45
PERAN KONSORSIUM MIKROORGANISME DALAM LIMBAH KOTORAN SAPI MENJADI KOMPOS Sapi merupakan jenis ternak ruminansia yang relatif lebih digemari oleh masyarakat umum. Di pulau Lombok khususnya, pemeliharaan sapi dilakukan secara kelompok dalam suatu kandang kolektif. Jumlah kandang kolektif yang ada berkisar 3.000 buah, yang tersebar di seluruh wilayah Kabupaten namun belum banyak yang memikirkan pengelolaan limbahnya (kotoran). Sebagian besar peternak belum mengelola dan memanfaatkan kotoran ternaknya. Berdasarkan beberapa penelitian yang telah dilakukan tercatat bahwa satu ekor sapi rata-rata menghasilkan kotoran rata-rata 10- 25 kg/hari. Apabila dalam satu kandang kolektif dipelihara sebanyak 100 ekor sapi maka kotoran yang dapat dikumpulkan adalah 2.500 kg. Namun sampai saat ini kotoran sapi yang dihasilkan umumnya dibuang ke saluran air. Maksudnya dilakukan demikian oleh peternak, adalah untuk memudahkan penanganan dan bisa dimanfaatkan untuk lahan-lahan yang terairi oleh saluran tersebut. Pada saat yang demikian (kotoran ternak segar) belum dapat dimanfaatkan secara langsung oleh tanaman karena belum terdekomposisi dengan rasio C/N lebih dari 40. Limbah ternak dapat lebih bermanfaat setelah melalui proses pengolahan, menjadi kompos. Keengganan peternak untuk memproses kotoran ternak menjadi kompos disebabkan oleh lama waktu yang dibutuhkan selama proses pengomposan lebih kurang 2 bulan. Namun dengan adanya berbagai teknologi, kotoran ternak dapat didekomposisi menjadi kompos dalam waktu yang lebih singkat. Memanfaatkan limbah sapi yang berupa kotoran atau feses dan air seni diolah menjadi kompos atau pupuk organik sangat berguna bagi tanaman dan ini sangat membantu Pemerintah dalam menangulangi pencemaran lingkungan hasil limbah kotoran sapi tersebut. Arti dari pengkomposan adalah proses penguraian limbah padat organik menjadi materi yang stabil oleh mikroorganisma dalam kondisi terkendali. Proses penguraian tersebut dilakukan oleh konsorsium mikroorganisma, jasad renik yang kasat mata. Mikroorganisma yang bekerja merupakan organisme yang memerlukan udara/ oksigen sehingga tidak timbul bau yang menyengat. Untuk mengoptimalkan

PERAN KONSORSIUM MIKROORGANISME DALAM LIMBAH KOTORAN SAPI MENJADI KOMPOS.docx

  • Upload
    sri

  • View
    55

  • Download
    11

Embed Size (px)

Citation preview

PERAN KONSORSIUM MIKROORGANISME DALAM LIMBAH KOTORAN SAPI MENJADI KOMPOSSapi merupakan jenis ternak ruminansia yang relatif lebih digemari oleh masyarakat umum. Di pulau Lombok khususnya, pemeliharaan sapi dilakukan secara kelompok dalam suatu kandang kolektif. Jumlah kandang kolektif yang ada berkisar 3.000 buah, yang tersebar di seluruh wilayah Kabupaten namun belum banyak yang memikirkan pengelolaan limbahnya (kotoran). Sebagian besar peternak belum mengelola dan memanfaatkan kotoran ternaknya. Berdasarkan beberapa penelitian yang telah dilakukan tercatat bahwa satu ekor sapi rata-rata menghasilkan kotoran rata-rata 10-25 kg/hari. Apabila dalam satu kandang kolektif dipelihara sebanyak 100 ekor sapi maka kotoran yang dapat dikumpulkan adalah 2.500 kg.Namun sampai saat ini kotoran sapi yang dihasilkan umumnya dibuang ke saluran air. Maksudnya dilakukan demikian oleh peternak, adalah untuk memudahkan penanganan dan bisa dimanfaatkan untuk lahan-lahan yang terairi oleh saluran tersebut. Pada saat yang demikian (kotoran ternak segar) belum dapat dimanfaatkan secara langsung oleh tanaman karena belum terdekomposisi dengan rasio C/N lebih dari 40. Limbah ternak dapat lebih bermanfaat setelah melalui proses pengolahan, menjadi kompos. Keengganan peternak untuk memproses kotoran ternak menjadi kompos disebabkan oleh lama waktu yang dibutuhkan selama proses pengomposan lebih kurang 2 bulan. Namun dengan adanya berbagai teknologi, kotoran ternak dapat didekomposisi menjadi kompos dalam waktu yang lebih singkat.Memanfaatkan limbah sapi yang berupa kotoran atau feses dan air seni diolah menjadi kompos atau pupuk organik sangat berguna bagi tanaman dan ini sangat membantu Pemerintah dalam menangulangi pencemaran lingkungan hasil limbah kotoran sapi tersebut. Arti dari pengkomposan adalah proses penguraian limbah padat organik menjadi materi yang stabil oleh mikroorganisma dalam kondisi terkendali. Proses penguraian tersebut dilakukan oleh konsorsium mikroorganisma, jasad renik yang kasat mata. Mikroorganisma yang bekerja merupakan organisme yang memerlukan udara/ oksigen sehingga tidak timbul bau yang menyengat. Untuk mengoptimalkan kerja mikroorganisma tersebut diperlukan beberapa pengendalian antara lain pengendalian terhadap kelembaban, aerasi, dan temperatur untuk menghindari terjadinya proses yang dapat menimbulkan bau busuk.Limbah padat organik biasanya mengandung berbagai mikroorganisma yang mampu melakukan proses pengkomposan. Ketika limbah organik dipaparkan di udara dan kandungan airnya sesuai, maka mikroorganisma mulai bekerja. Selain oksigen dari udara dan air, mikroorganisma memerlukan pasokan makan yang mengandung karbon dan unsur hara seperti nitrogen, fosfor dan kalium untuk pertumbuhan dan reproduksi mereka. Kebutuhan makanan tersebut disediakan oleh limbah organik . Mikroorganisma kemudian melepaskan karbondioksida, air dan energi dan berkembang biak.Energi dilepaskan sebagai panas. Akibat dari Energi yang dilepaskan, tumpukan bahan yang dikomposkan akan melewati tahap penghangatan. Pada minggu pertama dan kedua proses pengomposan, energi panas yang dilepaskan oleh bakteri termofilik dapat mengakibatkan suhu tumpukan kompos mencapai 70 derajat celcius. Kemudian sejalan dengan waktu suhu kompos akan menurun karena aktivitas mikroorganisme termofilik mulai menurun dan digantikan oleh mikroorganisme mesotilik. Penurunan suhu pada akhir minggu ke-enam biasanya telah mencapai 40 derajat celcius dan kompos sudah dapat dipanen. Tempat yang digunakan adalah ruangan terbuka yang beratap lantai, proses aerasinya alamiah dan pembuatan tumpukannya dibuat memanjang dengan ukuran yang tertentu. Untuk mengendalikan proses tersebut, setiap waktu tertentu tumpukan dibalik dan disiram dengan air seperlunya.Limbah peternakan sebagian besar berupa bahan organik. Hal ini menunjukkan bahwa apabila dikelola dengan cara yang benar dan tepat peruntukkannya, limbah peternakan masih memiliki nilai sebagai sumberdaya yang potensial bermanfaat. Sejak dahulu limbah peternakan sudah digunakan oleh petani sebagai bahan sumber pupuk organik, namun karena pengaruh intensifikasi pertanian, pemanfaatan tersebut semakin berkurang. Selain itu juga dipengaruhi oleh perkembangan teknologi pengolahan limbah peternakan yang masih belum mampu memenuhi tuntutan kebutuhan petani pada masa itu. Pengolahan limbah sebagai pupuk masih dilakukan secara konvensional, yaitu dibiarkan menumpuk dan mengalami proses degradasi secara alami. Teknologi yang tepat dan benar belum dikembangkan.Konsorsium Bakteri Bagi Pengolahan Sampah Green Phoskko Activator Kompos Phoskko A per container 250 gr bahan organik limbah kota pertanian peternakan dan lain lainnyaLimbah peternakan khususnya ternak sapi merupakan bahan buangan dari usaha peternakan Bakteri ini secara alami terdapat dalam limbah yang mengandung bahan organik sepertiEM 4 Peternakan mampu memperbaiki jasad renik didalam saluran pencernaan ternak bakteri pengurai bahan organic menekan pertumbuhan bakteri pathogenTeknik pengomposan merupakan salah satu alternatif yang dapat dipilih untuk menanggulangi limbah feses sapi potong. Dengan cara ini, biaya operasional relatif lebih murah dan tidak menimbulkan pencemaran terhadap lingkungan. Selain itu dengan pengomposan juga dapat memperkaya unsur hara pupuk organik yang dihasilkan dari pengolahan limbah peternakan tersebut, namun demikian data mengenai pengomposan yang tepat untuk menangani limbah peternakan, khususnya limbah sapi potong belum diperoleh informasi yang lengkap.Teknik pengomposan merupakan salah satu cara pengolahan limbah yang memanfaatkan proses biokonversi atau transformasi mikrobial. Biokonversi itu sendiri adalah proses-proses yang dilakukan oleh mikroorganisme untuk merubah suatu senyawa atau bahan menjadi produk yang mempunyai struktur kimiawi yang berhubungan. Proses biokonversi limbah dengan cara pengomposan menghasilkan pupuk organik yang merupakan hasil degradasi bahan organik. Salah satu indikator yang dapat digunakan untuk mengetahui apakah bahan organik limbah sudah terdegradasi dengan baik adalah perubahan bahan organik limbah menjadi unsur hara, terutama unsur hara makro, seperti N total, P2O5 dan K2O.Dari berbagai produk beternak sapi tersebut, salah satu yang menjadi masalah, sehingga bisa merepotkan pemilik ternak adalah kotoran sapi. Betapa tidak. Untuk seekor sapi betina bisa menghasilkan kotoran antara 8 sampai 10 kilogram/harinya. Jika sapi yang diperlihara jumlahnya banyak dan cara pemeliharaannya dibiarkan berkeliaran di berbagai tempat, tanpa pengkandangan dan pemeliharaan yang baik, dapat dipastikan kotoran sapi akan berceceran dimana-mana. Hal tersebut tentu tidak bisa dibiarkan begitu saja, karena selain mengganggu dan mengotori lingkungan, juga sangat berpotensi untuk menimbulkan penyakit bagi masyarakat sekitarnya.Agar kotoran sapi tidak terbuang dengan sia sia, maka kotoran ini dimanfaatkan sebagai pupuk organik yang baik untuk tanaman. Pembuatan pupuk organik tidak terlepas dari proses pengomposan yang diakibatkan oleh mikroba yang berperan sebagai pengurai atau dekomposisi berbagai limbah organik yang dijadikan bahan pembuat kompos. Penggunaan mikroba sebagai aktiVator untuk memperoleh kompos dengan kualitas yang baik tergantung kepada bahan bahan yang digunakan, cara pembuatannya, tempat pembuatannya serta lama pengomposan.

