12. Magnification, x1170.

    TIG DECEMBER 1990 VOL. 6 NO. 12



    association of the nucleolus organizing ' chromosome pair in hawk's-beard, Crepis capillaris9. At metaphase, they found no evidence that other chromo- some pairs were associated, although many chromosome pairs were associ- ated at prophase. Horn and Walden 1~ examined spreads of maize, and also found that the nucleolus organizing chromosomes were associated. The association of nucleolar organizing chro- mosomes in particular is not surprising because of the tendency for nucleoli to fuse by late interphase.

    Most studies have been on metaphase or anaphase chromosomes, because this is the stage at which chro- mosomes are condensed, easy to study and can be identified. A few recent studies have looked at nuclei in inter- phase, which is the most important stage of the cell cycle for gene expression because the chromosomes are being actively transcribed. The analy- ses show, in general, that the positions of whole chromosomes at metaphase do reflect their inte~phase dis- positionlZ, 16. Hence, valid work on metaphases can to some extent be extrapolated to chromosome disposition at interphase.

    In situ hybridization is providing an important method to look at interphase chromosomes. In human nuclei, each decondensed chromosome has been shown to occupy a domain or restricted volume within the nucleus n. We have examined nuclei in hexaploid wheat varieties that include two chromosome amls originating from rye; these arms are present as a translocation between the 1B chromosome from wheat and the 1R from rye ~7. When rye DNA is used as a probe, the two single rye chromosome arms can be clearly seen at interphase in root tip nuclei, "and occupy distinct domains that do not ramify throughout the whole nuclear volume. Figure 2 shows an interphase from one of the 1B/1R wheat varieties, in which the rye chromosome arm has been probed. The rye arms clearly occupy restricted domains, and the two homologous chromosome arms are not togetheri7, even though the rye arm contains an active nucleolus o~anizing region. We must wait for further in- formation before concluding that all chromosome arms occupy individual domains, but it seems that most evi- dence now indicates that homologous chromosomes are not closely associated in somatic tissues of plants.

    Meiosis involves the spatial reorganization of the nucleus. Homologous chromosomes come together

    F1all Semi-thin (0.25 lira) sections of interphase nuclei and a metaphase from the hybrid H. cbilense (a wild barley) x S. africanum (wild rye). (a) DAPI staining shows that the DNA can be seen to fill the volume of the interphase nuclei relatively uniformly. (b) After probing with labelled rye DNA and detection of sites of hybridization with Texas red fluorescence, dark (DNA of barley origin; open arrows) and brighdy labelled areas (DNA of rye origin; closed arrows) are differentiated within the nuclei. The chromatin originating from the two parents is not intermixed z3. Magnification, x1900.

    and pair closely before crossing over and separation occurs. In the cereals, homologous chromosomes do not associate at the last metaphase before meiosis TM, but other evidence indicates that the chromosomes are

    TIG DECEMBER 1990 VOL. 6 NO. 12


    at ',east partially aligned by early leptotene6. Therefore, the last premeiotic interphase must be critical to the events of recombination, and the major spatial re- organization might explain, at least in part, its long duration.

    The positions of genomes in hybrids Examination of metaphases from various species

    often shows that chromosomes are grouped; Fig. 1 shows an example from Yucca. In spread preparations of various intergeneric hybrids from both cereal plants~9.20 and Nicotiana cell culture#], genomes orig- inating from the two parental chromosome sets are spatially separated.

    Reconstructions of electron micrographs of serially sectioned cells confirmed the light microscope observations of spread metaphases]9,2a. However, reconstructions of conventionally stained thin sections do not allow ider~tification of individual chromo- somes at interphase. In situ hybridization enabled Schwarzacher et aDZ to show that the chromosomes of the two parental genomes tended to lie in distinct and separate domains throughout the cell cycle in spread preparations of an intergeneric cereal hybrid, Hordeum chilense x Secale africanum. Figure 3 shows micrographs from interphases of another hybrid, H. vulgare x S. africanum, which also tends to show genome separation at interphase. However, there is the possibility that artefacts from the spreading method, or the differential penetration of probe or detection reagents influence the observation. Leitch et al. 23 made semi-thin sections of the H. chilense hybrid, and probed the Secale genome, which was shown to occupy an independent domain from the Hordeum genome in the individual sections (Fig. 4). Thus, genome separation occurs throughout the cell cycle, and is a feature of the architecture of the interphase nucleus in these hybrids between widely diverged species.

    How are such orders maintained? They are presum- ably under genetic control, and not merely a packing phenomenon, because smaller chromosomes may be central or peripheral in different hybrids2a. Even in a single hybrid, different parental genomes may lie in different domains in different tissuesa4. The work of Gleba et al.Z' showed that a spindle poison disrupted genome separation, which was restored after removal of the poison. That result implies self-maintenance of chromosome position, and perhaps that microtubule proteins are involved, but nuclear envelope attach- ments or the nuclear skeleton may also play a part in maintaining nuclear architecture.

    The rehtive positions of individual chromosomes Whether chromosomes lie in nonrandom positions

    with respect to each other and the nuclear envelope is a controversial issue in the study of nuclear architec- ture. Patterns of associations between nonhomologous chromosomes have been noted within metaphase spread# and between telomeres of chromosomes at prophase2~. Various authors have also noted regular patterns in the sizes and shapes of groups of chromo- somes, or in the distribution of repetitive sequences. Most plants have many hundreds of times the

    minimum amount of DNA they require for encoding their genes. If there were no constraints on how the extra DNA were carried, the chromosomes would be free to alter in size and shape. However, most species have patterns in their karyotypes, both with respect to the DNA contents of individual chromosomes 26 and chromosome morphology. Shchapova 2~ found that, in various species, every long chromosome arm could be paired with a short chromosome arm such that the sum of the lengths of each pair in the species was a constant. Bennett 7 examined various cereal karyo- types, and noted an...