56
OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer M.P. Hasselbeck

OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

  • Upload
    vanliem

  • View
    248

  • Download
    6

Embed Size (px)

Citation preview

Page 1: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

OPTICS LAB TUTORIAL:Oscilloscope and Spectrum Analyzer

M.P. Hasselbeck

Page 2: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Oscilloscope or Multimeter?

Page 3: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Multimeter

• Battery powered

• Hand-held

• Very portable

• Variety of measurements possible

DC Voltage Continuity

AC Voltage Resistance

DC Current Capacitance

AC Current

Page 4: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Multimeter

Measurement given as a single number

What about signals that change asa function of time?

Page 5: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Periodic, time-varying signals can sometimes be characterized by a single number: Root-Mean-Square (RMS)

V(t) = Vp sin (ωt)

t

+Vp

−Vp

Page 6: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

The average voltage of a pure sine wave is identically zero.

V(t) = Vp sin (ωt)

t

+Vp

−Vp

Page 7: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

We know that an AC voltage can deliver plenty of power to a load

current

Page 8: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

current

We know that an AC voltage can deliver plenty of power to a load

Page 9: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

current

We know that an AC voltage can deliver plenty of power to a load

How do we calculate this power if the average voltage and current is zero?

Page 10: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

POWER =

This is easy in a DC circuit: Use Ohm's Law

Page 11: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Power dissipated in an AC circuit is time dependent:

Page 12: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

What is the energy delivered in one period?Temporally integrate the power over one period:

DC power dissipation =

AC power dissipation =

AC voltage producing power dissipation equivalent

Page 13: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• An RMS measurement assumes a stable, periodic signal

• Characterized by a single value of voltage, current

• Measured with a multimeter or oscilloscope

The situation is often not that convenient!

Page 14: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

TIME

VO

LTA

GE

DISPLAY

• • • •

CONTROLS

INPUTS

OSCILLOSCOPE

Page 15: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

DISPLAY

• • • •

CONTROLS

INPUTS

OSCILLOSCOPE

Page 16: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

ANALOG: Cathode ray tube, swept electron beam

DIGITAL: A/D converter, LCD display

Although physical operation is completely different, controls are nearly identical

Page 17: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

CONTROLS

DISPLAY ADJUSTMENT

VOLTS/DIV•

Page 18: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

CONTROLS

DISPLAY ADJUSTMENT

VOLTS/DIV•

Page 19: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

CONTROLS

DISPLAY ADJUSTMENT

SEC/DIV•

Page 20: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

CONTROLS

DISPLAY ADJUSTMENT

SEC/DIV•

Page 21: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

DISPLAY

• • • •

CONTROLS

DC coupling, AC coupling, and Ground

DC

AC

GND

Page 22: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

EXAMPLE: Sinusoidal wave source + DC offset

VDC

VDC

0

Page 23: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

DC COUPLING

Ground

Offset

CONTROLS

DC

AC

GND

Page 24: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

AC COUPLING

CONTROLS

DC

AC

GND

Page 25: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

GROUND: Defines location of 0 Volts

CONTROLS

DC

AC

GND

Page 26: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

GROUND can be positionedat any convenient level

CONTROLS

DC

AC

GND

Page 27: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

Why bother with AC couplingwhen DC coupling shows everything?

Ground

CONTROLS

DC

AC

GND

Page 28: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

Often we have very weak modulationof a DC signal

Ground

CONTROLS

DC

AC

GND

Page 29: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

AC couple and change the vertical scale

CONTROLS

DC

AC

GND

Page 30: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

AC coupling implemented with an RC high-pass filter

C

R TO AMPLIFIERSCOPEINPUTCONNECTION

SWITCH TO SELECTDC or AC COUPLING

Page 31: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

AC coupling implemented with an RC high-pass filter

C

R TO AMPLIFIERSCOPEINPUTCONNECTION

SWITCH TO SELECTDC or AC COUPLING

GND

Page 32: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Harmonic analysis of RC high-pass filter

C

Vin Vout

Page 33: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Harmonic analysis of RC high-pass filter

C

Vin Vout

R = 1 kΩ, C = 10 nF

Page 34: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Harmonic analysis of RC high-pass filter

C

Vin Vout

A typical oscilloscope has an RC high-pass cutoff in the range 1—10 Hz when AC coupling is used

Be careful when measuring slow signals:AC coupling blocks more than just DC

Page 35: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

DISPLAY

• • • •

CONTROLS

INPUT RESISTANCE: 50 Ω or 1 MΩ?