Salah satu aktivator atau dekomposer yang sering digunakan adalah Stardec atau Starbio. Aktivator Stardec berisi beberapa mikroba yang berperan dalam penguraian atau dekomposisi limbah organik hingga dapat menjadi kompos. Mikroba tersebut lignolitik, selulolitik, proteolitik, lipolitik, aminolitik dan mikroba fiksasi nitrogen non-simbiotik.Mikroba mikroba tersebut mempunyai peran peran tersendiri hingga mampumemperbaiki dan mempercepat proses pengomposan yang kita lakukan. Mikroba tersebut adalah sebagai berikut:Mikroba lignolitik berperan dalam menguraikan ikatan lignoselulose menjadi selulose dan lignin. Lignin ini kemudian diuraikan lagi oleh enzim lignase menjadi derivate lignin yang lebih sederhana sehingga mampu mengikat NH4.Mikroba selulotik akan mengeluarkan enzim selulose yang dapat menghidrolisis selulosa menjadi selulosa lalu dihidrolisis lagi menjadi D-glukosa dan akhirnya didokumentasikan sehingga menghasilkan asam laktat, etanol, CO2 dan ammonia.

(Gbr. Clustridium sp)Bakteri proteolitik adalah bakteri yang memproduksi enzim protease ekstraseluler, yaitu enzim pemecah protein yang diproduksi di dalam sel kemudian dilepaskan keluar dari sel. Semua bakteri mempunyai enzim protease di dalam sel, tetapi tidak semua mempunyai enzim protease ekstraseluler.Bakteri proteolitik dapat digolongkan menjadi beberapa kelompok:1. Bakteri aerobik atau anaerobik fakultatif, tidak membentuk spora, misalnya Pseudomonas dan Proteus.2. Bakteri aerobik atau anaerobik fakultatif, membentuk spora, misalnya Bacillus.3. Bakteri anaerobik pembentuk spora, misalnya sebagian spesies Clostridium.Mikroba proteolitik akan mengeluarkan enzim protease yang dapat merombak proteinmenjadi polipeptida, lalu menjadi peptida sederhana dan akhirnya menjadi asam amino bebas, CO2 dan air.

(Gbr. Pseudomonas sp)Mikroba lipolitik akan menghasilkan enzim lipase yang berperan dalam perombakanlemak.

(Gbr. Cellulomonas sp)Mikroba amilolitik akan menghasilkan enzim amilase yang berperan dalam mengubah karbohidrat menjadi volatile fatty acids dan keto acids yang kemudian akanmenjadi asam amino.Pada mikroba fiksasi nitrogen merupakan bakteri yang hidup pada bintil-bintil akar tanaman kacang-kacangan ini hidup bersimbiosis, dan bintil akar tumbuh karena rangsangan dari zat tumbuh yang dihasilkan oleh bakteri tersebut dan juga dapat menyuburkan tanah. Selain itu ada pula beberapa jenis bakteri yang mampu memfiksasi N2 (nitrogen bebas dari udara) di atmosfer ke dalam tanah, yang kemudian N2 ini akan dimanfaatkan oleh tumbuhan dalam pembentukan protein. Bakteri tersebut antara lain, Azotobacter vinelandii, Clostridium pasteurianum dan Rhodospirillum rubrum. Mikroba bakteri fiksasi nitrogen non simbiotik diperkirakan dapat mengikat 5 20 gram nitrogen dari 1.000 gram bahan organik yang dirombak.

(Gbr. Azotobacter vinelandii)

( Gbr. Rhodospirillum sp)Proses PengomposanProses pengomposan akan segera berlansung setelah bahan-bahan mentah dicampur. Proses pengomposan secara sederhana dapat dibagi menjadi dua tahap, yaitu tahap aktif dan tahap pematangan. Selama tahap-tahap awal proses, oksigen dan senyawa-senyawa yang mudah terdegradasi akan segera dimanfaatkan oleh mikroba mesofilik. Suhu tumpukan kompos akan meningkat dengan cepat. Demikian pula akan diikuti dengan peningkatan pH kompos. Suhu akan meningkat hingga di atas 50o 70o C. Suhu akan tetap tinggi selama waktu tertentu. Mikroba yang aktif pada kondisi ini adalah mikroba Termofilik, yaitu mikroba yang aktif pada suhu tinggi. Pada saat ini terjadi dekomposisi/penguraian bahan organik yang sangat aktif. Mikroba-mikroba di dalam kompos dengan menggunakan oksigen akan menguraikan bahan organik menjadi CO2, uap air dan panas. Setelah sebagian besar bahan telah terurai, maka suhu akan berangsur-angsur mengalami penurunan. Pada saat ini terjadi pematangan kompos tingkat lanjut, yaitu pembentukan komplek liat humus. Selama proses pengomposan akan terjadi penyusutan volume maupun biomassa bahan. Pengurangan ini dapat mencapai 30 40% dari volume/bobot awal bahan.Pada proses pengomposan dapat terjadi secara aerobik (menggunakan oksigen) atau anaerobik (tidak ada oksigen). Proses yang dijelaskan sebelumnya adalah proses aerobik, dimana mikroba menggunakan oksigen dalam proses dekomposisi bahan organik. Proses dekomposisi dapat juga terjadi tanpa menggunakan oksigen yang disebut proses anaerobik. Namun, proses ini tidak diinginkan, karena selama proses pengomposan akan dihasilkan bau yang tidak sedap. Proses anaerobik akan menghasilkan senyawa-senyawa yang berbau tidak sedap, seperti: asam-asam organik (asam asetat, asam butirat, asam valerat, puttrecine), amonia, dan H2S.

Gambar profil suhu dan populasi mikroba selama proses pengomposan.

Skema Proses Pengomposan AerobikDaftar Pustaka Abdurohim, Oim. 2008. Pengaruh Kompos Terhadap Ketersediaan Hara Dan Produksi Tanaman Caisin Pada Tanah Latosol Dari Gunung Sindur, sebuah skripsi. Dalam IPB Information Resource Center, diunduh 13 Januari 2011Isroi. 2008. KOMPOS. Makalah. Balai Penelitian Bioteknologi Perkebunan Indonesia, Bogor.Sutiamiharjo, Nurhalijah. 2008. Isolasi Bakteri dan Uji Aktivitas Amilase. Gramedia. BandungAnonymous. 2009. Peranan konsorsium dalam limbah sapi. http://ejournal.unud.ac.id/abstrak/limbahsapi.pdf Diakses tanggal 12 Januari 2011 14 Jan PEMANFAATAN BIOFERTILIZER PADA PERTANIANORGANIKPosted by aguskrisno in KAJIAN MIKROBIOLOGI PERTANIAN. Leave a CommentPertanian organik semakin berkembang dengan sejalan dengan timbulnya kesadaran akan petingnya menjaga kelestarian lingkungan dan kebutuhan bahan makanan yang relatif lebih sehat.dalam pertanian organik yang tidak meggunakan bahan kimia buatan seperti pupuk kimia buatan dan pestisida,biofertilizer atau pupuk hayati menjadi salah satu alternatif yang dapat dipertimbangkan. Beberapa mikroba tanah seperti rhizobium,azaosprillium, azotobacter mikoriza perombak sellulosa dan efektif mikroorgnisme dapat dimanfaatkan sebagai biofertilizer pada pertanian organik.biofertilizer tersebut fungsinya antara lain membantu penyediaan hara pada tanaman, mempermudah penyediaan hara bagi tanaman membantu dekomposisi bahan organik, meyediakan lingkungn rhizosfer sehingga pada akhirnya akan mendukung pertumbuhan dan produksi peningkatan tanaman.PERANAN BIOFERTILIZERPertanian organik dapat didefinisikan sebagai sistem pengolahan produksi pertanian yang holistik yang mendorong dan meningkatkan kesehatan agro-ekosistem termasuk biodiversitas, siklus biologi dan aktifitas biologi tanah. Dalam sistem pertanian organik masukan (input) dari luar (eksterna) akan dikurangi dengan cara tidak menggunakan pupuk kimia buatan, pestisida dan bahan sintetis lainya. Dalam sistem pertanian organik kekuatan hukum alam yang harmonis dan lestari akan dimanfaatkan untuk meningkatkan kualitas dan kuantitas hasil pertanian sekaligus meningkatkan ketahanan terhadap serangan hama dan penyakit.PERKEMBANGAN BIOFERTILIZERPerkembangan biofertilizer saat ini di Dunia telah pesat. Berbagai negara seperti India, Thailand, Jepang, Cina, Brazil, Taiwan dan Negara maju lainnya telah lama beralih dari pupuk kimia ke arah pupuk biologi.Pupuk biologi atau yang disebut juga dengan Biofertilizer dinilai lebih bermanfaat baik ke tanaman maupun ke lingkungan. Manfaat ke tanaman karena Biofertilizer mengandung sejumlah mikroba yang mampu menyediakan nutrisi bagi kebutuhan tanaman, seperti Nitrogen, fosfat, Kalium, dan Biohormon.BEBERAPA BIOFERTILIZER DAN MANFAATNYADari segi fungsi metabolisme dan manfaat bagi manusia,terutama pada bidang pertanian, mikroorganisme tanah dapat dikelompokan menjadi mikroorganisme yang merugikan dan mikroorganisme yang bermanfaat. Mikroorgnisme tanah yang menguntungkan ini dapat dikategorikan sebagai biofertilizer (pupuk hayati).Secara garis besar dapat fungi yang menguntungkan dapat dibagi menjadi :1. penyediaan hara2. peningkatan ketersediaan hara3. pengontrol organisme pengganggu tanaman4. pengurai bahan organik dan pembentuk humus5. perombak persenyawaan agrokimiaTEKNIK PEMANFAATAN BIOFERTILIZERMikroorganisme hasil inokulasi dari tanah pada kondisi laboratorium menggunakan media buatan. Setelah mikroorganisme tersebut berhasil dibiakan, maka diperoleh galur yang dikehendaki. karena tidak semua spesies dari suatu populasi bersifat efektif. Selanjutnya galur yang efektif di isolasi, dan dilakukan pengujian di lapangan apakah hasil inokulasi harus sesuai dengan kondisi lingkungan tertentu, harus mampu menyesuaikan dengan fluktuasi kondisi lingkungan dan tidak kalah bersaing atau dimangsa mikroorganisme asli.Apabila mikroorganisme yang di inokulasikan cukup efektif dalam meningkatkan hasi tanaman, maka tugas selanjutnya mengembangkan metode untuk memperbanyak dengan skala besar. Pada umumnya, mikroorganisme akan tumbuh dan berkembang melalui proses fermentasi. Apabila populasi mikroorganisme mencapai ukuran tertentu, kemudian tahap berikutnya adalah memanen dan mengemas untuk tujuan komersial. Tugas selanjutnya adalah membuat formula cara kerja inokulan, termasuk cara memanfaatkan inokulan di lapangan (disemprotkan ke tanah atau dicampur dengan biji), termasuk memecahkan semua masalah yang mungkin dihadapi dalam mempertahankan inokulan tetap efektif, terutama yang berhubungan dengan pengiriman, kemasan, penyimpanan, dan pemanfaatanHasil penelitian biofertilizer

