65
Open Pit Mine Production Scheduling Some IP modelling and solution techniques Ambros M. Gleixner Zuse Institute Berlin 09/28/2009 Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 1 / 30

Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

  • Upload
    dotuong

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Open Pit Mine Production SchedulingSome IP modelling and solution techniques

Ambros M. Gleixner

Zuse Institute Berlin

09/28/2009

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 1 / 30

Page 2: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 2 / 30

Page 3: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 3 / 30

Page 4: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Open Pit Mining Production Scheduling

Input

. block model with precedences

. deterministic block content

. ore prices and production costs

. equipment capacities

. possibly aggregation of blocks

Problem

Find an order of excavationwith

. max. net present value

satisfying

. precedence constraints,

. resource constraints.

Simultaneously: Determine

. opt. processing decisions

for each block.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 4 / 30

Page 5: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Open Pit Mining Production Scheduling

Input

. block model with precedences

. deterministic block content

. ore prices and production costs

. equipment capacities

. possibly aggregation of blocks

Problem

Find an order of excavationwith

. max. net present value

satisfying

. precedence constraints,

. resource constraints.

Simultaneously: Determine

. opt. processing decisions

for each block.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 4 / 30

Page 6: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Open Pit Mining Production Scheduling

Input

. block model with precedences

. deterministic block content

. ore prices and production costs

. equipment capacities

. possibly aggregation of blocks

Problem

Find an order of excavationwith

. max. net present value

satisfying

. precedence constraints,

. resource constraints.

Simultaneously: Determine

. opt. processing decisions

for each block.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 4 / 30

Page 7: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 5 / 30

Page 8: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Getting started: computing ultimate pit limits

Given: Profit/negative cost wi of mining each block i ∈ N = {1, . . . , N}.Seek: Precedence-feasible set of blocks X ⊆ N with max.

∑i∈X wi.

(If i ∈ X than all predecessors of i are in X.)

Observation: This is a max-weight closure problem in the precedence graph(N ,S = {(i, p) ∈ N ×N | p predecessor of i}

)with node weights wi.

. Solve e.g. by min-cutalgorithm in a slightlyextended graph:

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 6 / 30

Page 9: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Getting started: computing ultimate pit limits

Given: Profit/negative cost wi of mining each block i ∈ N = {1, . . . , N}.Seek: Precedence-feasible set of blocks X ⊆ N with max.

∑i∈X wi.

(If i ∈ X than all predecessors of i are in X.)

Observation: This is a max-weight closure problem in the precedence graph(N ,S = {(i, p) ∈ N ×N | p predecessor of i}

)with node weights wi.

. Solve e.g. by min-cutalgorithm in a slightlyextended graph:

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 6 / 30

Page 10: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Getting started: computing ultimate pit limits

Given: Profit/negative cost wi of mining each block i ∈ N = {1, . . . , N}.Seek: Precedence-feasible set of blocks X ⊆ N with max.

∑i∈X wi.

(If i ∈ X than all predecessors of i are in X.)

Observation: This is a max-weight closure problem in the precedence graph(N ,S = {(i, p) ∈ N ×N | p predecessor of i}

)with node weights wi.

. Solve e.g. by min-cutalgorithm in a slightlyextended graph:

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 6 / 30

Page 11: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 7 / 30

Page 12: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

A new MIP formulation (Boland-Dumitrescu-Froyland-G’08)

Variables

xk,t =

1 if aggregate k may be minedduring periods t, . . . , T

0 otherwise

yk,t = fraction of aggregate k mined during period t

zi,t = fraction of block i processed during period t

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 8 / 30

Page 13: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

A new MIP formulation (Boland-Dumitrescu-Froyland-G’08)

Variables

xk,t =

1 if aggregate k may be minedduring periods t, . . . , T

0 otherwise

yk,t = fraction of aggregate k mined during period t

zi,t = fraction of block i processed during period t

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 8 / 30

Page 14: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

A new MIP formulation (Boland-Dumitrescu-Froyland-G’08)

