54
Part 2 Part 2 Introduction to Introduction to Microlocal Analysis Microlocal Analysis Birsen Yazıcı & Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering March 15 th , 2010

Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

Part 2 Part 2 –– Introduction to Introduction to Microlocal AnalysisMicrolocal Analysis

Birsen Yazıcı & Venky Krishnan

Rensselaer Polytechnic Institute

Electrical, Computer and Systems Engineering

March 15th , 2010

Page 2: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 2

Outline

PART II

• Pseudodifferential (ψDOs) and Fourier Integral Operators (FIOs)

– Definitions

– Motivation for the study of FIOs and ψDOs

– Symbols/Amplitudes/Filters

• Propagation of singularities

– Singular support

– Wavefront Sets

– Method of Stationary Phase

– Effect of ψDOs and FIOs on Singular Support and Wavefront Sets

• Inversion of FIOs

– Canonical Relations

– Construction of Filters

• Conclusion

Page 3: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 3

Outline

PART II• ψDO and FIO

– Definitions– Motivation for the study of FIOs and ψDOs– Symbols/Amplitudes/Filters

• Propagation of singularities – Singular support– Wavefront Sets– Method of Stationary Phase– Effect of ψDOs and FIOs on Singular Support and

Wavefront Sets• Inversion of FIOs

– Canonical Relations– Construction of Filters

• Conclusion

Page 4: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 4

The Radon Transform

• Definition:

• Fourier slice theorem and

Fourier inversion formula gives

• Radon transform is an FIO.

θ

p

Page 5: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 5

ψDOs and FIOs

• General integral representations:

– ψDOs:

– FIOs: Phase functionSymbols/Amplitudes/Filters

Input variableFrequency variableOutput variable

Page 6: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 6

Motivation for study of FIOs

• Measured data in several imaging problems in the form of

• Exact determination of often not possible.

• Inhomogeneities in the medium carry much information.

• Reconstruct the inhomogeneities (modeled as singularities or sharp changes of )

• FIOs propagate singularities in specific ways.

• Inversion of FIOs reconstructs the singularities of the medium.

Page 7: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 7

Symbol of a PDE

• Linear partial differential operators:

Symbol of the PDE

Page 8: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 8

Estimates for the Symbol

• - Polynomial in

• Let and be any multi-indexes. For in a bounded subset

• Differentiation with respect to does not change the degree of the polynomial

• Differentiation with respect to lowers the degree of the polynomial.

Page 9: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 9

Symbols for ψDOs and FIOs

• Consider that satisfy the estimate

• Behave like polynomials or inverse of polynomials in

as

• grows or decays in powers of . Differentiation with respect to lowers the order of growth or increases the order of decay.

• Symbol of order . The order need not be an integer.

• Needed for the method of stationary phase/high frequency approximations.

Page 10: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 10

Symbols - Examples

• where is a smooth function.

Not a symbol

Symbol

- Not a symbol

Page 11: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 11

Pseudodifferential Operators

• A pseudodifferential operator of order

• satisfies the amplitude estimate

• phase term, highly oscillating.

Page 12: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 12

• Linear partial differential operators.

• Operator

• Filters in signal processing. Filters ≡ convolution operators

• Time-invariant filters:

Pseudodifferential Operators - Examples

Approx. by a rational polynomial of degree m

Page 13: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 13

• If is a time-varying convolution:

• In the Fourier domain:

• This is a pseudodifferential operator.

Pseudodifferential Operators - Examples

Approx. by a rational polynomial with time-varying coefficients of order m

Page 14: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 14

Fourier Integral Operators

• Operators more general than DOs.

• More general phase function.

• Phase function retains the essential propertiesof that of PseudoDOs.

• One important difference: Dimensions ofcan be all different.

• Example: Radon transform:

Page 15: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 15

Phase Function of FIOs

Phase function should satisfy thefollowing properties:

− Real-valued and smooth in

− Homogeneous of order 1 in

for

− and are non-zero

vectors for

Page 16: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 16

Fourier Integral Operators

• Fourier integral operators:

• satisfies properties of a phase function.