Pemanfaata pupuk asil biofertilizer pada pertanian

PERKEMBANGAN BIOFERTILIZERPerkembangan biofertilizer saat ini di Dunia telah pesat. Berbagai negara seperti India, Thailand, Jepang, Cina, Brazil, Taiwan dan Negara maju lainnya telah lama beralih dari pupuk kimia ke arah pupuk biologi.Pupuk biologi atau yang disebut juga dengan Biofertilizer dinilai lebih bermanfaat baik ke tanaman maupun ke lingkungan. Manfaat ke tanaman karena Biofertilizer mengandung sejumlah mikroba yang mampu menyediakan nutrisi bagi kebutuhan tanaman, seperti Nitrogen, fosfat, Kalium, dan Biohormon.TEKNOLOGI PRODUKSI BIOFERTILIZERLangkah pertama yang dilakuka alam produksi biofertilizer ini adalah dengan mengidentifikasi mikroorgaisme yang akan dijadikan biofertilizer (pupuk hayati). Selanjutnya mikroorganisme hasil isolasi dari tanah dikembangbiakan pada laboratorium menggunakan meia buatan. Setelah mikroorgaisme tersebut berhasil dibiakan, maka diperoleh galur ang dikehendaki. Selajutnya galur efektif akan diisolasi dan dilakukan pengujian lapangan apakah hasil inokulasi dapat meningkatkan pertumbuhan produksi tanaman. Mikroorganisme yang diinkulasi harus sesuai dengan kondisi lingkungan ternentu agar tidak kalah bersaing dengan mikroorganisme asli.Apabila mikroorganisme yang diinokulasikan cukup efektif dalam meningkatkan hasil produksi tanaman, maka selanjutnya mengembangka metode daam skala jumlah besar. Pada umumnya mikroorganisme akan berkembang melalui proses fermentasi. Apabila populasi mikroorganisme mencapai ukuran tertentu, maka selanjutnya adalah memanen dan mengemas hasil produksi.Pupuk biofertilizer produksi cina

Produk biofertilizer mendapatkan penghargaan

RHIZOBIUMBakteri rhizobium adalah salah satu bakteri yang berkemampuan sebagai bakteri penyedia hara bagi tanaman. Bila bersimbiosis dengan tanaman legum, bakteri ini akan menginfeksi tanaman akar dan membentuk bintil akar di dalamnya. Perana rhizobium terhadap pertumbuhan tanaman khususnya berkaitan dengan ketersediaan nitrogen bagi tanaman inangnya.AZOSPIRILLIUM DAN AZOTOBACTERAzosprillium mempunyai potensi cukup besar untuk dikembangkan sebagai pupuk hayati. Bakteri inibayak dijupai brasosiasi dengan tanaman jenis rerumputan termasuk jenis serelia, tanaman jagung dan gandum. Sampai saat ini ada tiga spesies yang telah ditemukan dan mempunyai kemampuan dalam menghambat nitrogen, yaitu azosprillium brasilense, A. Lipoferum, A. Amazonese.MIKORIZAAsosiasi simbiotik antara jamur dan sistim perakaran tanaman tinggi diistilahkan dengan mikoriza. Dalam fenomena ini jamur menginfeksi dan mengkoloni akar tanpa menimbulan nekrosis sebagaimana biasa terjadi pada infeksi jamur patogen, dan mendapat pasokan nutrisi secara teratur dari tanaman.MIKROORGANISME EFEKTIFMikroorganisme efektif (EM) merupakan kultur campuran beberapa jenis mikroorganisme yang bermanfaat (bakteri fotosintetik, bakteri asam laktat, dan jamur peragian) yang dapatdimanfaatkan sebagai inokulan untuk meningkatkan keragamanmikroba tanah. Pemanfaatan EM dapat memperbaiki kualitas tanah dan selanjutna memperbaiki da meningkatkan produksi tanaman.Pengaruh Mikroorganisme Efektif yag menguntungkan adalah sebagai berikut:1. Memperbaiki lingkungan fisik, kimia dan bilogi tanah serta menekan hama pertumbuhan penyakit2. Memperbaiki perkecambahan, pembungaan, pembentukan buah dan pematangan hasil3. Meningkatkan kapasitas fotositetis tanaman.4. meningkatkan bahan organik sebagai sumber pupukKEUNTUNGAN PEMANFAATAN BIOFERTILIZER1. Pemakaian pupuk anorganik (Urea, TSP, KCl, dll) dapat ditinggalkan2. Dapat meningkatkan kesuburan tanah dengan jalan memperbaiki struktur tanah dan mengoptimalkan mikroba yang bekerja dalam tanah3. Meningkatkan hasil panen4. ketersediaan hara makro dan mikro terpenuhi dan aktifitas mikroorganisme tanah untuk membantu kesuburan tanah juga terjaga.TABEL MEKANISME BIOFERTILIZER

HASIL PANEN DENGAN MENGGUNAKAN BIOFERTILIZER

DAFTAR PUSTAKAGunalan. 1996. Penggunaan mikroba bermanfaat pada bioteknologi tanah berwawasan lingkungan. Majalah sriwijaya vol 32. No 2Prihatini, T, A. Kentjanasari dan Subowo 1996. Pemanfaatan biofertilizer untuk peningkatan produktivitas lahan pertanian.Sutanto R. 2002. Penerapan pertanian organik. Kanisius. YogyakartaRao, N.S.S. 1994. Soil microorganism and plant growth. Oxford and IBM publishing CO.(terjemahan Susilo. Mikroorganisme tanah dan pertumbuhan tanaman. Universitas indonesia)

12 Jan PERANAN MIKROORGANISME DALAM MELAWAN PENYAKITTUMBUHANPosted by aguskrisno in KAJIAN MIKROBIOLOGI PERTANIAN. Leave a Comment