Objective function

NetPresentValue (y, z) =

T∑t=1

(1

1 + q

)t−1∑

aggs k

−mkyk,t +∑

blocks i

pizi,t

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 8 / 30

Page 15: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

A new MIP formulation (Boland-Dumitrescu-Froyland-G’08)

max NetPresentValue (y, z)

s.t. (x, y) precedence feasible

K∑k=1

Rkyk,t ≤Mt for t = 1, . . . , T

N∑i=1

Rizi,t ≤ Pt for t = 1, . . . , T

xk,t ∈ {0, 1} for k = 1, . . . ,K, t = 1, . . . , T0 ≤ yk,t ≤ 1 for k = 1, . . . ,K, t = 1, . . . , T0 ≤ zi,t ≤ yk,t for k = 1, . . . ,K, i ∈ Bk, t = 1, . . . , T

. integrated optimisation of processing decisions

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 8 / 30

Page 16: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

A new MIP formulation (Boland-Dumitrescu-Froyland-G’08)

max NetPresentValue (y, z)

s.t. (x, y) precedence feasible

K∑k=1

Rkyk,t ≤Mt for t = 1, . . . , T

N∑i=1

Rizi,t ≤ Pt for t = 1, . . . , T

xk,t ∈ {0, 1} for k = 1, . . . ,K, t = 1, . . . , T0 ≤ yk,t ≤ 1 for k = 1, . . . ,K, t = 1, . . . , T0 ≤ zi,t ≤ yk,t for k = 1, . . . ,K, i ∈ Bk, t = 1, . . . , T

. integrated optimisation of processing decisions

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 8 / 30

Page 17: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

For this talk: no aggregates, no fractional mining

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T

∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T∑i

Rizi,t ≤ Pt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. NP-hard by reduction from Precedence-Constrained Knapsack

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 9 / 30

Page 18: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

For this talk: no aggregates, no fractional mining

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T∑

i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T∑i

Rizi,t ≤ Pt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. NP-hard by reduction from Precedence-Constrained Knapsack

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 9 / 30

Page 19: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

For this talk: no aggregates, no fractional mining

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T∑

i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T∑i

Rizi,t ≤ Pt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. NP-hard by reduction from Precedence-Constrained Knapsack

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 9 / 30

Page 20: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 10 / 30

Page 21: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Standard LP relaxation

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T∑

i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T∑i

Rizi,t ≤ Pt for t = 1, . . . , T

0 ≤ xi,t ≤ 1 for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. typically: interior point outperforms simplex (when solving from scratch)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 11 / 30

Page 22: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Standard LP relaxation

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T∑

i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T∑i

Rizi,t ≤ Pt for t = 1, . . . , T

0 ≤ xi,t ≤ 1 for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. typically: interior point outperforms simplex (when solving from scratch)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 11 / 30

Page 23: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 12 / 30

Page 24: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Full relaxation of resource constraints

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T

∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. substitute z according to objective function coefficients

. costs and profits decrease over time ⇒ all blocks are mined in period 1(if at all) equivalent to computing the Ultimate Pit Limit

. solve efficiently as max-weight closure problem

. use as preprocessing: all blocks in an optimal OPMPSP schedule mustbe contained in the Ultimate Pit – remove the others from the model

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 13 / 30

Page 25: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Full relaxation of resource constraints

max NetPresentValue (x)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T

∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. substitute z according to objective function coefficients

. costs and profits decrease over time ⇒ all blocks are mined in period 1(if at all) equivalent to computing the Ultimate Pit Limit

. solve efficiently as max-weight closure problem

. use as preprocessing: all blocks in an optimal OPMPSP schedule mustbe contained in the Ultimate Pit – remove the others from the model

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 13 / 30

Page 26: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Full relaxation of resource constraints

max

Net

PresentValue (x)

s.t.

xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , T

xi

,t

≤ xp

,t

for (i, p) ∈ S

, t = 1, . . . , T∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi

,t

∈ {0, 1} for i ∈ N

, t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. substitute z according to objective function coefficients

