8
1 PENENTUAN INTERVAL WAKTU PEMELIHARAAN PENCEGAHAN BERDASARKAN ALOKASI DAN OPTIMASI KEHANDALAN PADA PERALATAN SEKSI PENGGILINGAN E (Studi Kasus: PT ISM Bogasari Flour Mills Surabaya) Edi Suhandoko, Bobby Oedy P. Soepangkat Program Studi Magister Manajemen Teknologi Institut Teknologi Sepuluh Nopember Jl. HOS Cokroaminoto 12 A, Surabaya 60264 E-mail: [email protected] ABSTRAK Bogasari Flour M ills m erupakan pe rusahaan ya ng be rgerak di bi dang penggilingan t epung t erigu da n di visi dari P T. I ndofood S ukses M akmur. D epartemen Penggilingan sebagai bisnis inti dari Bogasari dengan proses kontinyu memiliki jumlah downtime peralatan ya ng cukup t inggi. Data waktu a ntar k egagalan menunjukkan bahwa kegagalan p eralatan t erbesar di S eksi Penggilingan E, sehingga perlu u paya untuk m enentukan strategi pemeliharaan pencegahan yang e fektif da n m ampu meningkatkan kehandalan peralatan. Penelitian ini bertujuan untuk menentukan interval waktu pemeliharaan pencegahan berdasarkan a lokasi da n optimasi k ehandalan pada peralatan di Seksi Penggilingan E. Hasil penelitian menunjukkan bahwa interval waktu pemeliharaan pencegahan peralatan yang terpanjang dimiliki oleh sub-sub sistem Panel (694,8 jam) pada saat kehandalan sistem ditargetkan sebesar 70%, dan yang terpendek dimiliki oleh sub-sub si stem Sifter (69,2 jam) pada saat kehandalan sistem ditargetkan sebesar 90%, Kata kunci: alokasi, optimasi, kehandalan, interval pemeliharaan pencegahan PENDAHULUAN Bogasari adalah produsen tepung terigu di Indonesia dengan kapasitas produksi sebesar 3,6 juta ton per tahun. Pada saat i ni, Bogasari m enjadi divisi perusahaan da ri kelompok usaha pangan PT. I ndofood Sukses Makmur. Proses produksi di B ogasari secara umum ditunjukkan pada gambar 1 berikut. Grain Unloader Separator Wheat Silo Precleaning Separator Raw Wheat Bin Magnetic Separator Separator Disc Carter Scourer Dry Stoner 1st Dampening 2nd Dampening Scourer B1 Scale Roller Mill Sifter Purifier Bran Finisher Rebolter Vibro Finisher Flour Packing FPS FPS By Prod. Packing Hammer Mill Pelletizing Local Delivery Export Delivery 1st Tempering Bin 2nd Tempering Bin Flour Silo Offal Bin Pellet Silo Flour Scale BOGASARI SURABAYA FLOW SHEET Aspirator Classifier Aspirator Roller Mill Roller Mill Sifter Flour By Prod. Pellet Pellet Gambar 1 Proses Produksi di Bogasari Surabaya Departemen Penggilingan

PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

Embed Size (px)

Citation preview

Page 1: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

1

PENENTUAN INTERVAL WAKTU PEMELIHARAAN PENCEGAHAN BERDASARKAN

ALOKASI DAN OPTIMASI KEHANDALAN PADA PERALATAN SEKSI PENGGILINGAN E

(Studi Kasus: PT ISM Bogasari Flour Mills Surabaya)

Edi Suhandoko, Bobby Oedy P. Soepangkat Program Studi Magister Manajemen Teknologi

Institut Teknologi Sepuluh Nopember Jl. HOS Cokroaminoto 12 A, Surabaya 60264

E-mail: [email protected]

ABSTRAK Bogasari Flour M ills m erupakan pe rusahaan ya ng be rgerak di bi dang

penggilingan t epung t erigu da n di visi dari PT. I ndofood Sukses Makmur. D epartemen Penggilingan sebagai bisnis inti dari Bogasari dengan proses kontinyu memiliki jumlah downtime peralatan ya ng cukup t inggi. Data waktu a ntar k egagalan menunjukkan bahwa kegagalan p eralatan t erbesar di S eksi Penggilingan E, sehingga perlu u paya untuk m enentukan strategi pemeliharaan pencegahan yang e fektif da n m ampu meningkatkan kehandalan peralatan. Penelitian ini bertujuan untuk menentukan interval waktu pemeliharaan pencegahan berdasarkan a lokasi da n optimasi k ehandalan pada peralatan di Seksi Penggilingan E. Hasil penelitian menunjukkan bahwa interval waktu pemeliharaan pencegahan peralatan yang terpanjang dimiliki oleh sub-sub sistem Panel (694,8 jam) pada saat kehandalan sistem ditargetkan sebesar 70%, da n yang t erpendek dimiliki oleh sub-sub si stem Sifter (69,2 jam) pada saat kehandalan sistem ditargetkan sebesar 90%, Kata kunci: alokasi, optimasi, kehandalan, interval pemeliharaan pencegahan PENDAHULUAN