Pengendalian hayati khususnya pada pcnyakit tumbuhan dengan menggunakan mikroorganisme telah dimulai sejak lebih dari 70 tahun yang lalu, tepatnya pada tahun 1920 sampai 1930 ketika pertama kali diperkenalkan antibiotik yang dihasilkan mikroorganisme tanah, tetapi beberapa percobaan belum berhasil sampai penelitian mengenai pengendalian hayati terhenti selama kurang lebih 20 tahun. Perhatian pakar penyakit tumbuhan terhadap metoda pengendalian hayati bangkit kembali ketika di Barkley pada tahun 1963 diadakan simposium internasional pengendalian hayati dengan tema Ecology of Soilborne Plant Pathogen-Prelude to Biological Control, Buku pertama tentang pengendalian hayati terbit pada tahun 1974 oleh Baker dan Cook dengan judul Biological Control of Plant Pathogens, satu panitia untuk pengendalian hayati pada American Phytopathological Society kemudian didirikan pada tahun 1976. Sekarang ini sudah menjadi satu pengetahuan bahwa pengendalian hayati akan memainkan peranan penting dalam pertanian pada masa akan datang. ini terutama disebabkan kekhawatiran terhadap bahaya penggunaan bahan kimia sebagai pestisida. Sejumlah mikroba telah dilaporkan dalam berbagai penelitian efektif sebagai agen pengendalian hayati hama dan penyakit tumbuhan diantaranya adalah dari genus-genus Agrobacterium, Ampelomyces, Arthrobotys, Ascocoryne, Bacilllls, Bdellovibrio, Chaetomium, Cladosporium, Coniothyrium, Dactylella, Endothia, Erwinia, Fusarium,Gliocladium, Hansfordia, Laetisaria, Myrothecium, Nematophthora, Penicillium, Peniophora, Phialophora, Pseudomonas, Pythium, Scytalidium, Sporidesminium, Sphaerellopsiss, Trichoderma, dan Verticillium.Pertanian modern di seluruh dunia saat ini dibebani oleh berbagai tuntutan mendesak untuk mengatasi berbagai kemelut dunia, selain pertanian modern harus memenuhi kebutuhan pangan penduduk seluruh dunia, sektor ini harus pula memenuhi tuntutan ekonomi sebagai penghasil devisa. Karena itu berbagai kebijakan dibidang pertanian di negara manapun selalu terkait erat dengan berbagai kebijakan di bidang politik sesuatu negara, atau hubungannya dengan dunia intemasional. Sebagai usaha untuk mengatasi tuntutan di atas telah menjadi satu keharusan bahwa usaha pertanian harus memproduksi berbagai jenis hasilnya dalam jumlah yang banyak yang melebihi kebutuhan dalam negeri sehingga dengan demikian dapat berperan sebagai penghasil devisa untuk pembangunan ekonomi dan politik negara. Karena itu pertanian modern selalu dicirikan dengan penggunaan energi berupa pupuk dan pestisida.Tidak dapat disangkal lagi bahwa konsep penggunaan pupuk dan pestisida yang telah diterapkan di pertanian modern telah menimbulkan berbagai efek disamping seperti pencemaran lingkungan di pabrik-pabrik penghasil pupuk dan pestisida maupun dilahan-lahan pertanian yang menggunakan bahan kimia ini, biaya produksi yang semakin tinggi akibat mahalnya harga yang harus ditebus petani untuk setiap kebutuhan pupuk dan pestisida persatuan luas atau persatuan produksi dan kelergatungan negara, pengguna kepada negara penghasil pupuk dan pestisida. Sehingga pertanian modern sekarang dapat dicirikan sebagai usaha biaya tinggi. Sebuah cita-cita yang menelan dirinya sendiri.Masalah penggunaan pestisida tidak terbatas pada yang telah disebut di atas, pestisida telah pula menyebabkan timbulnya strain hama dan penyakit tumbuhan yang resisten terhadap bahan beracun ini, sehingga setiap kali usaha pengendalian terhadap organisme pengganggu ini menemui kegagalannya dan setiap kali itu pula mesti dihasilkan bahan kimia baru yang memerlukan biaya penelitian yang sangat mahal baik secara ekonomi maupun biaya pencemaran terhadap lingkungan yang tidak dapat dihitung secara pasti. Masalah-masalah di atas dan masalah-masalah lain yang telah ditimbulkan pertanian modern yang telah memasukkan energi tinggi kesetiap satuan luas lahan telah mendorong pertanian modern untuk menggali berbagai potensi alam terutama terhadap mikroba dan serangga berguna bagi meningkatkan hasil pertanian. Berbagai penelitian telah membuktikan bahwa banyak jenis mikroba sangat potensial sebagai pengganti pupuk kimia dan pestisida yang dapat diaplikasikan kelapangan dalam skala luas.HABITAT MIKROBA BERGUNA DALAM PHT Iklim wilayah Indonesia yang tidak banyak berbeda sepanjang tahun menjadikan negara kita satu diantara negara yang menyimpan keragaman hayati yang sangat berharga dan perlu dikelola secara benar den efektif. Sayangnya kesadaran akan hal ini justru muncul dari banyak pakar keragaman hayati luar negri yang begitu prihatin terhadap pengelolaan keragaman hayati di Indonesia. Salah satu yang perlu menjadi perhatian kita adalah Mikroorganisme berguna yang akan kita manfaatkan secara maksimal didalam sistem PHT.Secara keseluruhan habitat hidup mikroorganisme yang banyak berperan di dalam pengendalian hayati adalah di dalam tanah disekitar akar tumbuhan (rizosfir) atau di atas daun, balang, bunge, dan buah (fillosfir). Mikroorganisme yang bisa hidup pada daerah rizosfir sangat sesuai digunakan sebagai agen pengendalian hayati ini mengingat bahwa rizosfir adalah daerah yang utama dimana akar tumbuhan terbuka terhadap serangan patogen. Jika terdapat mikroorganisme antagonis padd deerah ini patogen akan berhadapan selama menyebar dan menginfeksi akar. Keadaan ini disebut hambatan alamiah mikroba dan jarang dijumpai, rnikroba antagonis ini sangat potensial dikembangkan sebagai agen pengendalian hayati (Weller 1988).PERANAN Pseudomonads fluorescens DALAM PENGENDALIAN BIOLOGI

Bakteri dilaporkan bisa menekan pertumbuhan patogen dalam tanah secara alamiah, beberapa genus yang banyak mendapat perhatian yaitu Agrobacterium, Bacillus, dan Pseudomonas. Pseudomonas merupakan salah satu genus dari Famili Pseudomonadaceae. Bakteri ini berbentuk batang lurus atau lengkung, ukuran tiap sel bakteri 0.5-0.1 1m x 1.5-4.0 m, tidak membentuk spora dan bereaksi negatif terhadap pewarnaan Gram.Pseudomonas terbagi atas grup, diantaranya adalah sub-grup berpendarfluor (Fluorescent) yang dapat mengeluarkan pigmen phenazine (Brock & Madigan 1988). Kebolehan menghasilkan pigmen phenazine juga dijumpai pada kelompok tak berpendarfluor yang disebut sebagai spesies Pseudomonas multivorans. Sehubungan itu maka ada empat spesies dalam kelompok Fluorescent yaitu Pseudomonas aeruginosa, P. fluorescent, P. putida, dan P. multivorans (Stanier et al 1965). Pseudomonas sp. telah diteliti sebagai agen pengendalian hayati penyakit tumbuhan (Hebbar et al. 1992; Weller 1983).Diseluruh dunia perhatian kepada golongan bakteri Pseudomonas sp. ini dimulai dari penelitian yang dilakukan di University of California, Barkeley pada tahun 70-an. Burr et al (1978) dan Kloepper et al (1980) mengatakan bahwa strain P.fluorescens dan P. putida yang diaplikasikan pada umbi kentang telah menggalakkan pertumbuhan umbi kentang. Schroroth dan Hancock (1982) mengatakan bahwa Pseudomonad pendarfluor meningkatkan hasil panen umbi kentang 5-33%, gula beet 4-8 ton/ha. dan menambah berat akar tumbuhan radish 60-144%. Strain ini dan strain-strain yang sama dengannya disebut sebagai rizobakteri perangsang per tumbuhan tanaman (Plant Growth-Promoting Rhizobacteria, PGPR). Sebutan sebagai rizobakteri pada bakteri Pseudomonas sp. sehubungan dengan kemampuannya mengkoloni disekitar akar dengan cepat (Schroroth & Hancock 1982).Kloepper dan Schroth (1978) mengatakan bahwa kemampuan PGPR sebagai agen pengendalian hayati adalah karena kemampuannya bersaing untuk mendapatkan zat makanan, atau karena hasil-hasil metabolit seperti siderofor, hidrogen sianida, antibiotik, atau enzim ekstraselluler yang bersifat antagonis melawan patogen (Kloepper & Schroth. 1978; Thomashow & Weller 1988; Weller 1988). Wei et al. (1991) mengatakan bahwa perlakuan benih timun menggunakan strain PGPR menyebabkan ketahanan sistemik terhadap penyakit antraknosa yang disebabkan Colletotrichum arbiculare. Alstrorn (1991) menyebutkan aplikasi P.fluorescens strain S97 pada benih kacang telah menimbulkan ketahanan terhadap serangan penyakit hawar disebabkan P. syringe pv. phaseolicola. Maurhofer et al. (1994) mengatakan P. fluorescens strain CHAO menyebabkan ketahanan pada tumbuhan tembakau terhadap serangan virus nekrotik tembakau.Baru-baru ini telah dibutikan bahwa Pseudomonas sp. dapat menstimulir timbulnya ketahanan tanaman terhadap infeksi jamur patogen akar, bakteri dan virus (Van Peer et al 1991; Wei et al. 1994; Zhou et al. 1992; Alstrom 1991).Voisard et al (1989) mendapati bahwa sianida yang dihasilkan P. fluorescens stroin CHAO merangsang pembentukan akar rambut pada tumbuhan tembakau dan menekan pertumbuhan Thielaviopsis basicola penyebab penyakit busuk akar, diduga bahwa sianida mungkin penyebab timbulnya ketahanan sistemik (ISR). Maurhofer et al (1994) mengatakan bahwa siderofor pyoverdine dari P. fluorescens strain CHAO adalah sebab timbulnya ketahanan sistemik pada tumbuhan tembakau terhadap infeksi virus nekrosis tembakau.Perlakuan bakteri pada benih tumbuhan lobak dan umbi kentang menggunakan P. fluorescens strain WCS374 menunjukkan pengaruh pertumbuhan yang nyata (Geels & Schippers 1983). Sedangkan P. putida strain WCS374 telah meningkatkan pertumbuhan akar dan produksi umbi kentang (Baker et al 1987; Geels & Schippers 1983). Leemon et al. (1995) mengatakan bahwa siderofor dari P. fluoresces WCS374 dapat berperan sebagai perangsang pertumbuhan tumbuhan dan menekan pertumbuhan F. oxysporon f sp. raphani penyebab penyakit layu Fusarium pada tumbuhan lobak. Hambatan terhadap penyakit layu Fusarium pada tumbuhan carnationdiduga disebabkan persaingan terhadap unsur besi (Duijff 1993).Wei et al. (1991) mengatakan bahwa ketahanan sistemik akan terjadi pada timun terhadap infeksi Colletotrichum orbiculare setelah inokulasi benih timun dengan strain PGPR. Alstrom (1991) mengatakan bahwa perlakuan benih kacang dengan P. fluorescens strain S97 menyebabkan ketahanan sistemik terhadap infeksi Pseudomonas syringae pv. phaseolicola. Zhou et al. (1992) dan Zhou dan Paulitz (1994) mengntakan bahwa strain Pseudomonas sp. menyebabkan ketahanan sistemik tumbuhan timun terhadap Pythium aphanidetmatum. Contoh-contoh PGPR yang mampu berperan sebagai agen penyebab ketahanan sistemik tersebut di atas adalah karena perlakuan akar, tanah, atau biji dengan rizobakteri.Mekanisme kerja dari agen pengendalian hayati umumnya digolongkan sebagai persaingan zat makanan, parasitisme, dan antibiosis (Fravel 1988; Weller 1988). Peranan antibiotik dalam pengendalian hayati telah dikaji oleh Siminoff dan Gottlieb (1951). Penelitian mereka menunjukkan bahwa kemampuan Streptomyces griseuspengeluar antibiotik streptomisin dan strain mutasi yang tidak menghasilkan antibiotik dalam menekan pertumbuhan Bacillus subtilis temyata tidak berbeda tingkat antagonisnya, penelitian ini telah membuat Siminoff dan Gottlieb (1951) berkesimpulan bahwa antibiotik bukan satu-satunya penyebab timbulnya antagonis.Kemajuan dalam rekayasa genetik telah membolehkan penelitian terhadap mutan dijalankan dengan lebih akurat dan terperinci sehingga banyak hipotesis tentang antibiotik telah dibuktikan, misalnya Pseudomonas fluorescens adalah agen pengendalian hayati penyakit take-all pada gandum yang disebabkan Gaeumannomyces graminis var. tritici. Bakteri ini terbukti menghasilkan antibiotik phenazin yang menekan pertumbuhan G. graminis dalam pengendalian hayati (Thornashow & Weller 1987; Thomashow et al. 1986; Weller et al. 1985).BAKTERI SEBAGAI AGEN PENGHASIL ANTIBIOTIK