. costs and profits decrease over time ⇒ all blocks are mined in period 1(if at all) equivalent to computing the Ultimate Pit Limit

. solve efficiently as max-weight closure problem

. use as preprocessing: all blocks in an optimal OPMPSP schedule mustbe contained in the Ultimate Pit – remove the others from the model

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 13 / 30

Page 27: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Full relaxation of resource constraints

max

Net

PresentValue (x)

s.t.

xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , T

xi

,t

≤ xp

,t

for (i, p) ∈ S

, t = 1, . . . , T∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi

,t

∈ {0, 1} for i ∈ N

, t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. substitute z according to objective function coefficients

. costs and profits decrease over time ⇒ all blocks are mined in period 1(if at all) equivalent to computing the Ultimate Pit Limit

. solve efficiently as max-weight closure problem

. use as preprocessing: all blocks in an optimal OPMPSP schedule mustbe contained in the Ultimate Pit – remove the others from the model

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 13 / 30

Page 28: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 14 / 30

Page 29: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Lagrangean relaxation of resource constraints

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T∑

i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T∑i

Rizi,t ≤ Pt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 15 / 30

Page 30: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Lagrangean relaxation of resource constraints

max NetPresentValue (x, z)

+∑

tµt

[Mt −

∑iRi(xi,t − xi,t−1)

]+∑

tπt

[Pt −

∑iRizi,t

]s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , T

xi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T

∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. feas. region is integral ⇒ opt. multipliers as in LP, best dual boundequal to LP bound (Geoffrion 1974)

. z-variables can be substituted according to obj. coefficient

. transformation to unconstrained project scheduling

. efficient solution by min-cut computations (Mohring et al. 2003)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 16 / 30

Page 31: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Lagrangean relaxation of resource constraints

max NetPresentValue (x, z)

+∑

tµt

[Mt −

∑iRi(xi,t − xi,t−1)

]+∑

tπt

[Pt −

∑iRizi,t

]s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , T

xi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T

∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. feas. region is integral ⇒ opt. multipliers as in LP, best dual boundequal to LP bound (Geoffrion 1974)

. z-variables can be substituted according to obj. coefficient

. transformation to unconstrained project scheduling

. efficient solution by min-cut computations (Mohring et al. 2003)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 16 / 30

Page 32: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Lagrangean relaxation of resource constraints

max NetPresentValue (x, z)

+∑

tµt

[Mt −

∑iRi(xi,t − xi,t−1)

]+∑

tπt

[Pt −

∑iRizi,t

]s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , T

xi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T

∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. feas. region is integral ⇒ opt. multipliers as in LP, best dual boundequal to LP bound (Geoffrion 1974)

. z-variables can be substituted according to obj. coefficient

. transformation to unconstrained project scheduling

. efficient solution by min-cut computations (Mohring et al. 2003)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 16 / 30

Page 33: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Lagrangean relaxation of resource constraints

max NetPresentValue (x, z)

+∑

tµt

[Mt −

∑iRi(xi,t − xi,t−1)

]+∑

tπt

[Pt −

∑iRizi,t

]s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , T

xi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T

∑i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. feas. region is integral ⇒ opt. multipliers as in LP, best dual boundequal to LP bound (Geoffrion 1974)

. z-variables can be substituted according to obj. coefficient

. transformation to unconstrained project scheduling

. efficient solution by min-cut computations (Mohring et al. 2003)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 16 / 30

Page 34: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Lagrangean dual (with Helmberg’s ConicBundle 0.2d)vs. LP-relaxation (with CPLEX 11.0 Barrier, no crossover)

Problem instance LP-relaxation Lagrangean dual

time obj. val. time obj. val. rel. rel.[s] [108] [s] [108] time obj. val.

