Click here to load reader

Passive element enriched photoacoustic computed tomography ... · PDF file Hespen, 1 Cornelis H. Slump,2 Wiendelt Steenbergen, Ton G. van Leeuwen,1,3 and Srirang Manohar1* 1. Biomedical

  • View
    0

  • Download
    0

Embed Size (px)

Text of Passive element enriched photoacoustic computed tomography ... · PDF file Hespen, 1 Cornelis...

  • Passive element enriched photoacoustic

    computed tomography (PER PACT) for

    simultaneous imaging of acoustic propagation

    properties and light absorption

    Jithin Jose, 1 , Rene G. H. Willemink,

    2 Steffen Resink

    1 , Daniele Piras,

    1 J. C. G van

    Hespen, 1 Cornelis H. Slump,

    2 Wiendelt Steenbergen,

    1 Ton G. van Leeuwen,

    1,3 and

    Srirang Manohar 1 *

    1 Biomedical Photonic Imaging Group, MIRA-Institute for Biomedical Technology and

    Technical Medicine, University of Twente, P.O. Box 217,

    7500 AE Enschede, Netherlands 2 Signals and Systems Group, MIRA-Institute for Biomedical Technology and

    Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands 3 Biomedical Engineering and Physics, University of Amsterdam, Academic Medical Center, P.O. Box 22700,1100

    DE, Amsterdam, Netherlands

    *[email protected]

    Abstract: We present a „hybrid‟ imaging approach which can image both

    light absorption properties and acoustic transmission properties of an object

    in a two-dimensional slice using a computed tomography (CT)

    photoacoustic imager. The ultrasound transmission measurement method

    uses a strong optical absorber of small cross-section placed in the path of

    the light illuminating the sample. This absorber, which we call a passive

    element acts as a source of ultrasound. The interaction of ultrasound with

    the sample can be measured in transmission, using the same ultrasound

    detector used for photoacoustics. Such measurements are made at various

    angles around the sample in a CT approach. Images of the ultrasound

    propagation parameters, attenuation and speed of sound, can be

    reconstructed by inversion of a measurement model. We validate the

    method on specially designed phantoms and biological specimens. The

    obtained images are quantitative in terms of the shape, size, location, and

    acoustic properties of the examined heterogeneities.

    ©2010 Optical Society of America

    OCIS codes: (170.5120) Photoacoustic imaging; (170.0110) Imaging systems; (170.4580)

    Optical diagnostics for medicine; (170.3010) Image reconstruction techniques.

    References and links

    1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509

    (2009).

    2. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G.

    van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared

    photoacoustics,” Opt. Express 15(19), 12277–12285 (2007),

    http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12277.

    3. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A.

    Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007

    (2009).

    4. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov,

    “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast

    cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).

    5. J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature

    using Twente photoacoustic systems,” J Biophoton. 2(12), 701–717 (2009).

    6. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin

    melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).

    #134437 - $15.00 USD Received 1 Sep 2010; revised 2 Nov 2010; accepted 8 Nov 2010; published 20 Jan 2011 (C) 2011 OSA 31 January 2011 / Vol. 19, No. 3 / OPTICS EXPRESS 2093

  • 7. R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic

    microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).

    8. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the

    mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).

    9. H. P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-

    dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).

    10. R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner

    for whole-body small animal imaging,” Opt. Express 17(24), 21414–21426 (2009),

    http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21414.

    11. M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrumn. 77, (2006).

    12. X. Jin, and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med.

    Biol. 51(24), 6437–6448 (2006).

    13. J. F. Greenleaf, and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,”

    IEEE Trans. Biomed. Eng. 28(2), 177–185 (1981).

    14. N. Duric, P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, “Detection of breast

    cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE)

    prototype,” Med. Phys. 34(2), 773–785 (2007).

    15. S. Manohar, R. G. H. Willemink, and T. G. van Leeuwen, “Speed-of-sound imaging in a photoacoustic imager,”

    SPIE (2007), 64370R.

    16. S. Manohar, R. G. H. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-

    of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91 (2007).

    17. R. G. H. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. d. Heijden, and T. G. v. Leeuwen, “Imaging of

    acoustic attenuation and speed of sound maps using photoacoustic measurements,” in (SPIE, 2008), 692013.

    18. P. M. Joseph, and R. A. Schulz, “View sampling requirements in fan beam computed tomography,” Med. Phys.

    7(6), 692–702 (1980).

    19. F. Marinozzi, D. Piras, and F. Bini, “Spectral analysis of backscattered ultrasound field from hydroxyapatite

    granules,” in Advances in Medical, Signal and Information Processing, 2008. MEDSIP 2008. 4th IET

    International Conference on, 2008), 1–4.

    20. J. C. Bamber, Acoustical characteristics of biological media (Encyclopedia of acoustics, Wiley, 1997), Vol. 4.

    21. R. G. H. Willemink, S. Manohar, T. G. van Leeuwen, and C. H. Slump, “Estimation of integrated ultrasound

    transmission parameters I,” Speed of Sound under review.

    22. R. G. H. Willemink, S. Manohar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “A maximum

    likelihood method for obtaining integrated attenuation from ultrasound transmission mode measurement,” J.

    Acoust. Soc. Am. 123(5), 3641 (2008).

    23 R. G. H. Willemink, S. Manohar, T. G. van Leeuwen and C. H. Slump, “Estimation of integrated ultrasound

    transmission parameters II: Acoustic attenuation,” in preparation.

    24. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)--reconstruction

    tomography,” Med. Phys. 22(10), 1605–1609 (1995).

    25. C. R. Crawford, and A. C. Kak, “Multipath artifact corrections in ultrasonic transmission tomography,” Ultrason.

    Imaging 4(3), 234–266 (1982).

    26. R. G. H. Willemink, S. Manohar, J. Jose, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen,

    Simultaneous imaging of ultrasound attenuation, speed of sound, and optical absorption in a photoacoustic

    setup,” A. M. Stephen and D. h. Jan, eds. (SPIE, 2009), p. 72650J.

    1. Introduction

    Near-infrared photoacoustic (PA) imaging has garnered much attention [1] in imaging of

    various pathological states related to vascular condition and function. Some important

    applications of this technique include breast cancer detection [2–5], skin cancer visualization

    [6] and small animal imaging [7–10]. The technique relies on irradiating tissue with

    nanosecond pulses of visible or near infrared (NIR) light. Optical absorption in tissue causes

    thermoelastic expansion, which produces broadband pulses (MHz) of acoustic energy. These

    pulses propagate through the tissue with 2-3 orders lower scattering compared to light and can

    be detected at the tissue surface [11] at multiple positions. PA Imaging thus combines the

    typically high optical absorption contrasts of vascular-related pathologies with the high

    resolutions associated with ultrasound imaging.

    The presence of an ultrasound detector in the typical PA imaging configuration,

    immediately suggests the possibility to perform additional imaging of the acoustic properties

    of the subject either simultaneous or sequential to the PA studies. Jin et al. [12] used an extra

    ultrasound transmitter in an additional measurement to perform transmission tomography in a

    conventional PA imaging system to obtain speed of sound (SOS) maps. This method can be

    #134437 - $15.00 USD Received 1 Sep 2010; revised 2 Nov 2010; accepted 8 Nov 2010; published 20 Jan 2011 (C) 2011 OSA 31 January 2

Search related