Bogasari adalah produsen tepung terigu di Indonesia dengan kapasitas produksi sebesar 3 ,6 juta t on per tahun. Pada saat i ni, B ogasari m enjadi divisi perusahaan da ri kelompok us aha p angan PT. I ndofood Sukses Makmur. Proses p roduksi di B ogasari secara umum ditunjukkan pada gambar 1 berikut.

GrainUnloader

Separator

Wheat Silo

PrecleaningSeparator

Raw WheatBin

Magnetic Separator

SeparatorDisc

Carter

Scourer

Dry Stoner

1st Dampening

2nd Dampening

Scourer

B1 Scale

Roller Mill

Sifter

Purifier

Bran Finisher

Rebolter

Vibro Finisher

Flour Packing

FPS FPS

By Prod. Packing

Hammer Mill

Pelletizing

Local DeliveryExport Delivery

1st TemperingBin

2nd TemperingBin Flour Silo

Offal Bin

Pellet Silo

FlourScale

BOGASARI SURABAYA FLOW SHEET

Aspirator

ClassifierAspirator

Roller Mill

Roller Mill

Sifter

Flour By Prod. Pellet

Pellet

Gambar 1 Proses Produksi di Bogasari Surabaya

Departemen Penggilingan

Page 2: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

2

Departemen Penggilingan pa da ga mbar 1 adalah de partemen yang b ertanggung jawab untuk melakukan proses penggilingan. Pada proses penggilingan, gandum dan air sebagai ba han ba ku akan digiling m enjadi t epung t erigu s ebagai pr oduk utama. P roses penggilingan g andum j uga menghasilkan p roduk s ampingan, y aitu bran, pollard, industrial flour (IF), dan germ.

Proses penggilingan adalah bisnis inti da ri Bogasari, yang merupakan i ndustri dengan p roses kontinyu. Kegagalan ya ng sering t erjadi pa da p eralatan pr oses penggilingan a kan m enyebabkan t ingginya w aktu downtime. Gambaran f rekuensi kegagalan, j umlah down time, jam o perasi mesin, p ersentase down t ime, dan kerugian biaya pr oduksi pa da seksi-seksi di bawah Departemen Penggilingan da pat di lihat pa da tabel 1 berikut. Tabel 1Frekuensi Kegagalan dan Kerugian Biaya Produksi di Departemen Penggilingan

Sumber: Performance Mill, tahun 2009-Maret 2011

Dari tabel 1 terlihat beberapa item yang menunjukkan bahwa Seksi Penggilingan E la yak u ntuk d iteliti. Mettas (2000) melakukan p enelitian untuk m engevaluasi kehandalan sistem. Alokasi dan optimasi kehandalan sistem digunakan untuk memenuhi target kehandalan yang ingin dicapai. Penelitian in i menghasilkan dua formulasi, yaitu formulasi m asalah a lokasi k ehandalan da n formulasi biaya yang da pat di selesaikan dengan program n on l inier ( NLP). Malaiya ( 2005) melakukan penelitian m engenai alokasi kehandalan dengan biaya total yang minimal.

Nilai kehandalan s istem d idapatkan dari nilai kehandalan s ub s istem, y ang kemudian di gabungkan untuk d ioptimasi. Dengan demikian, pe nentuan i nterval pemeliharaan dengan melakukan alokasi dan o ptimasi m enjadi s uatu kebutuhan untuk meningkatkan k ehandalan dari S eksi Penggilingan E Pemodelan sistem S eksi Penggilingan E ditunjukkan pada gambar 2 berikut:

Sub Sistem

InputSub Sistem Screening

Sub Sistem Transport

Sub Sistem Milling

Sub Sistem Output

Gambar 2 Sub Sistem Penyusun Peralatan Seksi Penggilingan E (level 1)