ma-115-8513 11.2 7.230097 1.8 7.230097 0.158787 1.000000ma-296-8513 27.2 7.276624 2.6 7.276631 0.094993 1.000001ma-1038-8513 259.5 7.306851 9.5 7.306854 0.036415 1.000001

ca-121-29266 (avg) 34.9 59.898146 6.1 59.898190 0.175164 1.000001ca-121-29266 (05) 64.7 60.899745 6.6 60.899800 0.101763 1.000001

wa-125-96821 324.4 0.508814 21.8 0.508815 0.067139 1.000001

Realistic problem instances provided by industry partner BHP Billiton, http://www.bhpbilliton.com/.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 17 / 30

Page 35: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 18 / 30

Page 36: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Precedence Constrained Knapsack Problem

Given:

. Items i ∈ N with sizes ai and values ci

. Knapsack capacity b

. Precedence order S ⊆ N ×N (transitively reduced)

Feasible Solution:

. set X ⊆ N with∑

i∈X ai 6 b and

. X is closed under S (If i ∈ X and (i, j) ∈ S, then j ∈ X.)

Goal: maximize∑

i∈X ci

Important substructure in many applications:

. Resource constrained scheduling

. Multi-level facility location, access & distribution network design

. Routing problems: confluent flows, Internet routing, . . .

. . . .

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 19 / 30

Page 37: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 20 / 30

Page 38: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

PCKs in open pit mining

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , Txi,t ≤ xp,t for (i, p) ∈ S, t = 1, . . . , T∑

i

Ri(xi,t − xi,t−1) ≤Mt for t = 1, . . . , T ← add up∑i

Rizi,t ≤ Pt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N , t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. For each time period, the OPMPSP formulation contains oneprecedence constrained knapsack.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 21 / 30

Page 39: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

PCKs in open pit mining

max NetPresentValue (x, z)

s.t. xi,t−1 ≤ xi,t for i ∈ N , t = 2, . . . , T

xi,t ≤ xp,t for (i, p) ∈ S

, t = 1, . . . , T

∑i

Ri

(

xi,t

− xi,t−1)

≤t∑

s=1

Ms

for t = 1, . . . , T ← add up∑i

Rizi,t ≤ Pt for t = 1, . . . , T

xi,t ∈ {0, 1} for i ∈ N

, t = 1, . . . , Txi,0 = 0 for i ∈ N

0 ≤ zi,t ≤ xi,t − xi,t−1 for i ∈ N , t = 1, . . . , T

. For each time period, the OPMPSP formulation contains oneprecedence constrained knapsack.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 21 / 30

Page 40: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Outline

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 22 / 30

Page 41: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Precedence Constrained Knapsack Polytope

PCKP := conv{x ∈ {0, 1}N |

∑i∈N

aixi 6 b, (i)

xi 6 xj for (i, j) ∈ S}

(ii)

Polyhedral structure of PCKP well studied:

. Dimension, Conditions for (i) and (ii) to be facet-defining

. Knapsack-based inequalities [Boyd’93, Park-Park’97]

. Induced cover inequalities

. (Induced) k-cover inequalities

. (Induced) (1,k)-configuration inequalities

. Sequential lifting results[v.d.Leensel-v.Hoesel-v.d.Klundert’99]

But:

. Nothing implemented in MIP solvers

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 23 / 30

Page 42: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Variable fixing

Notation

. Pred(i) := {j : j predecessor of i} ∪ {i}(Items that must be included with i.)

. A(i) :=∑

j∈Pred(i) aj

(Total size induced by i.)

Observation: If A(i) > b, then xi = 0 for all x ∈ PCKP .

Variable elimination scheme

. If A(i) > b, fix xi = 0.

Remarks

. Can compute all A(i) in O(S).

. Fixing is very efficient in practice (reduces LP gaps substantially).

. CPLEX does not find these fixings even with most aggressiveprobing.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 24 / 30

Page 43: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Variable fixing

Notation

. Pred(i) := {j : j predecessor of i} ∪ {i}(Items that must be included with i.)

. A(i) :=∑

j∈Pred(i) aj

(Total size induced by i.)