Page 36: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

All oscilloscopes have stray (unavoidable) capacitanceat the input terminals: Cinput = 15—20 pF

Cinput

INPUTAMPLIFIER

BNC INPUTCONNECTOR

GND

• 50 Ω• 1 MΩ

Page 37: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

All oscilloscopes have stray (unavoidable) capacitanceat the input terminals

15 pF

BNC INPUTCONNECTOR

GND

• 50 Ω• 1 MΩ

• 1 MΩ rolloff ~ 8 kHz

• 50 Ω rolloff ~ 160 MHz

Compensation possible with scope probe

Page 38: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Why do we use 1 MΩ if frequency response is so low?

BNC INPUTCONNECTOR

GND

• 50 Ω• 1 MΩ

ANSWER: Signal level (voltage) will drop enormously at 50 Ω unless source can provide enough current

Source:eg. optical detector

Page 39: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Auto: Scope gives continually updated display

Normal: User controls when the slope triggers; Level, Slope Trigger source: Channel 1, Channel 2, etc

Line: Triggers on 60 Hz AC

Single event

External

Use Auto-Set only when all else fails!

TRIGGERING

Page 40: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

Setting normal trigger level

Page 41: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

Example: Measure fall time of square wave

Page 42: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

• • • •

SOLUTION: Trigger on negative slope

Pre-triggerdata

Post-triggerdata

Page 43: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

DIGITAL SCOPE:SAMPLING BANDWIDTH

••• •

••

•• •

•• •

• ••

•• •

•• •

Page 44: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

SAMPLING BANDWIDTH

••• •

••

•• •

•• •

• ••

•• •

•• •

Sample spacing: T (sec) Sampling bandwidth = 1 / T (samples/sec)

T

Page 45: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

SAMPLING BANDWIDTH

••• •

••

•• •

•• •

• ••

•• •

•• •

Sample spacing: T (sec) Sampling bandwidth = 1 / T (samples/sec)

Page 46: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

SAMPLING BANDWIDTH

• •

••

• •

••

Reduce sample bandwidth 2x Increase period 2x

Page 47: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

SAMPLING BANDWIDTH

• •

••

• •

••

Reduce sample bandwidth 2x Increase period 2x

Page 48: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

•••••

••••

•••••

••••

•••••

•••••

•••••

Analog amplification(Bandwidth limited)

Analog-DigitalConversion

ADC

DISPLAY (Record length limited)

(Sample rate limited)

ANALOG BANDWIDTH SAMPLING BANDWIDTH

Page 49: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

•••••

••••

•••••

••••

•••••

•••••

•••••

Analog amplification(Bandwidth limited)

Analog-DigitalConversion

ADC

DISPLAY (Record length limited)

(Sample rate limited)

ANALOG BANDWIDTH SAMPLING BANDWIDTH

There is usually a switch tofurther limit the input bandwidth

Page 50: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Nyquist theoremSampling theorem

Temporal spacing of signal sampling

••• •

••

•• •

•• •

• ••

•• •

•• •

∆t

Page 51: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Nyquist theoremSampling theorem

Temporal spacing of signal sampling

•∆t

Page 52: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Nyquist theoremSampling theorem

Temporal spacing of signal sampling

ALIASING

∆t

Page 53: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

DIGITAL SCOPE: MEASUREMENT MENU

• Period • Rise time

• Frequency • Fall time

• Average amplitude • Duty cycle

• Peak amplitude • RMS

• Peak-to-peak amplitude • Max/Min signals

• Horizontal and vertical adjustable cursors

Page 54: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

DIGITAL SCOPE: MATH MENU

Channel addition

Channel subtraction

Fast Fourier Transform (FFT):Observe frequency spectrum of time signal

Page 55: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Spectrum Analyzer (Agilent N9320)

Operates like a radio with a very fast tuner

X

VCO

AMPLIFIER

MIXER

InputNARROW

BAND-PASSFILTER

Frequency (Hz)

DISPLAY

Am

plitu de

Page 56: OPTICS LAB TUTORIAL: Oscilloscope and Spectrum Analyzer

Spectrum Analyzer (Agilent N9320)

MENU SETUP

Start frequency Vertical scale (dB or linear)

Stop frequency Autoscale vertical axis

Averaging Preamp available

Markers Peak search

Operating range: 9 kHz – 3 GHz

Auto-tune rarely works

You should estimate where the expected signal will be