• satisfies estimates:

Page 17: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 17

Outline

PART II• ψDO and FIO

– Definitions– Motivation for the study of FIOs and ψDOs– Symbols/Amplitudes/Filters

• Propagation of singularities – Singular support– Wavefront Sets– Method of Stationary Phase– Effect of ψDOs and FIOs on Singular Support and

Wavefront Sets• Inversion of FIOs

– Canonical Relations– Construction of Filters

• Conclusion

Page 18: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 18

Singular Support

• The set of points where a function is not smooth.

• Not smooth – not infinitely differentiable.

• The set of non-smooth points – singularsupport.

• Notation:

• Singular support of is

Singular points

Page 19: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 19

Singular Support - Examples

• Consider the square S on the plane :

• Let be the function:

• is the boundary of the square.

Page 20: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 20

Singular Support - Examples

• Consider the function on the plane:

• First order derivatives exist.

• Higher order derivatives do not exist at points on the unit circle.

Page 21: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 21

• Wavefront sets: Directions of singularity at the locationof a singularity.

• Smoothness of a function corresponds to decay of itsFourier transform.

• Localize a function near the location of a singularity and consider the localized Fourier transform.

• Has more information. Microlocal information: Consider directions in which the localized Fourier transform does not decay.

Wavefront Sets

Page 22: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 22

Wavefront Sets

LocalizationFourier transformin thisdirection

Singular directions are characterized based on the behavior of the localized Fourier transform.

Not a singular direction.

Windowing function

Function with a fold singularity

Windowed function localizing a singular point

The two functions are multiplied

Behavior of the directional Fourier transform

Page 23: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 23

Wavefront Sets

LocalizationFourier transform in this direction

Singular directions are characterized based on the behavior of the localized Fourier transform.

Singular directions.

Windowing function

Function with a fold singularity

Windowed function localizing a singular point

The two functions are multiplied

Page 24: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 24

Wavefront Sets

• a location of singularity for a function andconsider a direction

• is microlocally smooth near if the localized Fourier transform decays rapidly.

• The complement of the set of points near which

is microlocally smooth is called the wavefront set of

• Denoted

Page 25: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 25

Wavefront Sets-Examples

Left figure – Circle in red is the singular support of Right figure- Arrows indicate the wavefront set directions at points belonging to

Page 26: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 26

Wavefront Sets-Examples

Left figure – Square in red is the singular support of Right figure- Arrows indicate the wavefront set directions at points belonging to

Page 27: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 27

Propagation of Singularities

Goal

Understand how a PseudoDO or an FIO carries the singularities of to or .

This singularity does not appear in the output space

This singularity appears in three places in the output space

Page 28: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 28

Method of Stationary Phase

• Expansion for certain oscillatory integrals of the form

• Conditions:

– a critical point:

– Critical point is non-degenerate:

Page 29: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 29

Method of Stationary Phase

Near the origin the function stays positive. Hence non-zero contribution to the integral.

Page 30: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 30

Method of Stationary Phase

Asymptotic expansion for the integral:

The first term in the asymptotic expansion:

Special case of the stationary phase method:

n - Dimension of the integral

sgn – Difference of the number of positive and negativeeigenvalues

Page 31: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 31

Method of Stationary Phase - Application

Relation between amplitudes and symbols of PseudoDOs.

Using MSP:

Page 32: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 32

Effect of ψDOs on Singular Support

• Goal: Under the effect on the singular support of a function on action by a ψDO.

• What is the relation between

and

• Important tools:

– Amplitude estimates

– Method of stationary phase.

Page 33: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 33

Effect of ψDOs on Singular Support

• Kernel representation for a ψDO:

• Use the method of stationary phase for this kernel.

Page 34: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 34

Effect of ψDOs on Singular Support

• Derivative with respect to the frequency variable:

• For no stationary points.