Observation: If A(i) > b, then xi = 0 for all x ∈ PCKP .

Variable elimination scheme

. If A(i) > b, fix xi = 0.

Remarks

. Can compute all A(i) in O(S).

. Fixing is very efficient in practice (reduces LP gaps substantially).

. CPLEX does not find these fixings even with most aggressiveprobing.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 24 / 30

Page 44: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Variable fixing

Notation

. Pred(i) := {j : j predecessor of i} ∪ {i}(Items that must be included with i.)

. A(i) :=∑

j∈Pred(i) aj

(Total size induced by i.)

Observation: If A(i) > b, then xi = 0 for all x ∈ PCKP .

Variable elimination scheme

. If A(i) > b, fix xi = 0.

Remarks

. Can compute all A(i) in O(S).

. Fixing is very efficient in practice (reduces LP gaps substantially).

. CPLEX does not find these fixings even with most aggressiveprobing.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 24 / 30

Page 45: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Variable fixing

Notation

. Pred(i) := {j : j predecessor of i} ∪ {i}(Items that must be included with i.)

. A(i) :=∑

j∈Pred(i) aj

(Total size induced by i.)

Observation: If A(i) > b, then xi = 0 for all x ∈ PCKP .

Variable elimination scheme

. If A(i) > b, fix xi = 0.

Remarks

. Can compute all A(i) in O(S).

. Fixing is very efficient in practice (reduces LP gaps substantially).

. CPLEX does not find these fixings even with most aggressiveprobing.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 24 / 30

Page 46: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Pairwise conflicts

Apply same idea to pairs of items:

. A(i, j) :=∑

k∈Pred(i)∪Pred(j) ak

(Total size of i, j and predecessors.)

Observation: If A(i, j) > b, then xi + xj 6 1 for all x ∈ PCKP .

. {i, j} with A(i, j) > b: Induced cover of size 2

. Induced cover: X ⊂ N with A(X) > b

. [Boyd’93, Park-Park’97] Conditions when induced cover inequalitiesare facet-defining (for low-dimensional faces of PCKP)

. [v.d.Leensel-v.Hoesel-v.d.Klundert’99] Lifting facet-defininginequalities for low-dimensional faces of PCKP to facets of PCKP

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 25 / 30

Page 47: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Pairwise conflicts

Apply same idea to pairs of items:

. A(i, j) :=∑

k∈Pred(i)∪Pred(j) ak

(Total size of i, j and predecessors.)

Observation: If A(i, j) > b, then xi + xj 6 1 for all x ∈ PCKP .

. {i, j} with A(i, j) > b: Induced cover of size 2

. Induced cover: X ⊂ N with A(X) > b

. [Boyd’93, Park-Park’97] Conditions when induced cover inequalitiesare facet-defining (for low-dimensional faces of PCKP)

. [v.d.Leensel-v.Hoesel-v.d.Klundert’99] Lifting facet-defininginequalities for low-dimensional faces of PCKP to facets of PCKP

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 25 / 30

Page 48: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Pairwise conflicts

Apply same idea to pairs of items:

. A(i, j) :=∑

k∈Pred(i)∪Pred(j) ak

(Total size of i, j and predecessors.)

Observation: If A(i, j) > b, then xi + xj 6 1 for all x ∈ PCKP .

. {i, j} with A(i, j) > b: Induced cover of size 2

. Induced cover: X ⊂ N with A(X) > b

. [Boyd’93, Park-Park’97] Conditions when induced cover inequalitiesare facet-defining (for low-dimensional faces of PCKP)

. [v.d.Leensel-v.Hoesel-v.d.Klundert’99] Lifting facet-defininginequalities for low-dimensional faces of PCKP to facets of PCKP

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 25 / 30

Page 49: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Clique inequalities

Idea

. Consider conflict graph CG = (N , E) withE := {ij | A(i, j) > b}

Precedence order Conflict graph CG

Observation: Any valid inequality for STAB(CG) is valid forPCKP .