Antibiotik umumnya adalah senyawa organik dengan berat molekul rendah yang dikeluarkan oleh mikroorganisrne. Pada kadar rendah, antibiotik dapat merusak pertumbuhan atau aktivitas metabolit mikroorganisme lain (Fravel 1988). Rose (1979) mengatakan bahwa pada tahun 1979 diperkirakan telah dikenal 3000 jenis antibiotik dengan penambahan 50-100 jenis antibiotik baru setiap tahunnya.Hubungan antara akitivitas pengendalian hayati antibiotik secara in vivo dengan aktifitas secara in vitro. Keluaran antibiotik chetomin secara in vitro oleh Chaetomium globosum berkorelasi positif dengan antagonisnya terhadap Venturia inequalis pada bibit pohon apel (Cullen & Andrews 1984). Hal yang sama adalah adanya zona hambatan Agrobacterium radiobacter terhadap A. tumefaciens secara in vitro dan kemampuannya sebagai agen pengendalian hayati di lapang pada tanaman persik. Satu penelitian yang dilakukan oleh Broadbent et al. (1971) telah rnenguji secara in vitro 3500 mikroorganisme sebagai agen antagonis, dari penelitian ini diperkirakan 40% mikroorganisme menekan pertumbuhan satu atau lebih patogen dan 4% diantaranya berpotensi sebagai agen pengendalian hayati di tanah.Broadbent et al (1971) berkesimpulan bahwa organisme yang menekan pertumbuhan secara in vitro juga akan menekan pertumbuhan patogen di tanah, mikroorganisme yang tidak menekan pertumbuhan secara in vitro juga tidak menekan pertumbuhan dalam tanah. Namun perlu diketahui bahwa pengeluaran antibiotik sangat dipengaruhi oleh faktor lingkungan dan nutrisi mikroorganisme. Filtrasi medium pembiakan bebas sel atau ekstrak dari filtrasi telah diuji kemungkinan peranannya sebagai antibiosis dalam pengendalian hayati. Filtrasi bebas sel T. flavus efektif terhadap mikrosklerotium V. dahliae pada tanah steril (Fravel et al 1987). Filtrasi dari medium pertumbuhan mutan T. harzianum menekan pertumbuhan patogen busuk basah S. cepivorum (Papavizas et al. 1982). Manakala filtrasi steril dari kultur Bacillus subtilis diaplikasikan tiga kali seminggu mengendalikan penyakit karat pada tanaman kacang dilapangan nyata lebih baik dari fungisida mancozeb dengan aplikasi satu kali seminggu (Baker et al. 1985).Baru-baru ini satu penelitian tentang peranan antibiotik di dalam tanah menunjukkan bahwa kebanyakan hasil metabolit seperti antibiotik terikat pada tanah liat dan bahan organik tanah, atau terurai dengan cepat oleh mikroflora. Kebanyakan antibiotik tidak dapat terlepas dari tanah liat (Pinck et.al.1962). Howell dan Stipanovic (1979) telah mengidentifikasi antibiotik pyrrolnitrin dari kultur P. fluorescens. Pada penetiannya, antibiotik ini sangat efektif menekan pertumbuhan Rhizoctonia solani, patogen penyebab penyakit rebah kecambah pada anak tanaman kapas. Antibiotik ini juga menekan pertumbuhan jamur lain yang berinteraksi dengan penyakit rebah kecambah diantaranya Thielaviopsis basicola, Alternaria sp., Vertiicillium dahliae, dan beberapa jenis Fusarium, bagaimanapun dikatakan bahwa antibiotik ini tidak berpengaruh terhadap Pythium ultimum. Selanjutnya Howell dan Stipanovic (1979) mengatakan bahwa perlakuan bakteri P. fluorescens pada tanah yang terkontaminasi R. solani telah menambah ketahanan anak tanaman kapas terhadap patogen tersebut 30-79 persen, sedangkan perlakuan antibiotik pyrrolnitrin menambah ketahanan 13-70 persen. Ini berarti bakteri P. fluorescens berpotensi sebagai agen pengendalian hayati penyakit tumbuhan.Howell dan Stipanovic (1980) telah mengidentifikasi P. fluorecens strain Pf-5 yang antagonis terhadap Pythium ultimum. Dari kultur P. fluorescens Pf-5 diisolasi antibiotik pyolutcorin (4,5-dichloro-1 H-pyrrol-2-yl-2,6-dihydrokxy-phenyl ketone). Antibiotik ini menekan pertumbuhan P. ultimum tapi tidak berpengaruh terhadap R. solani. Perlakuan benih kapas langsung dengan kultur bakteri P. fluorerscens Pf-5 telah menambah ketahanan benih terhadap serangan P.ultimum 28-71 persen, sedangkan perlakuan benih dengan antibiotik pyoluteorin meningkatkan ketahanan benih 33-65 persen. Kedua percobaan di atas menunjukkan bahwa penggunaan langsung kultur bakteri P. fluorescen lebih efektif mengendalikan penyakit dibandingkan penggunaan antibiotiknya.BAKTERI SEBAGAI AGEN PENGHASIL SIDEROFOR

Siderofor adalah senyawa organik selain antibiotik yang dapat berperan dalam pengendalian hayati penyakit tumbuhan. Siderofor diproduksi secara ekstrasel, senyawa dengan berat molekul rendah dengan affinitas yang sangat kuat terhadap besi (III). Kemampuan siderofor mengikat besi (III) merupakan pesaing terhadap mikroorganisme lain, banyak bukti-bukti yang menyatakan bahwa siderofor berperan aktif dalam menekan pertumbuhan mikroorganisme patogen (Fravel 1988).Selain peranannya sebagai agen pengangkutan besi (III), siderofor juga aktif sebagai faktor pertumbuhan, dan beberapa diantaranya berpotensi sebagai antibiotik (Neilands 1981). Beberapa penelitian menunjukkan bahwa siderofor berpendarfluor kuning-kehijauan yang dihasilkan oleh Pseudomonad pendarfluor disebut sebagai pseudobactin bermanfaat untuk pertumbuhan tanaman (Neilands & Leong 1986; Leong 1986). Pigmen pendarfluor hijau-kekuningan larut dalam air, dikeluarkan oleh kebanyakan spesies Pseudomonas. Diantara spesies yang banyak diteliti sehubungan dengan pigmen ini adalah P. airuginosa, P. ovalis, P. mildenbergil, P. reptilivora, P. geniculata, P. calciprecipitans. Pengenalan terhadap pigmen ini tidak susah, terutama jika bakteri dikulturkan pada medium Kings B (KB). Ciri-ciri sebagai pengeluar pigmen ini masih digunakan sebagai penanda taksonomi untuk identifikasi bakteri ini yang disebut sebagai bakteri Pseudomonas pendarfluor (Meyer et al. 1987).Menurut Neilands dan Leong (1986) mungkin semua Pseudomonad pendarfluor dapat menghasilkan siderofor sejenis pseudobaktin yang masing-masing berbeda dalam hal jumlah dan susunan asam amino dalam rantai peptide. Pseudomonad pendarfluor banyak diteliti sehubungan dengan kemampuan bakteri ini sebagai perangsang pertumbuhan (Plant Growth Promoting Rhizobacteria=PGPR) dan menekan serangan penyakit yang disebabkan Fusarium oxysporum dan penyakit akar yang disebabkan Gaeumannomyces graminis. Mekanisme kerja PGPR diketahui sebagai senyawa yang berfungsi sebagai pemasok zat makanan, bersifat antibiosis, atau sebagai hormon pertumbuhan, atau penggabungan dari berbagai cara tersebut. Pseudomonad pendarfluor yang diisolasi dari tanah yang secara alami menekan pertumbuhan Fusarium juga menekan pertumbuhan Gaeumannomyces graminis var. tritici penyebab penyakit take-all (Wong & Baker 1984), penelitiannya membuktikan bahwa tidak hubungan antara hambatan antibiosis yang dihasilkan bakteri secara in vitro di atas agar dan hambatannya terhadap penyakit pada tanaman di dalam polibag.Menurut Wong dan Baker (1984) hasil ini menunjukkan bahwa mekanisme pengendalian patogen karena persaingan zat besi. Menurut Neilands dan Leong (1986) jamur-jamur patogen tidak menunjukkan kemampuan menghasilkan siderofor jenis yang sama dengan yang dihasilkan bakteri Pseudomonas sp. sehingga jamur patogen mengalami defisit unsur besi menyebabkan pertumbuhan patogen menjadi terhambat.PENUTUP

