part 5 emachines EEP 3243

Embed Size (px)

Citation preview

  • 8/14/2019 part 5 emachines EEP 3243

    1/36

    1

    ELECTRICAL MACHINE

    EEP 3243

    Lt C d r O n g K h ye Lia t R M N

    27 Jan 2010

  • 8/14/2019 part 5 emachines EEP 3243

    2/36

    2

    RECAP/ADDITION

  • 8/14/2019 part 5 emachines EEP 3243

    3/36

  • 8/14/2019 part 5 emachines EEP 3243

    4/36

  • 8/14/2019 part 5 emachines EEP 3243

    5/36

  • 8/14/2019 part 5 emachines EEP 3243

    6/36

    6

    Shifting Impedances fromSecondary to Primary

    While shifting from secondary to primary,these rules applied:

    Shifted impedance values are multipliedby a2.

    Shifted voltage E values becomes aE.

    Shifted current I values becomes I/a. The secondary of the transformer is on

    open-circuit and both current are zero,

    therefore can remove the transformer.

  • 8/14/2019 part 5 emachines EEP 3243

    7/36

    7

  • 8/14/2019 part 5 emachines EEP 3243

    8/36

    8

    Shifting Impedances fromPrimary to Secondary

    While shifting from primary to secondary, theserules applied:

    Shifted impedance values are divided by a2

    . Shifted voltage E values becomes E/a.

    Shifted current I values becomes aI.

    The primary of the transformer is on open-circuit

    and both current are zero, therefore can removethe ideal transformer completely.

  • 8/14/2019 part 5 emachines EEP 3243

    9/36

    9

  • 8/14/2019 part 5 emachines EEP 3243

    10/36

    10

    PROBLEM 1

    http://smb//tmp/svlh6.tmp/EEP%203243%20part%205%20Exmp.pptxhttp://smb//tmp/svlh6.tmp/EEP%203243%20part%205%20Exmp.pptx
  • 8/14/2019 part 5 emachines EEP 3243

    11/36

    11

    Practical Transformer

    In th e re a l w o u ld th e w in d in g s o ftra n sfo rm e r h a v e re sista n ce a n d th e.co re s a re n o t in fin ite ly p e rm e a b le S o

    th e flu x p ro d u ce d b y th e p rim a ry is n o t.co m p le te ly ca p tu re d b y th e se co n d a ry

    -A n d th e iro n co re s p ro d u ce e d d y cu rre n t,a n d h y ste re sis lo sse s w h ich co n trib u te

    .to th e tra n sfo rm e r te m p e ra tu re rise

  • 8/14/2019 part 5 emachines EEP 3243

    12/36

    Ideal Transformer withAn Imperfect Core

    , -C o re h a v in g h y ste re sis lo ss e d d y cu rre n t.lo ss a n d lo w p e rm e a b ility

    :IG 1 An imperfect core represented by a reactance Xmand aresistance Rm.

  • 8/14/2019 part 5 emachines EEP 3243

    13/36

    Cont.

    The Rm represents the

    iron loss andresulting heat and asmall current Ifis

    drawn from the line.

    Magnetizing reactance

    Xm is a measure ofthe permeability ofthe transformercore.

  • 8/14/2019 part 5 emachines EEP 3243

    14/36

    14

    Cont.

    Thus if permeabilityis low Xm is

    relatively low. The

    current Im flowingthoughXmrepresents the

    magnetizing

    current needed tocreate the flux m

    in the core.

  • 8/14/2019 part 5 emachines EEP 3243

    15/36

    15

    Cont.

    The total current,Io(exciting current)

    needed to producethe flux m in an

    imperfect core isequal to the phasor

    sum of Ifand Im.

  • 8/14/2019 part 5 emachines EEP 3243

    16/36

    16

    Cont

    Rm and Xm can be

    foundexperimentally

    by connectingthe transformerto an ac sourceunder no-load

    condition andmeasuring theactive power andreactive power it

    absorbs.

    :IG 2 Instruments used to measure E,I, P, and Q .in a circuit

  • 8/14/2019 part 5 emachines EEP 3243

    17/36

    17

    Cont.

    The followingequations apply:

    WhereRm = resistance

    representing the ironlosses,

    Xm = magnetizing

    reactance of theprimary winding,

    E1 = primary voltage, VPm = iron losses, W

    Qm = reactive power

    needed to set up the

    Id l T f ith

  • 8/14/2019 part 5 emachines EEP 3243

    18/36

    18

    Ideal Transformer withLoose Coupling

    A ssu m e a tra n sfo rm e r h a v in g p e rfe ctco re b u t lo o se co u p lin g b e tw e e n its

    p rim a ry a n d se co n d a ry w in d in g s

    .w h ich h a v e n e g lig ib le re sista n ce S e q u e n ce o f sim p le o p e ra tio n se ts o ff

    :a tra in o f e v e n ts

  • 8/14/2019 part 5 emachines EEP 3243

    19/36

  • 8/14/2019 part 5 emachines EEP 3243

    20/36

    20

    Cont.Mutual fluxes and leakage fluxes produced by atransformer under load. The leakage fluxes are

    due to the imperfect coupling between the coils.I 1 and I2immediately flow in

    .windingI2produces an mmf N2I2 while I1produces mmf N1I1.

    mmf N

    2I

    2produces ac flux

    2.Portion of 2 (m2) links withprimary winding while another portion

    f2 .does not Flux f2is called.secondary leakage flux

    mmf N1I1produces ac flux 1.