Corollary: Let C be a clique in CG. Then (1) is valid for PCKP .∑i∈C

xi 6 1 (1)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 26 / 30

Page 50: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Clique inequalities

Idea

. Consider conflict graph CG = (N , E) withE := {ij | A(i, j) > b}

Precedence order Conflict graph CG

Observation: Any valid inequality for STAB(CG) is valid forPCKP .

Corollary: Let C be a clique in CG. Then (1) is valid for PCKP .∑i∈C

xi 6 1 (1)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 26 / 30

Page 51: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Clique inequalities

Idea

. Consider conflict graph CG = (N , E) withE := {ij | A(i, j) > b}

Precedence order Conflict graph CG

Observation: Any valid inequality for STAB(CG) is valid forPCKP .

Corollary: Let C be a clique in CG. Then (1) is valid for PCKP .∑i∈C

xi 6 1 (1)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 26 / 30

Page 52: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Clique inequalities

Idea

. Consider conflict graph CG = (N , E) withE := {ij | A(i, j) > b}

Precedence order Conflict graph CG

Observation: Any valid inequality for STAB(CG) is valid forPCKP .

Corollary: Let C be a clique in CG. Then (1) is valid for PCKP .∑i∈C

xi 6 1 (1)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 26 / 30

Page 53: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Clique inequalities

Idea

. Consider conflict graph CG = (N , E) withE := {ij | A(i, j) > b}

Precedence order Conflict graph CG

Observation: Any valid inequality for STAB(CG) is valid forPCKP .

Corollary: Let C be a clique in CG. Then (1) is valid for PCKP .∑i∈C

xi 6 1 (1)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 26 / 30

Page 54: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Clique inequalities

Idea

. Consider conflict graph CG = (N , E) withE := {ij | A(i, j) > b}

Precedence order Conflict graph CG

Observation: Any valid inequality for STAB(CG) is valid forPCKP .

Corollary: Let C be a clique in CG. Then (1) is valid for PCKP .∑i∈C

xi 6 1 (1)

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 26 / 30

Page 55: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Cliques with common predecessors

Precedence order Extended conflict graphCG′

Observation: Let C be a clique in CG withP (C) =

⋂i∈C Pred(i) 6= ∅. Then, for any i ∈ P (C),∑

j∈C

xj 6 xi (2)

is valid for PCKP .

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 27 / 30

Page 56: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Cliques with common predecessors

Precedence order Extended conflict graphCG′

Observation: Let C be a clique in CG withP (C) =

⋂i∈C Pred(i) 6= ∅. Then, for any i ∈ P (C),∑

j∈C

xj 6 xi (2)

is valid for PCKP .

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 27 / 30

Page 57: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Cliques with common predecessors

Precedence order Extended conflict graphCG′

Observation: Let C be a clique in CG withP (C) =

⋂i∈C Pred(i) 6= ∅. Then, for any i ∈ P (C),∑

j∈C

xj 6 xi (2)

is valid for PCKP .

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 27 / 30

Page 58: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Cliques with common predecessors

Precedence order Extended conflict graphCG′

Observation: Let C be a clique in CG withP (C) =

⋂i∈C Pred(i) 6= ∅. Then, for any i ∈ P (C),∑

j∈C

xj 6 xi (2)

is valid for PCKP .

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 27 / 30

Page 59: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Cliques with common predecessors

Precedence order Extended conflict graphCG′

Observation: Let C be a clique in CG withP (C) =

⋂i∈C Pred(i) 6= ∅. Then, for any i ∈ P (C),∑

j∈C

xj + (1− xi) 6 1 (2)

is valid for PCKP .

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 27 / 30

Page 60: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Cliques with common predecessors

Precedence order Extended conflict graphCG′

Observation: Let C be a clique in CG withP (C) =

⋂i∈C Pred(i) 6= ∅. Then, for any i ∈ P (C),∑

j∈C

xj + x′i 6 1 (2)

is valid for PCKP .

