16
High Quality Factor Microdisk Resonators for Chip-scale Visible Sensing

Older works

Embed Size (px)

DESCRIPTION

visible silicon photonics

Citation preview

Page 1: Older works

High Quality Factor Microdisk Resonators for Chip-scale Visible Sensing

Page 2: Older works

overview

2

Introduction and motivation High Q SiN microcavities on substrateCritical Coupling to SiN waveguides Experimental demonstrationConclusions

Page 3: Older works

SiN for Visible Sensing

3

Multi-modal sensing in visible Low water absorption [2]Fluorescence sensingRaman sensing :nanoparticles’ plasmon

Silicon Nitride High index, low loss, low auto-fluorescence background Ease of fabrication (Planar/multilayer) (LPCVD)Source/detector integration (CMOS)

[2] lsbu.ac.uk/water/

Page 4: Older works

Fabrication of SiN Microdisks

4

Stoichiometric SiN on thermal oxide Electron beam lithography on ZEP reflow of ZEP ICP etching with CF4 gas (85deg, 5nm

roughness)

1 mm

200 nm

Page 5: Older works

Critical Coupling

5

Conventional straight WG Short coupling length-> narrow gaps

Pedestal[1]Controlled etching time Increasing field overlap

Pulley CouplingWaveguide looping around the diskIncreasing coupling length

R=20mm

Page 6: Older works

Straight waveguide

6

Semi-phase-matching Short coupling length-> narrow gaps

-5 0 5 10 1510

6

107

coupling Q vs limit

Page 7: Older works

Coupling vs. Waveguide Width

7

Page 8: Older works

Pulley Scheme

8

PulleySignificant increase in coupling lengthLess coupling induced lossPhase matching -> mode selectiveSensitive to waveguide width Large gap -> ZEP reflow for smooth sidewalls

Page 9: Older works

Pulley Scheme’s Phase Matching

9

Long coupling lengthStrict phase matching requirements Sensitive to waveguide width for phase matching nwg=nd [R/(R+g+w/2)]

order

neff FSR (rad/c

m)

TE 1 1.704 490

TE 2 1.626 498

TM 1 1.577 486

TE 3 1.559 504

TM 2 1.500 498

TE 4 1.503 509

140 145 150 155 160 165 1708.5

9

9.5

10

Ko (

rad/

um)

Azimuthal mode number m

Resonant modes of a 10 um radius disk

r=10 mm

Page 10: Older works

Disk-Waveguide Phase Matching

10

Phase matching optimized by choosing the waveguide width

100 200 300 400 500 600

1.5

1.55

1.6

1.65

1.7

1.75

Effe

ctiv

e in

dex

of W

G

Waveguide width (nm)

Waveguide 100nm away from the disk

100 200 300 400 500 600

1.5

1.55

1.6

1.65

1.7

1.75

Effe

ctiv

e in

dex

of W

G

Waveguide width (nm)

Waveguide place farther at 400nm coupling gap

TETE

TM

TM

g= 100 nm

g= 400 nm

TE1

TE2

TE2

TE1

TM1

r=10 mm

Page 11: Older works

Pedestal and Pulley Coupling to R=100 mm disk

11

Phase matchinglarger gaps, single mode operation

653 654 655 656 657 658 659 660-20

-15

-10

-5

0

653 654 655 656 657 658 659 660-12

-10

-8

-6

-4

-2

0

Pulley CouplingPedestal=40 nm

Wavelength (nm) Wavelength (nm)

Nor

mal

ized

tra

snm

issi

on

(dB

) Gap=400 nm

Page 12: Older works

Effect of Phase Matching

12

-30 -20 -10 0 10 20 30-200

-100

0

100

200phase difference

-30 -20 -10 0 10 20 3010

4

106

108

1010

1012 coupling Q vs limit

-30 -20 -10 0 10 20 30-200

-100

0

100

200phase difference

-30 -20 -10 0 10 20 3010

0

105

1010

1015 coupling Q vs limit

Page 13: Older works

m and W for phase matching

13

Page 14: Older works

Splitting

143 3.1 3.2 3.3 3.4

x 10-7

8.3

8.4

8.5

8.6

8.7

x 106

250 260 270 280 290

7.6

7.8

8

8.2

8.4

8.6

x 106

1.68 1.7 1.72

x 10-7

8.105

8.11

8.115

8.12

x 106

Page 15: Older works

Conclusions

15

SiN is an excellent material for visible and NIR photonics applications.

By optimizing the fabrication process, microdisks with Qs as high as 8M can be achieved.

Critical coupling to adjacent waveguides is achieved by using pedestal and pulley coupling schemes.

Pulley coupling also enables critical coupling to selected mode(s) of the cavity without sacrificing Q.

Page 16: Older works

16