    Portion of 1 (m1) links withprimary winding while another portion

    f1 .does not Flux f1is called.primary leakage flux

  • 8/14/2019 part 5 emachines EEP 3243

    21/36

    21

    Cont.Transformer possesses 2 leakage fluxes and amutual flux

    Total flux produced by I1composed of new mutual flux m1 and primary leakage fluxf1 . Total flux produced by I2

    composed of new mutual flux m2 and primary leakage fluxf2 . Combine m1 and m2 into a

    single mutual flux

    m. flux f1 is in phase with I1and flux f2 is in phase withI2.

  • 8/14/2019 part 5 emachines EEP 3243

    22/36

    22

    Cont.Transformer possesses 2 leakage fluxes and amutual flux

    Voltage Esand Epcomposed of:two partsEf2induced by leakage flux f2

    E2induced by mutual flux m

    Ef2and E2 .are not in phase

  • 8/14/2019 part 5 emachines EEP 3243

    23/36

    23

    Cont.Transformer possesses 2 leakage fluxes and amutual flux

    Ef1induced by leakage fluxf1

    E1 induced by mutual flux m

    Induced Ep = applied voltageEg.

  • 8/14/2019 part 5 emachines EEP 3243

    24/36

    24

    Cont. Ef2 is really a voltage

    drop across thesecondary leakagereactance Xf2.

    Ef1 is simply a voltage

    drop across primaryleakage reactance Xf1.

    IG 3Separating the various inducedvoltages due to the mutual flux and theleakage fluxes

  • 8/14/2019 part 5 emachines EEP 3243

    25/36

    25

    Cont. A lso a d d e d th e p rim a ry a n d se con d a ry

    w in d in g re sista n ce R 1and R 2in series.w ith th e re sp e ctiv e w in d in g s

  • 8/14/2019 part 5 emachines EEP 3243

    26/36

    26

    PROBLEM 2

    Equivalent Circuit of

    http://smb//tmp/svlh6.tmp/EEP%203243%20part%205%20Exmp.pptxhttp://smb//tmp/svlh6.tmp/EEP%203243%20part%205%20Exmp.pptx
  • 8/14/2019 part 5 emachines EEP 3243

    27/36

    27

    Equivalent Circuit ofa Practical Transformer

    Complete equivalent circuit of a.practical transformer The shaded.box T is an ideal transformer

  • 8/14/2019 part 5 emachines EEP 3243

    28/36

    28

    Cont. Typical value of transformer

    parameters ranging from

    1kVA to 400MVA.

    Io always much

    smaller than therated primarycurrent Inp .

    Enp In = Ens Ins = Sn,where Sn is

    transformer ratedpower.

  • 8/14/2019 part 5 emachines EEP 3243

    29/36

    29

    Simplifying the Equivalent Circuit.

    T h e co m p le te e q u iv a le n t circu it o fth e tra n sfo rm e r g iv e s fa r m o re

    d e ta il th a n is n e e d e d in m o st

    .p ra ctica l p ro b le m s

  • 8/14/2019 part 5 emachines EEP 3243

    30/36

    30

    Cont. A t n o lo a d

    I1and I2 = .0 Ioflows in R1and Xf1 . R1and Xf1are so small compare to Xmand Rmand I2 .is zero

    So R1, R2, Xf1and Xf2 .can be neglected

  • 8/14/2019 part 5 emachines EEP 3243

    31/36

    31

    Cont. A t fu ll lo a d

    Ipisat least 20 times larger than Io , Io a n d. (m a g n e tizin g b ra n ch ca n b e n e g le cte d a lso

    %a p p ly w h e n th e lo a d is o n ly 1 0 o f ra te d)ca p a city

  • 8/14/2019 part 5 emachines EEP 3243

    32/36

    32

    Cont.

    Fu rth e r sim p lify b y sh iftin g th e im p e d a n ce s to.p rim a ry sid e

  • 8/14/2019 part 5 emachines EEP 3243

    33/36

    33

    Cont.Rp = R1 + a

    2R2X

    p= X

    f1+ a2X

    f2

    WhereRp = total transformer

    resistance referred to theprimary side

    Xp = total transformerleakage reactance referredto the primary side

    Zp = total impedance referredto primary side whichproduces an internal

    voltage drop whentransformer is loaded then

  • 8/14/2019 part 5 emachines EEP 3243

    34/36

    34

    Cont.

    Transformer above 500kVA possess a leakage

    reactance Xpthat is at least 5 times greaterthan Rp. So we can neglect Rp (out of

    )standpoint of temperature rise and efficiency

  • 8/14/2019 part 5 emachines EEP 3243

    35/36

    35

    PROBLEM 3

    http://smb//tmp/svlh6.tmp/EEP%203243%20part%205%20Exmp.pptxhttp://smb//tmp/svlh6.tmp/EEP%203243%20part%205%20Exmp.pptx
  • 8/14/2019 part 5 emachines EEP 3243

    36/36

    36

    END OF PART 5