Opamp Intro

Embed Size (px)

Citation preview

  • 8/3/2019 Opamp Intro

    1/40

    introduction

    Chapter 5:

    Operational Amplifiers

  • 8/3/2019 Opamp Intro

    2/40

    introduction

    Introduction

    The operational amplifier or op-amp is a circuit ofcomponents integrated into one chip.

    A typical op-amp is powered by two dc voltagesand has an inverting(-) and a non-inverting input(+) and an output.

    An op amp is an electronic device which provides

    a voltage output based on the voltage input

  • 8/3/2019 Opamp Intro

    3/40

    introduction

    Basic op-amp

    Op-amp has two inputs that connect to two terminalsand one output

  • 8/3/2019 Opamp Intro

    4/40

    introduction

    Operational Amplifiers

    Five important pins

    2 The inverting input

    3 The non-inverting input

    6 The output

    4 The negative power supply V- (-Vcc)

    7 The positive power supply V+ (+Vcc)

  • 8/3/2019 Opamp Intro

    5/40

    introduction

    Operational Amplifiers

    The output of the op amp is given by the followingequation:

    Vd = E1 E2and Vo = AVOL(Vd)

    AVOL is called the open-loop voltage gain because itis the gain of the op amp without any external feedbackfrom output to input

  • 8/3/2019 Opamp Intro

    6/40

    introduction

    Operational Amplifiers

    Positive Saturationwhere the outputvoltage exceeds thepositive power input

  • 8/3/2019 Opamp Intro

    7/40

    introduction

    Operational Amplifiers

    Linear Regionwhere the outputvoltage is linearbased on A (gain)

  • 8/3/2019 Opamp Intro

    8/40

  • 8/3/2019 Opamp Intro

    9/40

    introduction

    Operational Amplifiers

  • 8/3/2019 Opamp Intro

    10/40

    introduction

    What do they really look like?

  • 8/3/2019 Opamp Intro

    11/40

    introduction

    IC Circuit

  • 8/3/2019 Opamp Intro

    12/40

    introduction

    Operational Amplifiers

  • 8/3/2019 Opamp Intro

    13/40

    introduction

    Operational Amplifiers

    An ideal op-amp has infinite gain and bandwidth,

    we know this is impossible.However, op-amps do have:

    very high gain

    very high input impedance(Zin= )

    very low output impedance (Zout = 0)

    wide bandwidth.

  • 8/3/2019 Opamp Intro

    14/40

    application

    Application in op-amp

    There are 2 types of application in op-amp

    Linear application

    Non-linear application

    Linear application is where the op-amp operatein linear region:

    Assumptions in linear application:

    Input current, Ii = 0

    Input voltage: V+=V-

    Feedback at the inverting input

  • 8/3/2019 Opamp Intro

    15/40

    application

    Non-linear application is where the op-ampoperate in non-linear region

    By comparing these two input voltages:positive input voltages, V+ and negative input

    voltage, V- where:

    VO = VCC if V+ > V-

    VO = -VEE if V+ < V-

    Input current, Ii = 0

    Application in op-amp

  • 8/3/2019 Opamp Intro

    16/40

    application

    Applications of op-amp

    Comparator

    Inverter

    Audio amplifier

    Difference Amplifier Filter

    Summing Amplifier

  • 8/3/2019 Opamp Intro

    17/40

    application

    Inverting Amplifier

    Non-Inverting Amplifier

    Summing Amplifier

    Unity Follower Difference Amplifier

    Integrators

    Differentiators

    Op-amp Circuit Application

  • 8/3/2019 Opamp Intro

    18/40

    application:inverting amplifier

    Application: Inverting amplifier

    Provide a constant gain multiplier

    Input signal is connected to the inverting input of the op-

    amp. Therefore, the output signal is 180 degree out ofphase from the input signal

    Rf is the feed-back resistor to control the voltage gain ofthe op-amp

  • 8/3/2019 Opamp Intro

    19/40

    application:inverting amplifier

    Summary of op-amp behavior

    Vo = A(V+ - V)

    Vo/A = V+ - V

    Let A infinity

    then,

    V+ - V 0

  • 8/3/2019 Opamp Intro

    20/40

    application:inverting amplifier

    V+ = V

    I+ = I = 0

    Seems strange, but the input terminals to anop-amp act as a short and open at the same time

    Summary of op-amp behavior

  • 8/3/2019 Opamp Intro

    21/40

    application:inverting amplifier

    To analyze an op-amp circuit for linearoperation

    Write node equations at + and - terminals

    (Ii=I+ = I-= 0)

    Set V+ = V-

    Solve for Vo

  • 8/3/2019 Opamp Intro

    22/40

    application:inverting amplifier

    Analysis of inverting amplifier

    I1

    If

    Ii

    V = 0Ii= 0

    I1= If Ii

    Vs

    V

    R1

    =

    V

    Vo

    Rf

    V

    = V = 0

    Vo

    Vs

    =-R

    f

    R1

    Vo=-

    Rf

    R1

    Vs

  • 8/3/2019 Opamp Intro

    23/40

    application:non-inverting amplifier

    Application:Non-inverting amplifier

  • 8/3/2019 Opamp Intro

    24/40

    Non-inverting configuration

    Vi= V = V

    use KCL :