Input, Sc reening, T ransport, Milling dan Output adalah s ub s istem pe nyusun sistem S eksi Penggilingan E. Setiap s ub s istem di susun ol eh s ub-sub si stem s eperti ditunjukkan pada gambar 3 berikut:

Sub Sistem Input

Sub-sub: 1. Power 2. Panel 3. Compressor

Sub Sistem Screening

Sub-sub: 1. BIN 2. Scourer

Sub Sistem Transport

Sub-sub: 1. Screw

Conveyor 2. Rotary

Valve

Sub Sistem Milling

Sub-sub: 1. Roll 2. Sifter 3. Bran Finisher 4. VibroFinisher

Sub Sistem Output

Sub-sub: 1. BPP 2. IF 3. Packing

Gambar 3 Sub-Sub Sistem Peralatan Penyusun Seksi Penggilingan E (level 2)

Page 3: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

3

Fungsi Kehandalan Kehandalan (reliability) dapat diartikan s ebagai p eluang b ahwa s ebuah

komponen akan mampu melaksanakan sebuah fungsi yang spesifik dalam suatu kondisi operasi da n periode waktu t ertentu (Lewis, 1987 ). Fungsi pa dat peluang, k ehandalan, laju kegagalan dan MTBF terhadap waktu (Ebeling, 1997) ditunjukkan pada tabel 2. Tabel 2 Fungsi Padat Peluang, Kehandalan, Laju Kegagalan dan MTBF

Macam Distribusi LogNormal Weibull

Fungsi Padat

Peluang

[ ]

−−

⋅= 2

2 ln2

1exp2

1)( µσπσ

tt

tf

dengan: µ = rata-rata σ = deviasi standar

−−

−=

− ββ

ηγ

ηγ

ηβ tttf exp)(

1

dengan:

η = parameter skala (scale parameter), η > 0

β = parameter bentuk (shape parameter), β > 0

γ = parameter lokasi (location parameter)

Kehandalan 1 - Φ Φ = cumulative probability distribution function

−−

β

ηγtexp

Laju Kegagalan )(

)(tRtf

1−

−β

ηγ

ηβ t

MTBF )2

exp(2σµ +

)11( +Γ+β

ηγ

Γ = fungsi gamma Analytical Hierarchy Process (AHP)

Metode i ni j uga biasa d igunakan u ntuk m engolah da ta yang bersifat k ualitatif maupun kuantitatif, sehingga kompleksitas permasalahan yang multi-objektif dan multi-kriteria dapat di de kati d engan m odel. Berikut di ba wah i ni adalah langkah-langkah dalam menggunakan metode AHP menurut Saaty (1988):

• Pengidentifikasian sistem • Penyusunan hirarki • Penentuan prioritas • Pemeriksaan konsistensi • Penentuan bobot prioritas

Program Non Linier Setelah kehandalan suatu s istem d ihitung maka d apat dibandingkan a pakah

kehandalan sistem aktual t elah mencapai target kehandalan yang t elah ditetapkan. J ika belum, a kan di lakukan u paya u ntuk m eningkatkan kehandalan sistem t ersebut. Permasalahan tersebut da pat di rumuskan dengan pr ogram non linier di bawah ini (Mettas, 2000). P: ∑

=

=n

iii RcC

1)(min (1)

(2) Batasan: RS ≥ RG, (3)

Page 4: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

4

Ri, min ≤ Ri ≤ Ri, max i = 1, 2, 3, … , n (4) dengan: C = bobot biaya sistem

ci(Ri) = bobot biaya sub sistem i fi = indeks kelayakan untuk peningkatan kehandalan dari sub sistem Ri = kehandalan sub sistem i n = jumlah sub sistem yang dipertimbangkan dalam optimasi Ri, min = kehandalan minimum sub sistem i Ri, max = kehandalan maksimum sub sistem i RS = kehandalan sistem RG = kehandalan sistem yang ingin dicapai

METODE

Langkah-langkah yang dilakukan un tuk m enentukan i nterval pe meliharaan pencegahan berdasarkan alokasi dan optimasi kehandalan adalah:

1. Pengumpulan data kegagalan (down time) peralatan dari Seksi Penggilingan E. 2. Pengkonversian da ta downtime dari data operasi produksi atau log sheet menjadi

data waktu antar kegagalan. 3. Penentuan di stribusi da ta waktu a ntar k egagalan ya ng pa ling t epat dengan

menggunakan pe rangkat l unak Weibull++6 untuk m emperoleh parameter distribusi seperti β, η, γ, µ, σ, dan ρ.