Pertanian modern sebagaimana yang telah disaksikan hari ini ternyata gagal dalam memenuhi harapannya sendiri terbukti dengan timbulnya berbagai kerusakan alam yang terjadi akibat budidaya pertanian hal ini tentu terasa sangat ironis karena seharusnya pertanian adalah satu-satunya usaha manusia yang paling akrab dengan alam justru telah mencemari alam tempatnya berpijak dengan menumpahkan berbagai bentuk bahan kimia sintetik berupa pupuk dan pestisida. Aktibat penggunaan pupuk dan pestidia secara berlebihan ini telah merusak keseimbangan hayati terbukti dengan munculnya resurjensi hama dan patogen dan meningkatnya serangan hama dan patogen sekunder dan menurunnya populasi serangga dan mikroorganisme antagonis yang berperan sebagai agensia pengendalian hayati. Dengan kesadaran baru dibidang pertanian yaitu dengan penerapan sistem pengendalian hama terpadu (PHI) dengan cara memaksimalkan penerapan berbagai metode pengendalian hama secara komprihensif dan mengurangi penggunaan pestisida.Salah satu komponen PHI teresebut adalah pengendalian hayati dengan memanfaatkan bakteri antagonis. Berbagai penelitian tentang bakteri antagonis terbukti bahwa beberapa jenis bakteri potensial digunakan sebagai agensia hayati.Bakteri-bakteri antagonis ini diantaranya selain dapat menghasilkan antibiotik dan siderofor jugn bisa berperan sebagai kompetitor terhadap unsur hara bagi patogen tanaman, Pemanfaatan bakteri-bakteri antagonis ini dimasa depan akan menjadi salah satu pilihan bijak dalam usaha meningkatkan produksi pertanian sekaligus menjaga kelestarian hayati untuk menunjang budidaya pertanian berkelanjutan.DAFTAR PUSTAKABaker, C.J., Stavely, J.R., & Mock. N. 1985. Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease. 69: 770-772.Brock. T.D. & Madigan, M.T. 1988. Biology of microorganism. Prentice-Hall International Edition.Hasanuddin. 2010. http://repository.usu.ac.id/bitstream/123456789/1128/1/. Diakses 11 Januari 2011. MalangPink, L.A., Holton, W.F., & Allison, F. 1961. Antibiotikin soils: I. Physiochemical studies of antibiotics-clay complexes. Soil Sci. 91: 22-2811 Jan Aplikasi Rhizobium sp. dalam Peningkatan ProduktivitasPertanianPosted by aguskrisno in KAJIAN MIKROBIOLOGI PERTANIAN. Leave a CommentMikrobiologi PertanianMikrobiologi pertanian adalah ilmu yang mempelajari tentang peranan mikroba dalam bidang pertanian. Mikrobiologi Pertanian merupakan penggunaan Mikrobiologi untuk tujuan memecahkan masalah-masalah praktis di bidang pertanian. Dengan demikian dapat dirumuskan tugas dari Mikrobiologi Pertanian adalah mempelajari dan memanfaatkan mikrobia sebaik mungkin guna meningkatkan produksi pertanian baik kuantitas maupun kualitas dan menekan kemungkinan kehilangan produksi karena berbagai sebab.Bidang pertanian juga mempunyai peran dalam penambatan nitrogen, mikororganisme tersebut adalah (baktero fotosintesis, Azotobacter, Clostridium dan Rhizobium). Proses penambahan utama terdiri atas dua reaksi yang terpisah, yaitu1) pembentukan reduktan,2) pengikatan gas nitrogen.ATP diperlukan untuk reaksi pertama yang elektronnya diteruskandari feredoksin terduksi ke reduktan yang hinggga kini belum diketahui paada reaksi kedua nitrogen ditambatkan pada protein (nitrogenase) yang mengandung molibdenum, besi dan sulfur, diperlukan untuk pemanfaatan kembali senyawa-senyawa sulfur untuk pertumbuhan tanaman. Pembentukan H2S dari penguraian protein dapat diselesaikan oleh berbagai bakteri heterotrof. Dikarenakan pada dasarnya semua protein mengandung sistein dan metionin asam amino yang mengandung sulfur penguraian protein yang lengkap melepaskan sulfur sebagai sulfied. Beberapa kelompok mikroorganisme yang melaksanakan daun sulfur adalah kelompok bakteri yang berbentuk benang yang melayang.Bakteri nitrifikasi adalah bakteri-bakteri tertentu yang mampu menyusun senyawa nitrat dari amoniak yang berlangsung secara aerob di dalam tanah. Nitrifikasi terdiri atas dua tahap yaitu: Oksidasi amoniak menjadi nitrit oleh bakteri nitrit. Proses ini dinamakan nitritasi.

Reaksi nitritasi Oksidasi senyawa nitrit menjadi nitrat oleh bakteri nitrat. Prosesnya dinamakan nitratasi.

Reaksi nitratasiDalam bidang pertanian, nitrifikasi sangat menguntungkan karena menghasilkan senyawa yang diperlukan oleh tanaman yaitu nitrat. Tetapi sebaliknya di dalam air yang disediakan untuk sumber air minum, nitrat yang berlebihan tidak baik karena akan menyebabkan pertumbuhan ganggang di permukaan air menjadi berlimpah.Pemanfaatan Mikrobia dalam Produksi Pertanian Dilakukan Melalui:1. Pemeliharaan dan peningkatan kesuburan tanah dengan memanfaatkan mikrobia yang berperan dalam siklus Nitrogen (mikrobia penambat nitrogen, mikrobia amonifikasi, nitrifikasi, dan denitrifikasi), Fosfor (mikrobia pelarut fosfat), Sulfur (Mikrobia pengoksidasi sulfur), dan Logam-logam (Fe, Cu, Mn, dan Al),2. Pemeliharaan kesehatan tanah dengan memanfaatkan mikrobia penekan organisma pengganggu tanaman (OPT),3. Pemulihan kesehatan tanah dengan memanfaatkan mikrobia pendekomposisi / penyerap senyawa-senyawa toksik terhadap mahluk hidup (Bioremediasi),4. Pemacuan pertumbuhan tanaman dengan memanfaatkan mikrobia penghasil fitohormon.Pengertian Rhizobium sp.Rhizobium (yang terkenal adalah Rhizobium leguminosarum) adalah basil yang gram negatif yang merupakan penghuni biasa didalam tanah. Bakteri ini masuk melalui bulu-bulu akar tanaman berbuah polongan dan menyebabkan jaraingan agar tumbuh berlebih-lebihan hingga menjadi kutil-kutil. Bakteri ini hidup dalam sel-sel akar dan memperoleh makanannya dari sel-sel tersebut. Biasanya beberapa spesies Actinomycetes kedapatan bersama-sama dengan Rhizobium sp dalam satu sel.Bakteri nitrogen adalah bakteri yang mampu mengikat nitrogen bebas dari udara dan mengubahnya menjadi suatu senyawa yang dapat diserap oleh tumbuhan. Karena kemampuannya mengikat nitrogen di udara, bakteri-bakteri tersebut berpengaruh terhadap nilai ekonomi tanah pertanian. Kelompok bakteri ini ada yang hidup bebas maupun simbiosis. Bakteri nitrogen yang hidup bebas yaitu Azotobacter chroococcum, Clostridium pasteurianum, dan Rhodospirillum rubrum. Bakteri nitrogen yang hidup bersimbiosis dengan tanaman polong-polongan yaitu Rhizobium leguminosarum, yang hidup dalam akar membentuk nodul atau bintil-bintil akar. Tumbuhan yang bersimbiosis dengan Rhizobium banyak digunakan sebagai pupuk hijau seperti Crotalaria, Tephrosia, dan Indigofera. Akar tanaman polong-polongan tersebut menyediakan karbohidrat dan senyawa lain bagi bakteri melalui kemampuannya mengikat nitrogen bagi akar. Jika bakteri dipisahkan dari inangnya (akar), maka tidak dapat mengikat nitrogen sama sekali atau hanya dapat mengikat nitrogen sedikit sekali. Bintil-bintil akar melepaskan senyawa nitrogen organik ke dalam tanah tempat tanaman polong hidup. Dengan demikian terjadi penambahan nitrogen yang dapat menambah kesuburan tanah.

( Anonymous,2010) (Anonymous,2010)Bakteri Rhizobium sp dan Daur HidupnyaSumber utama nitrogen adalah nitrogen bebas (N2) yang terdapat di atmosfir, yang takarannya mencapai 78% volume, dan sumber lainnya yang ada di kulit bumi dan perairan. Nitrogen juga terdapat dalam bentuk yang kompleks, tetapi hal ini tidak begitu besar sebab sifatnya yang mudah larut dalam air.Pada umumnya derivat nitrogen sangat penting bagi kebutuhan dasar nutrisi, tetapi dalam kenyataannya substansi nitrogen adalah hal yang menarik sebagai polutan di lingkungan. Terjadinya perubahan global di lingkungan oleh adanya interaksi antara nitrogen oksida dengan ozon di zona atmosfir. Juga adanya perlakuan pemupukan (fertilization treatment) yang berlebihan dapat mempengaruhi air tanah (soil water), sehingga dapat mempengaruhi kondisi air minum bagi manusia.Bentuk atau komponen N di atmosfir dapat berbentuk ammonia (NH3), molekul nitrogen (N2), dinitrit oksida (N2O), nitrogen oksida (NO), nitrogen dioksida (NO2), asam nitrit (HNO2), asam nitrat (HNO3), basa amino (R3-N) dan lain-lain dalam bentuk proksisilnitri. Dalam telaah kesuburan tanah proses pengubahan nitrogen dapat dilakukan dengan berbagai cara, yaitu mineralisasi senyawa nitrogen komplek, amonifikasi, nitrifikasi, denitrifikasi, dan volatilisasi ammonium.Sejumlah organisme mampu melakukan fiksasi N dan N-bebas akan berasosiasi dengan tumbuhan. Senyawa N-amonium dan N-nitrat yang dimanfaatkan oleh tumbuhan akan diteruskan ke hewan dan manusia dan kembali memasuki sistem lingkungan melalui sisa-sisa jasad renik. Proses fiksasi memerlukan energi yang besar, dan enzim (nitrogenase) bekerja dan didukung oleh oksigen yang cukup. Kedua faktor ini sangat penting dalam memindahkan N-bebas dan sedikit simbiosis oleh organisme.Nitrogenase mengandung protein besi-belerang dan besi-molibdenum, dan mereduksi nitrogen dengan koordinasi dan transfer elektron dan proton secara kooperatif, dengan menggunakan MgATP sebagai sumber energi. Karena pentingnya reaksi ini, usaha-usaha untuk mengklarifikasi struktur nitrogenase dan mengembangkan katalis artifisial untuk fiksasi nitrogen telah dilakukan secara kontinyu selama beberapa tahun. Baru-baru ini, struktur pusat aktif nitrogenase yang disebut dengan kofaktor besi-molibdenum telah ditentukan dengan analisis kristal tunggal dengan sinar-X.Nitrogen organic diubah menjadi mineral N-amonium oleh mikroorganisasi dan beberapa hewan yang dapat memproduksi mineral tersebut seperti : protozoa, nematoda, dan cacing tanah. Serangga tanah, cacing tanah, jamur, bakteri dan aktinbimesetes merupakan biang penting tahap pertama penguraian senyawa N-organik dalam bahan organic dan senyawa N-kompleks lainnya. Semua mikroorganisme mampu melakukan fiksasi nitrogen, dan berasosiasi dengan N-bebas yang berasal dari tumbuhan. Nitrogen dari proses fiksasi merupakan sesuatu yang penting dan ekonomis yang dilakukan oleh bakteri genus Rhizobium dengan tumbuhan Leguminosa termasuk Trifollum spp, Gylicene max (soybean), Viciafaba (brand bean), Vigna sinensis (cow-pea), Piscera sativam (chick-pea), dan Medicago sativa (lucerna).Bakteri dalam genus Rhizobium merupakan bakteri gram negatif, berbentuk bulat memanjang, yang secara normal mampu memfiksasi nitrogen dari atmosfer. Umumnya bakteri ini ditemukan pada nodul akar tanaman leguminosae.Rhizobium berasal dari dua kata yaitu Rhizo yang artinya akar dan bios yang berarti hidup. Rhizobium adalah bakteri yang bersifat aerob, bentuk batang, koloninya berwarna putih berbentuk sirkulasi, merupakan penghambat nitrogen yang hidup di dalam tanah dan berasosiasi simbiotik dengan sel akar legume, bersifat host spesifik satu spesies Rhizobium cenderung membentuk nodul akar pada satu spesies tanaman legume saja. Bakteri Rhizobium adalah organotrof, aerob, tidak berspora, pleomorf, gram negatif dan berbentuk batang. Bakteri rhizobium mudah tumbuh dalam medium pembiakan organik khususnya yang mengandung ragi atau kentang. Pada suhu kamar dan pH 7,0 7,2.Morfologi Rhizobium dikenal sebagai bakteroid. Rhizobium menginfeksi akar leguminoceae melalui ujung-ujung bulu akar yang tidak berselulose, karena bakteri Rhizobium tidak dapat menghidrolisis selulose.Rhizobium yang tumbuh dalam bintil akar leguminoceae mengambil nitrogen langsung dari udara dengan aktifitas bersama sel tanaman dan bakteri, nitrogen itu disusun menjadi senyawaan nitrogen seperti asam-asam amino dan polipeptida yang ditemukan dalam tumbuh-tumbuhan, bakteri dan tanak disekitarnya. Baik bakteri maupun legum tidak dapat menambat nitrogen secara mandiri, bila Rhizobium tidak ada dan nitrogen tidak terdapat dalam tanah legum tersebut akan mati. Bakteri Rhizobium hidup dengan menginfeksi akar tanaman legum dan berasosiasi dengan tanaman tersebut, dengan menambat nitrogen.