    I1= I

    iI2

    while Ii= 0

    ;

    so :0 V

    R1

    =

    V Vo

    R2

    insert V

    = Vi ;

    0 Vi

    R1

    =

    Vi V

    o

    R2

    Vo= V

    i1

    R2

    R1

    Vi

    I1

    I2

    Ii

  • 8/3/2019 Opamp Intro

    25/40

    application:summing amplifier

    Application: Summing amplifier

    Virtual-ground equivalent circuit.

  • 8/3/2019 Opamp Intro

    26/40

    Summing Amplifier

    V1

    V2

    V3

    R1

    R2

    R3

    Rf

    This circuit is calle

    a weighted summer

    V = V

    = 0

    use KCL :

    IR1 IR2 IR3= Ii IRf

    while Ii= 0 ;

    so:V

    1 V

    R1

    V2 V

    R2

    V3 V

    R3

    =

    V

    Vo

    Rf

    insert V

    = 0 ;

    V1

    R1

    V2

    R2

    V3

    R3

    =

    Vo

    Rf

    Vo= R

    f

    V1

    R1

    V2

    R2

    V3

    R3

  • 8/3/2019 Opamp Intro

    27/40

    application:unity-follower

    Application: Unity Follower

    VO=

    V1

  • 8/3/2019 Opamp Intro

    28/40

    application:difference amplifier

    Application:Difference amplifier

    VO

    =

    R4

    R2

    V1

    V2

    R1= R

    2

    R3= R

    4

    A li i

  • 8/3/2019 Opamp Intro

    29/40

    application:instrumentation amplifier

    Application:Instrumentation Amplifier

    R2

    Buffer

    R2

    R1

    R1

    RA

    RB

    RA

    Difference amplifier

    VO=

    R2

    R1

    12R A

    RB

    V2

    V1

    R2

  • 8/3/2019 Opamp Intro

    30/40

    application:integrator

    Application:Integrator

    Feedback component = capacitor : Integrator

    I IC

    I= Ii ICv i t

    R

    = 0 Cdv0 t

    dtv o t =

    1

    RC vi t dt

    Capaci tan ce impedance :

    XC=1

    jC=

    1

    sC

  • 8/3/2019 Opamp Intro

    31/40

    application:differentiator

    Application:Differentiation

    IC= IR

    Cdv i t

    dt

    =

    V vo t

    R

    v o t = RCdv i t

    dt

  • 8/3/2019 Opamp Intro

    32/40

    exercise

    Exercise 1

    Find VO?

  • 8/3/2019 Opamp Intro

    33/40

    exercise

    Exercise 2

    Find V2 and V3?

  • 8/3/2019 Opamp Intro

    34/40

    exercise

    Exercise 3

    Find VO?

  • 8/3/2019 Opamp Intro

    35/40

    exercise

    Exercise 4

    Find VO?

  • 8/3/2019 Opamp Intro

    36/40

    non-linear application

    Non-linear application is where the op-ampoperate in non-linear region

    By comparing these two input voltages:positive input voltages, V+ and negative input

    voltage, V- where:VO = VCC if V

    + > V-

    VO = -VCC if V+ < V-

    Input current, Ii = 0

    Recall: Non-linear application in op-amp

    Non linear application:

  • 8/3/2019 Opamp Intro

    37/40

    non-linear application:comparator

    Non-linear application:Comparator

    Non-linear application:

  • 8/3/2019 Opamp Intro

    38/40

    non-linear application:comparator

    Non-linear application:Comparator

    Vo(V)

    10

    -5

    t

    VS(V)

    t

    Compare V+ and V-

    V+=0V-=VS

    When:VS>0,V

    +>V- so Vo=10VVS

  • 8/3/2019 Opamp Intro

    39/40

    non-linear application:schmitt trigger

    Non-linear applicationSchmitt Trigger

    -

    +

    V =R 1

    R1 R fVO

    Positive Feedback

    Non-linear application

  • 8/3/2019 Opamp Intro

    40/40

    non-linear application:schmitt trigger

    V =R1

    R1

    RfV

    O

    assume R1= R f and VCC= VEE= 15 V

    with initial state Vo= 15 V and

    VS=

    V=

    10 sin t V

    V =1

    215 = 7 . 5 V

    Non linear applicationSchmitt Trigger

    Vo(V)

    15

    -15

    t

    VS(V)

    t

    7.5

    -7.5

    Vo(V)

    VS(V)-7.5 7.5-10 10

    15

    -15

    (a) Transfer Characteristic of Schmitt Trigger

    (c) Output Voltage of Schmitt Trigger

    (b) Input Voltage of Schmitt Trigger