4. Penentuan fungsi p adat pe luang un tuk ke gagalan, l aju ke gagalan, ke handalan peralatan d an mean t ime b etween failure (MTBF) untuk pe ralatan untuk suatu periode operasi tertentu.

5. Penentuan i ndeks k elayakan peralatan dengan menggunakan metode Analytical Hierarchy Process (AHP) dan bantuan perangkat lunak Expert Choice.

6. Pengalokasian dan optimasi kehandalan untuk masing-masing p eralatan d engan menggunakan pe rangkat l unak WinQSB sehingga k ehandalan sistem ya ng ditargetkan dapat dicapai.

7. Penentuan strategi perawatan berdasarkan alokasi dan optimasi kehandalan.

HASIL DAN PEMBAHASAN Analisa Kehandalan Pengujian distribusi dilakukan t erhadap 11 sub-sub sistem peralatan pada Seksi Penggilingan E. Jenis dan nilai parameter dapat dilihat pada tabel 3. Tabel 3 Distribusi Waktu Antar Kegagalan dan Parameter Sistem Seksi Penggilingan E

Sumber: Hasil pengolahan data dengan Weibull++6 dan Microsoft Excel

Page 5: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

5

Nilai-nilai parameter ya ng diperoleh da ri t iap di stribusi m enjadi da sar u ntuk menghitung laju kegagalan, MTBF serta kehandalan pada saat MTBF dan di tunjukkan pada tabel 4. Tabel 4 Pola Laju Kegagalan, MTBF dan Kehandalan Pada Saat MTBF

Sumber: Hasil pengolahan data dengan Weibull++6 dan Microsoft Excel

Kehandalan s istem Seksi P enggilingan E disusun o leh su b-sub s istem s ecara seri. Hasil pe nghitungan ni lai kehandalan s istem Seksi P enggilingan E dapat di lihat pada tabel 5 berikut.

Tabel 5 Nilai Kehandalan Aktual Sistem Seksi Penggilingan E

Sumber: Hasil pengolahan data dengan Microsoft Excel

Indeks Kelayakan Peralatan

Optimasi kehandalan di hitung d engan m enggunakan pe rsamaan 2. U ntuk penghitungan op timasi kehandalan d ari s uatu sub s istem d iperlukan indeks kelayakan (fi), ya itu konstanta p eningkatan k ehandalan sub sistem r elatif t erhadap seluruh sub sistem p enyusun d alam s uatu sistem ya ng di optimasi. Nilai i ndeks k elayakan (fi) diasumsikan berada diantara 0-1, dimana nilai ini menunjukkan tingkat kesulitan untuk meningkatkan ke handalan sub-sub sistem. Hirarki pe nentuan i ndeks ke layakan ditunjukkan pada gambar 4.

Page 6: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

6

Penentuan Indeks Kelayakan Sub

Sistem Seksi Penggilingan E

Frekuensi Kegagalan Waktu Pemeliharaan Waktu Operasional Kemampuan Teknisi

Input Screening Transport Milling Output

Gambar 4 Hirarki Penentuan Indeks Kelayakan Indeks kelayakan t ersebut di tentukan dengan m enggunakan m etode Analytical

Hierarchy Process (AHP). Indeks kelayakan sub sistem peralatan di Seksi Penggilingan E ditunjukkan pada gambar 5.

Gambar 5 Grafik Indeks Kelayakan Sub Sistem Peralatan Seksi Penggilingan E

Indeks kelayakan pada gambar 5 menunjukkan tingkat kesulitan sub sistem yang akan ditingkatkan ke handalannya. S ecara berurutan sub sistem yang memiliki t ingkat kesulitan tertinggi un tuk di naikkan nilai ke handalannya a dalah Milling, I nput, Transport, Output dan Screening. Alokasi dan Optimasi Kehandalan

Permasalahan alokasi dan o ptimasi kehandalan di S eksi Penggilingan E dapat dirumuskan dengan program non linier di bawah ini.