(Anonymous, 2010) (Anonymous, 2010)Pengaruh dan Penerapan Bakteri Rhizobium sp Terhadap Mikrobiologi PertanianPada dunia pertanian bakteri rhizobium sp mengikat unsur nitrogen dari lingkungan sekitar dan menularkan ke tumbuhan, tetapi bagian akar dan juga pada bagian tanah pada suatu tanaman. Kebanyakan rhizobium sp menularkan pada tanaman yang berbiji : contohnya saja akar pada tanaman kedelai.Pada tanaman kedelai tersebut, bakteri rhizobium sp menempel pada bintil akar. Dan itu membuat tanaman tersebut tumbuh subur dan untuk melangsungkan hidupnya karena tanaman tersebut telah terinfeksi oleh bakteri Rhizobium sp.Tumbuhan yang bersimbiosis dengan Rhizobium banyak digunakan sebagai pupuk hijau seperti Crotalaria, Tephrosia, dan Indigofera. Akar tanaman polong-polongan tersebut menyediakan karbohidrat dan senyawa lain bagi bakteri melalui kemampuannya mengikat nitrogen bagi akar. Jika bakteri dipisahkan dari inangnya (akar), maka tidak dapat mengikat nitrogen sama sekali atau hanya dapat mengikat nitrogen sedikit sekali. Bintil-bintil akar melepaskan senyawa nitrogen organik ke dalam tanah tempat tanaman polong hidup. Dengan demikian terjadi penambahan nitrogen yang dapat menambah kesuburan tanah.DAFTAR PUSTAKAAnonymous, 2010. bakteri-menguntungkan. http://www.anneahira.com/. Diakses 10 desember 2010Anonymous,2009. klasifikasi-mikroba-klasifikasi-dan-peranan-mikroba-dalam-kehidupan. http://zaifbio.wordpress.com Diakses 10 desember 2010Anonymous, 2008. probiotik-pengganti-antibiotik-dalam.html http://yudij.blogspot.com. Diakses 9 desember 2010Anonymous, 2010. bakteri-menguntungkan. http://www.anneahira.com Diakses 9 desember 2010Anonymous, 2009.http://idonkelor.blogspot.com/2009/08/bakteri-rizobium-pada-legum.html Diakses 10 desember 2010waluyo, lud 2005. Mikrobiologi Umum. Malang: UMMBlog at WordPress.com. Theme: Spring Loaded by the449.Follow Follow Pondok IlmuTop of FormGet every new post delivered to your Inbox.Join 43 other followersBottom of FormPowered by WordPress.com

PENDAHULUAN

Kecenderungan ketergantungan petani pada penggunaan pupuk dan pestisida anorganik sejak diterapkannya revolusi hijau (1970-2005) menimbulkan dampak negatif yang berkaitan dengan degradasi lingkungan. Subsidi harga dari pemerintah dan pengaruh pupuk dan pestisida anorganik terhadap pertumbuhan dan hasil tanaman ikut mendorong preferensi petani terhadap pupuk anorganik sehingga penggunaan bahan organik sebagai komponen pembentuk kesuburan tanah semakin ditinggalkan.

Bahan organik memiliki peranan penting sebagai sumber karbon, dalam pengertian luas sebagai sumber pakan, dan juga sebagai sumber energi untuk mendukung kehidupan dan berkembangbiaknya berbagai jenis mikroba tanah (Sisworo, 2006). Penurunan kandungan bahan organik tanah menyebabkan mikroba dalam tanah mengalami defisiensi karbon sebagai pakan sehingga perkembangan populasidan aktivitasnya terhambat. Hal ini mengakibatkan proses mineralisasi hara menjadi unsur yang tersedia bagi tanaman akan terhambat. Tanah yang mengalami defisiensi sumber energi bagi mikroba menjadi berstatus lelah atau fatigue (Pirngadi, 2009). Kondisi tersebut berdasarkan salah satu indikator kesuburan tanah adalah kandungan C-Organik. Komponen C-Organik dari 65 % tanah di Indonesia di bawah 1 %, yang harusnya diatas 2 %. Hal tersebut lebih diperburuk dengan kondisi dimana pertambahan input pada tanah sebagai media tanam tidak lagi mampu meningkatkan produksi tanaman (levelling off).

Permasalahan diatas menimbulkan kesadaran masyarakat untuk menerapkan suatu sistem pertanian yang ramah lingkungan untuk suatu keberlanjutan. Selain itu didukung pula oleh berkembangnya kesadaran masyarakat terhadap kesehatan yang menjadikan produk organik sebagai tren bahan makanan yang dikonsumsi. Konsep pertanian berkelanjutan yang diterapkan dalam era Revolusi Hijau Lestari (RHL) yang dicetuskan sejak tahun 2006 yaitu peningkatan produktivitas tanaman dengan mengacu sistem agroekologi alamiah yang secara lestari dapat mendukung kehidupan biota diatasnya. Secara alamiah, siklus karbon biologis dan unsur lainnya terjadi secara in situ, sehingga berdampak terhadap keberlanjutan kehidupan biota penyusun ekologi. Sumarno (2006) menyatakan bahwa hara untuk pertumbuhan tanaman optimal dan untuk mempertahankan kesuburan tanah dapat berasal dari : asli tanah (indigenenous nutrients), endapan lumpur dari wilayah hulu; dari pengairan; dari air hujan; dari pupuk organik; dari pupuk anorganik (sintesis); dari residu tanaman; dan penambatan N oleh tanaman legum; tumbuhan air dan mikroba; dan bahkan dari debu, abu gunung dan kilat. Hara yang berasal dari dekomposisi mikroba, hewan rendah dan hewan tinggi juga merupakan sumber hara yang legitimate pada teknologi Revolusi Hijau Lestari. Penerapan pertanian organik merupakan pilihan yang bijaksana untuk mewujudkan pertanian lestari.

Pertanian organik merupakan sistem pertanian yang ramah lingkungan yang bersifat hukum pengembalian (low of return) yang berarti suatu sistem yang berusaha untuk mengembalikan semua bahan organik ke dalam tanah, baik dalam bentuk residu dan limbah pertanian maupun ternakyang selanjutnya bertujuan untuk memenuhi makanan pada tanah yang mampu memperbaiki status kesuburan dan struktur tanah. Limbah organik seperti sisa-sisa tanaman dan kotoran ternak tidak bisa langsung diberikan ke tanaman. Limbah organik harus dihancurkan/dikomposkan terlebih dahulu oleh mikroba tanah menjadi unsur hara yang dapat diserap oleh tamanan. Proses pengomposan secara alami memerlukan waktu yang lama sehingga diperlukan mikroba dekomposer yang mampu mempercepat proses dekomposisi bahan organik. Mikroorganisme Lokal (MOL) banyak ditemukan di lapang dan sudah terbukti bermanfaat sebagai dekomposer, pupuk hayati dan pestisida hayati.

