Osamu Yoshida Thesis

  • View
    226

  • Download
    3

Embed Size (px)

Text of Osamu Yoshida Thesis

  • WASHINGTON UNIVERSITY

    SEVER INSTITUTE OF TECHNOLOGY

    DEPARTMENT OF CIVIL ENGINEERING

    TORSIONALLY COUPLED RESPONSE CONTROL OF EARTHQUAKE EXCITED ASYMMETRIC BUILDINGS: DEVELOPMENT AND APPLICATION OF EFFECTIVE

    CONTROL SYSTEMS USING SMART DAMPERS

    by

    Osamu Yoshida

    Prepared under the direction of Professor Shirley J. Dyke

    A dissertation presented to the Sever Institute of Washington University in partial fulfillment

    of the requirements of the degree of

    DOCTOR OF SCIENCE

    May, 2003

    Saint Louis, Missouri

  • WASHINGTON UNIVERSITYSEVER INSTITUTE OF TECHNOLOGY

    DEPARTMENT OF CIVIL ENGINEERING

    ABSTRACT

    TORSIONALLY COUPLED RESPONSE CONTROL OF EARTHQUAKE EXCITED ASYMMETRIC BUILDINGS: DEVELOPMENT AND APPLICATION OF EFFECTIVE

    CONTROL SYSTEMS USING SMART DAMPERSby Osamu Yoshida

    ADVISOR: Professor Shirley J. Dyke

    May 2003St. Louis, Missouri

    This dissertation focuses on the development and validation of control systems that caneffectively reduce seismic responses due to torsional coupling in asymmetric buildingstructures. Due to their attractive characteristics for seismic response control, semiactivecontrol systems using magnetorheological (MR) dampers are specifically examined in thenumerical and experimental studies.

    To experimentally verify the applicability of the proposed semiactive control system totorsionally coupled responses of an asymmetric building, laboratory studies are conductedusing a 2-story experimental building model with asymmetric column distribution, and theperformance is evaluated through shaking table testing.

    The efficacy of the proposed control system when applied to numerical models of fullscale irregular buildings is also discussed. Two full scale buildings, a 9-story building with

  • an asymmetric structural plan, and an L-shaped, 8-story building with additional verticalirregularity due to setbacks, are considered in these studies.

    Through the research presented herein, it is verified that the controlled performance of theproposed semiactive control system using MR dampers is significantly better than that ofpassive control systems and as good as an ideal active control system.

  • To whom always give me joy in life:

    my wife Koaru, my daughter Mayu, and my son Yusei

  • iv

    Contents

    Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii

    Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

    Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii

    1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

    1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.1.1 Torsional Responses of Asymmetric Structures . . . . . . . . . . . . . . . . . . . 3

    1.1.2 Torsional Response Control of Asymmetric Buildings . . . . . . . . . . . . . . 3

    1.1.3 Semiactive Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.4 Semiactive Control Using Magnetorheological (MR) Dampers . . . . . . . 7

    1.2 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

    2.1 Mechanical Model of MR damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2.2 Semiactive Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2.2.1 Clipped-Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    2.2.2 Modified Clipped-Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    2.3 Nominal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3 Full Scale Verification of Semiactive Control . . . . . . . . . . . . . . . . .19

    3.1 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    3.2 Nonlinear Benchmark Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

  • v

    3.3 Control System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.3.2 Control Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.3.3 Design of the Nominal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.4 Benchmark Control Design Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.4.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    3.4.2 Active and Semiactive Control Systems . . . . . . . . . . . . . . . . . . . . . . . . 29

    3.5 Numerical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    3.5.1 Time History Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    3.5.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    3.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    4 Basic Behavior of Asymmetric Buildings . . . . . . . . . . . . . . . . . . . . .44

    4.1 Basic Behavior of Torsional Responses of Asymmetric Buildings . . . . . . . . 44

    4.2 Preliminary Control Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    4.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    5 Experimental Verification of Torsional Response Control of Asym-metric Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

    5.1 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    5.2 Identification of Experimental Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    5.3 Identification of Applied MR damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    5.4 Design of Nominal Control Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    5.5.1 Compensation Method for Shake Table Dynamics . . . . . . . . . . . . . . . . 70

    5.5.2 Scaled El Centro Earthquake Results . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    5.5.3 Broadband Random Excitation Results . . . . . . . . . . . . . . . . . . . . . . . . . 78

    5.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

  • vi

    6 Application to Full Scale Asymmetric Buildings . . . . . . . . . . . . . . .82

    6.1 Equation of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    6.2 Design of the Nominal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    6.3 Optimal Placement of Control Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    6.4 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    6.5 Case I: 9-Story, Plan-Irregular Building. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    6.5.1 Description of the Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    6.5.2 Optimal Control Device Placement and Design of Controller . . . . . . . 95

    6.5.3 Response Due to Earthquake Excitation . . . . . . . . . . . . . . . . . . . . . . . . 98

    6.6 Case II: L-Shaped, 8-Story Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    6.6.1 Description of the Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    6.6.2 Optimal Control Device Placement and Design of Controller . . . . . . 119

    6.6.3 Response Due to Earthquake Excitations . . . . . . . . . . . . . . . . . . . . . . 124

    6.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    7 Conclusions and Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

    Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

  • vii

    Tables

    3-1. Summary of Evaluation Criteria for the Nonlinear Benchmark Problem. ............26

    3-2. Evaluation Criteria for Active Control. .................................................................38

    3-3. Evaluation Criteria for Ideal Semiactive Control. .................................................39

    3-4. Evaluation Criteria for Original Clipped-Optimal Control....................................40

    3-5. Evaluation Criteria for Modified Clipped-Optimal Control. .................................41

    5-1. Maximum and rms Responses Due to Scaled El Centro Ear