Fungsi Obyektif: Min ( )∑ ∑= =

−−==

5

1

5

1max,

min,1)(i i

ii e RiRi

RiRif iRcC

Fungsi Batasan: R1 x R2 x R3 x R4 x R5 ≥ RG

R1, min ≤ R1 ≤ R1, max

R2, min ≤ R2 ≤ R2, max

R3, min ≤ R3 ≤ R3, max

R4, min ≤ R4 ≤ R4, max

R5, min ≤ R5 ≤ R5, max

Untuk m engoptimalkan k ehandalan m asing-masing su b sistem p eralatan Seksi Penggilingan E di gunakan perangkat l unak WinQSB dengan target kehandalan adalah RG = 70% (0.7), RG = 80% (0.8), dan RG = 90% (0.9). Target tersebut merupakan salah satu kriteria manajemen ya ng pelaksanaannya m embutuhkan u paya s ecara be rtahap. Rekapitulasi alokasi kehandalan s ub s istem p eralatan S eksi Penggilingan E yang optimal ditunjukkan pada tabel 6.

Page 7: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

7

Tabel 6 Rekapitulasi Alokasi Kehandalan Sub Sistem Seksi Penggilingan E yang Optimal

Sumber: Hasil pengolahan data dengan WinQSB

Untuk menentukan i nterval p emeliharaan, alokasi kehandalan s ub s istem dikonversi menjadi a lokasi k ehandalan s ub-sub si stem. Proses konv ersi t ersebut menggunakan interpolasi perangkat lunak Microsoft Excel terhadap kehandalan optimal (Ri) ya ng t elah didapatkan pa da tabel 6 . Hasil r ekapitulasi a lokasi k ehandalan sub-sub sistem peralatan Seksi Penggilingan E yang optimal ditunjukkan pada tabel 7. Tabel 7 Rekapitulasi Alokasi Kehandalan Sub-Sub Sistem Seksi Penggilingan E yang Optimal

Sumber: Hasil pengolahan data dengan Microsoft Excel Penentuan Interval Pemeliharaan

Penentuan i nterval pemeliharaan ditentukan d engan m enggunakan p erangkat lunak Weibull++6 untuk t = 1 44 j am ( jam k erja p eralatan yang d irencanakan d alam seminggu) dan kehandalan optimal (Ri) yang telah didapatkan pada perhitungan di tabel 7. H asil penghitungan interval p emeliharaan s ub-sub sistem p eralatan S eksi Penggilingan E yang optimal ditunjukkan pada tabel 8. Tabel 8 Interval Pemeliharaan yang Optimal

Sumber: Hasil pengolahan data dengan Weibull++6

Tabel 8 me nunjukkan b ahwa i nterval waktu pemeliharaan p encegahan u ntuk target k ehandalan R G = 0 .8 da n RG = 0.9 setelah optimasi l ebih pendek dibandingkan dengan sebelum optimasi. H al ini merupakan kons ekuensi d ari u paya u ntuk meningkatkan kehandalan sistem Seksi Penggilingan E.

Page 8: PENENTUAN INTERVAL WAKTU PEMELIHARAAN … · Alokasi dan optimasi kehandalan sistem digunakan ... distribusi seperti β, η, γ, µ ... Tabel 3 Distribusi Waktu Antar Kegagalan dan

8

KESIMPULAN Berdasarkan p embahasan yang di lakukan, k esimpulan ya ng dapat d iambil adalah:

1. Peluang k egagalan sistem S eksi P enggilingan E a kan menurun seiring dengan meningkatnya kehandalan sub-sub sistem peralatan yang ditentukan berdasarkan alokasi dan optimasi.

2. Semakin tinggi t arget k ehandalan ya ng i ngin di capai m aka s emakin pendek interval pemeliharaan pencegahan yang harus dilaksanakan.

3. Interval w aktu p emeliharaan pencegahan terpanjang setelah optimasi adalah 694,8 jam dan dimiliki ol eh sub-sub si stem Panel untuk target kehandalan (RG) sebesar 70%. I nterval w aktu pemeliharaan pencegahan terpendek s etelah optimasi a dalah 69,2 j am dan dimiliki o leh s ub-sub si stem Sifter untuk t arget kehandalan (RG) sebesar 90%.

DAFTAR PUSTAKA Ebeling, C. E., 1997, Reliability and Maintainability Engineering, International Edition,

McGraw-Hill, New York. Lewis, E. E., 1998, Introduction to Reliability Engineering, John Wiley and Sons, Inc.,

New York. Malaiya, Y. K., 2005, Reliability Allocation, Colorado State University, Fort Collins. Mettas, A., 2000, Reliability Allocation and Optimization for Complex System, Reliasoft

Corporations, Tucson. Saaty, T. L., 1988, Decision Making For Leaders; The Analytical Hierarchy Process for

Decisions in a Complex World, RWS Publication, Pittsburgh.