• Kernel is smooth in the complement of the set:

• The relation:

Page 35: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 35

Effect of FIOs on Singular Support

• Kernel representation for FIOs:

• Kernel of FIO:

Page 36: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 36

Effect of FIOs on Singular Support

• Use the method of stationary phase: The major contribution to comes from the set of points

• The relationship:

Page 37: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 37

Effect of FIOs on Singular Support-Example

• Modeling operator for SAI:

• Phase function:

• The singularities of the kernel lie in

Page 38: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 38

Effect of FIOs on Singular Support-Example

• Based on the relation between singular supports: If apoint , the singularity at could propagate to (some or all of)

Obtain a precise description of how propagation of singularities occur.

Page 39: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 39

• Let be a PseudoDO.

• Let be an FIO.

Effect of ψDOs and FIOs on Wavefront Sets

Page 40: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 40

SAI Example - Revisited

• Phase function in SAI:

H denotes projection on to the ground.

Hat – Unit vector Doppler

Page 41: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 41

SAI Example - Revisited

This wavefront set direction is not propagated to the data

Page 42: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 42

Outline

PART II• ψDO and FIO

– Definitions– Motivation for the study of FIOs and ψDOs– Symbols/Amplitudes/Filters

• Propagation of singularities – Singular support– Wavefront Sets– Method of Stationary Phase– Effect of ψDOs and FIOs on Singular Support and

Wavefront Sets• Inversion of FIOs

– Canonical Relations– Construction of Filters

• Conclusion

Page 43: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 43

Canonical Relations

Recall • Kernel for ψDOs:

• Kernel for FIOs:

Canonical Relations ≡Wavefront sets of the kernels of ψDOs and FIOs

Page 44: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 44

Canonical Relations

• Treat kernels as functions:− Wavefront set of the kernel of PseudoDO:

− Wavefront set of the kernel of FIO:

Criticality condition in SPM

Wavefront set of input data

Wavefront set of output data

Page 45: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 45

Canonical Relations

• The wavefront set relation for PseudoDOsreinterpreted as

• The wavefront set relation for FIOs reinterpreted as

• Interpreted as composition of relations.

Page 46: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 46

Composition of Relations

• If and

• If and

Page 47: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 47

Hörmander-Sato Lemma

• Consider two FIOs: with canonical relation andwith canonical relation .

• Hörmander-Sato Lemma:

• Analyze propagation of singularities or wavefront setsusing this lemma.

Page 48: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 48

Inversion of FIOs

• Construct approximate inverse of

• Choose so that the location and orientation of the singularities are preserved

• Microlocal Analysis �

– If is a pseudo-differential operator � preserves location and orientation of singularities

– Analyze propagation of singularities /wavefront sets

Page 49: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 49

Inversion of FIOs

• To choose such that is a PseudoDO:

• is the L2-adjoint (backprojection operator).

• is a PseudoDO. Reconstructs the singularities

at the correct location and orientation.

• Will not reconstruct at the right strength. Design a filter to reconstruct singularities at the right strength.

Page 50: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 50

Construction of Filters

• Consider a PseudoDO

• Find another ψDO

• Choose such that

Page 51: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 51

Construction of Filters

• Kernel representation for the composition:

• Choose such that

• The composition in terms of symbols:

Page 52: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 52

Construction of Filters

• Using SPM:

• Set

• Let

where are homogeneous of decreasing order in

Page 53: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 53

Construction of Filters

• Iteratively determine

etc…

Page 54: Part 2 – Introduction to Microlocal Analysisyazici/ICASSPTutorial/ICASSP_Tutorial-Part2_final.pdf · Part 2 – Introduction to Microlocal Analysis BirsenYazıcı& VenkyKrishnan

ICASSP 2010 Dallas, TX B. Yazıcı & V. Krishnan 54

Conclusion

• Several wave-based imaging problems – Data models are FIOs.

• Inhomogeneities of a medium modeled as singularities.

• Singularities – Wavefront Set (location and orientation)

• Pseudodifferential operators and Fourier integral operators propagate wavefront sets in specific ways.

• Back propagation – Reconstructs the singularities at the right location and orientation.

• An appropriate choice of filter reconstructs the singularities at the right strength.