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 27 / 30

Page 61: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Separation of clique-based inequalities

Given: x ∈ [0, 1]N fractionalSeek:

(1) clique C in CG such that∑

j∈C xj > 1, or

(2) clique C in CG and i ∈ P (C) such that∑

j∈C xj > xi

. Separation of (1) and (2) is equivalent to finding a maximum-weightclique in CG′ with node weights wk := xk and wk′ := 1− xk for allk ∈ N. w(C∗) 6 1: all inequalities (1) and (2) satisfied

. w(C∗) > 1 and C∗ ⊆ N : inequality (1) violated

. w(C∗) > 1 and C∗ = C ∪ {i′}: inequality (2) violated

. NP-hard, but: Efficient MWC implementations exist in anystate-of-the-art MIP solver.

. Ideally: extend the conflict graph of your MIP solver.

More details on facets and computational results: see e.g.

Boland-Froyland-Fricke-Sotirov’06, Bley-Boland-Fricke-Froyland’09.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 28 / 30

Page 62: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Separation of clique-based inequalities

Given: x ∈ [0, 1]N fractionalSeek:

(1) clique C in CG such that∑

j∈C xj > 1, or

(2) clique C in CG and i ∈ P (C) such that∑

j∈C xj > xi

. Separation of (1) and (2) is equivalent to finding a maximum-weightclique in CG′ with node weights wk := xk and wk′ := 1− xk for allk ∈ N. w(C∗) 6 1: all inequalities (1) and (2) satisfied

. w(C∗) > 1 and C∗ ⊆ N : inequality (1) violated

. w(C∗) > 1 and C∗ = C ∪ {i′}: inequality (2) violated

. NP-hard, but: Efficient MWC implementations exist in anystate-of-the-art MIP solver.

. Ideally: extend the conflict graph of your MIP solver.

More details on facets and computational results: see e.g.

Boland-Froyland-Fricke-Sotirov’06, Bley-Boland-Fricke-Froyland’09.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 28 / 30

Page 63: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Separation of clique-based inequalities

Given: x ∈ [0, 1]N fractionalSeek:

(1) clique C in CG such that∑

j∈C xj > 1, or

(2) clique C in CG and i ∈ P (C) such that∑

j∈C xj > xi

. Separation of (1) and (2) is equivalent to finding a maximum-weightclique in CG′ with node weights wk := xk and wk′ := 1− xk for allk ∈ N. w(C∗) 6 1: all inequalities (1) and (2) satisfied

. w(C∗) > 1 and C∗ ⊆ N : inequality (1) violated

. w(C∗) > 1 and C∗ = C ∪ {i′}: inequality (2) violated

. NP-hard, but: Efficient MWC implementations exist in anystate-of-the-art MIP solver.

. Ideally: extend the conflict graph of your MIP solver.

More details on facets and computational results: see e.g.

Boland-Froyland-Fricke-Sotirov’06, Bley-Boland-Fricke-Froyland’09.

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 28 / 30

Page 64: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Summary

Open Pit Mining Production SchedulingProblem descriptionUltimate pit limitsTime-indexed MIP formulations

OPMPSP relaxationsStandard LP relaxationFull relaxation of resource constraintsLagrangean relaxation of resource constraints

Precedence Constrained Knapsack SubstructuresPrecedence Constrained Knapsack ProblemPCKs in open pit miningValid inequalities for the Precedence Constrained Knapsack Polytope

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 29 / 30

Page 65: Open Pit Mine Production Scheduling - Zuse Institute Berlinco-at-work.zib.de/berlin2009/downloads/2009-09-28/2009-09-28-1500... · Open Pit Mine Production Scheduling Some IP modelling

Open Pit Mine Production SchedulingSome IP modelling and solution techniques

Ambros M. Gleixner

Zuse Institute Berlin

09/28/2009

Ambros M. Gleixner (ZIB) Open Pit Mine Production Scheduling 09/28/2009 30 / 30