Saat ini telah banyak mikroba pengompos komersil yang ada di pasaran tetapi masih mengalami tantangan dalam pengembangannya ditingkat petani dalam hal efektivitas dan efisiensi dekomposer yang digunakan terkait dengan mutu yang dihasilkan, biaya dan tingkat kemudahan aplikasinya. Pemanfaatan Mikroorganisme Lokal (MOL) yang mempunyai keuntungan dari segi biaya yang relatif murah dan kemudahan aplikasinya merupakan pilihan yang telah diterapkan oleh beberapa petani di beberapa daerah. Selain sebagai dekomposer, MOL juga digunakan sebagai pupuk dan pestisida hayati yang dapat diaplikasikan langsung ke tanaman.PELUANG PENGEMBANGAN PERTANIAN ORGANIK DI INDONESIADi Indonesia, setiap tahunnya lebih dari 165 juta ton bahan organik dihasilkan dari limbah panen tanaman pangan dan hortikultura, namun potensi tersebut pada umumnya belum terkelola dengan baik. Di lain pihak, kandungan bahan organik dalam tanah pertanian saat ini rendah, rata-rata kurang dari 2 % (Pirngadi, 2009). Umumnya bahan organik yang dihasilkan dari limbah pertanian dialihkan oleh petani untuk berbagai penggunaan lain yang seyogianya dikembalikan ke tanah sebagai pupuk organik.Pilihan untuk menerapkan pertanian organik telah disadari oleh beberapa kalangan untuk meningkatkan produktivitas lahan dan tanaman tanpa mengabaikan prinsip enviromental sustainability. Berbagai pemikiran tentang pertanian organik yang dipahami masyarakat.Pertanian organik dipahami sebagai teknik budidaya pertanian yang mengandalkan bahan-bahan alami tanpa menggunakan bahan-bahan kimia sintetis. Tetapi jika melihat kondisi saat ini yang menuntut peningkatan produktivitas dan kemampuan tanah menyediakan hara maka terdapat pemikiran bahwa pertanian organik (dan penggunaan pupuk organik) juga merupakan sistem pertanian yang menggunakan bahan organik sebagai salah satu masukan yang berfungsi sebagai pembenah tanah dan suplemen pupuk buatan (kimia anorganik). Pestisida dan herbisida digunakan secara selektif dan rasional atau menggunakan biopestisida. Landasan prinsipilnya adalah sistem pertanian modern, mengutamakan produktivitas, efisiensi produksi, serta keamanan dan kelestarian lingkungan dan sumber daya. Akan tetapi menurut IFOAM (2005), pertanian organik dimaksudkan untuk menghasilkan makanan bermutu tinggi dan bergizi yang mendukung pemeliharaan kesehatan dan kesejateraan. Oleh kerenanya, harus dihindari penggunaan pupuk, pestisida, obat-obatan bagi hewan dan bahan aditif makanan yang dapat berefek merugikan kesehatan.Berdasarkan data Badan Pusat Statistik, luas lahan yang tersedia untuk pertanian organik di Indonesia sangat besar. Dari 75,5 juta ha lahan yang dapat digunakan untuk usaha pertanian, baru sekitar 25,7 juta ha yang telah diolah untuk sawah dan perkebunan. Indonesia memiliki potensi yang cukup besar untuk bersaing di pasar internasional walaupun secara bertahap. Hal ini karena berbagai keunggulan komparatif antara lain : 1) masih banyak sumberdaya lahan yang dapat dibuka untuk mengembangkan sistem pertanian organik, 2) teknologi untuk mendukung pertanian organik sudah cukup tersedia seperti pembuatan kompos, tanam tanpa olah tanah, pestisida hayati dan lain-lain (Litbang Pertanian, 2011).PERAN DAN KEUNTUNGAN PENGGUNAAN MOL

Gambar 1. Biang beberapa jenis MOLLarutan MOL adalah larutan hasil fermentasi yang berbahan dasar dari berbagai sumber daya yang tersedia setempat. Larutan MOL mengandung unsur hara mikro dan makro dan juga mengandung bakteri yang berpotensi sebagai perombak bahan organik, perangsang pertumbuhan, dan sebagai agens pengendali hama dan penyakit tanaman, sehingga MOL dapat digunakan baik sebagai dekomposer, pupuk hayati dan sebagai pestisida organik terutama sebagai fungisida. Larutan MOL dibuat sangat sederhana yaitu dengan memanfaatkan limbah dari rumah tangga atau tanaman di sekitar lingkungan misalnya sisa-sisa tanaman seperti bonggol pisang, gedebong pisang, buah nanas, jerami padi, sisa sayuran, nasi basi, dan lain-lain. Bahan utama dalam larutan MOL teridiri dari 3 jenis komponen, antara lain : Karbohidrat : air cucian beras, nasi bekas, singkong, kentang dan gandum ; Glukosa : cairan gula merah, cairan gula pasir, air kelapa/nira dan; Sumber bakteri : keong mas, buah-buahan misalnya tomat, pepaya, dan kotoran hewan (Purwasasmita, 2009).Kurnia et.al (2003) melakukan analisis sampel larutan MOL Berenuk dan larutan MOL Air Kelapa dan Sampah Dapur. Ditemukan bahwa larutan MOL berenuk mengandung bacillus sp, sacharomyces sp, azospirillium sp, dan azotobacter. MOL sampah dapur mengandung pseudomonas, aspegillus sp, dan lactobacillus sp.Keunggulan utama penggunaan MOL adalah murah bahkan tanpa biaya, selain itu ada beberapa keuntungan : Mendukung pertanian ramah lingkungan Dapat mengatasi permasalahan pencemaran limbah pertanian dan limbah rumah tangga Pembuatan serta aplikasinya mudah dilakukan Mengandung unsur kompleks dan mikroba yang bermanfaat dalam produk pupuk dan dekomposer organik yang dihasilkan. Memperkaya keanekaragaman biota tanah Memperbaiki kualitas tanah dan tanamanSecara umum, pemanfaatan MOL salah satu upaya meningkatkan kemandirian petani. Beberapa jenis larutan MOL yang telah diaplikasikan oleh petani dibeberapa daerah antara lain : MOL buah-buahan yang diaplikasikan pada tanaman sebagai pupuk dan dekomposer dalam pembuatan kompos MOL daun cebreng untuk penyubur daun tanaman MOL bonggol pisang untuk dekomposer saat pembuatan kompos MOL sayuran yang disemprotkan pada tanaman padi MOL rebung bambu untuk merangsang pertumbuhan tanaman.Jenis dan Pembuatan MOLBeberapa jenis MOL dan cara membuatnya yang telah dikenal antara lain :1. MOL Buah-buahanBahan : Limbah buah-buahan Pepaya, pisang, mangga, apel dll,10 Kg Gula merah 1 kg dicairkan 10 liter air kelapaCara Membuat :

a. Buah-buahan ditumbuk/dihaluskan b. Masukkan ke dalam drum/tong plasticc. Campurkan dengan air kelapad. Masukkan gula merah yang telah dicaire. Tutup dengan plastik, beri lubang udara dengan cara memasukkan slang plastik yang dihubungkan dengan botol yang sudah terisi airf. Biarkan selama 10 15 hariCara Penggunaan :a. Campurkan MOL buah-buahan yang telah jadi dan air dengan komposisi 1 : 5 liter, kemudian tambahkan gula 1 ons. Siramkan pada bahan organik (bahan baku kompos) yang akan dikomposkanb. Penggunaan sebagai pupuk hayati : semprotkan pada tananam dengan konsentrasi larutan 400 cc dicampur dengan air tawar sebanyak 14 liter. Untuk tanaman padi, waktu penyemprotan dilakukan pada umur tanaman akhir vegetatif (55 60 hari).

2. MOL Nasi Basi

Salah satu limbah rumah tangga yang paling banyak diproduksi tiap harinya adalah nasi basi. Nasi basi dapat dimanfaatkan sebagai bahan pembuatan MOL untuk bioaktifator maupun pupuk hayati. Bahan yang digunakan adalah sebagai berikut : Nasi basi, secukupnya Air Gula pasir, 5 sendok makan Cara Membuat :

a. Kepal-kepal nasi basi sebesar bola pingpong b. Letakkan bola-bola nasi tersebut di dalam kardus, lalu tutup dengan dedaunan (misalnya daun pisang yang membusuk. Dalam jangka waktu 3 hari, akan tumbuh jamur-jamur berwarna kuning, jingga dan merah

Cara Penggunaan :

a. Campurkan MOL nasi basi yang telah jadi dan air dengan komposisi 1 : 5 liter, kemudian tambahkan gula 1 ons. Siramkan pada bahan organik (bahan baku kompos) yang akan dikomposkanb. Penggunaan sebagai pupuk hayati : semprotkan pada tananam dengan konsentrasi larutan 400 cc dicampur air tawar sebanyak 14 liter.3. MOL Keong MasBahan : Keong mas yang masih hidup (segar) 5 kg Gula merah 1 kg atau buah Maja yang telah matang 2 buah, jika tidak ada dapat diganti dengan cairan tebu 1 liter Air kelapa 10 literCara Membuat :

a. Keong mas ditumbuk hingga halus dan masukkan ke dalam tong sampahb. Campurkan dengan gula merah atau buah maja yang sudah dihaluskan atau air tebu.c. Masukkan air kelapa dan aduk sampai meratad. Kemudian tutup rapat dengan plastik dan berikan slang plastik sambungan pada botol yang telah berisi air e. Biarkan selama 15 hariCara Aplikasi :a. Pengomposan : cairan/ekstrak (MOL) keong mas dicampur air dengan konsentrasi 1 : 5 (artinya 1 liter cairan MOL dicampur dengan 5 liter air tawar, kemudian tambahkan 1 ons gula merah aduk hingga rata dan siramkan pada bahan organik yang akan dikomposkanb. Penggunaan sebagai pupuk hayati : semprotkan pada tananam dengan konsentrasi larutan 400 cc dicampur dengan air tawar sebanyak 14 liter. Pada tanaman padi, sejak fase vegetatif hingga generatif pasca tanam yaitu hari ke 10, 20, 30 dan 40. Semprotkan pada pagi/sore hari, hindari penyemprotan pada siang hari.4. MOL Rebung Bambu

Bahan : 2 buah rebung bambu kurang lebih 3 kg Air beras 5 liter 1,5 ons gula merah atau bisa digunakan 1 buah maja.Cara Membuat :

a. Rebung bambu ditumbuk halus atau diiris-iris kemudian masukan kedalam ember atau tong plastikb. Campurkan dengan buah maja yang sudah dihaluskan atau tambahkan gula merah yang telah dihaluskan dan aduk sampai ratac. Rendam dengan air cucian beras sebanyak 5 literd. Tutup rapat ember/tong dengan platik, dan berikan slang palstik yang disambungkan dengan air yang berada pada botole. Biarkan selama 15 hariKESIMPULAN Larutan MOL dapat berfungsi sebagai dekomposer, pupuk hayati dan sebagai pestisida organik yang ramah lingkungan. MOL bermanfaat sebagai salah satu cara untuk mengatasi pencemaran lingkungan oleh limbah pertanian dan rumah tangga, memperbaiki kualitas tanah dan tanaman, memperkaya biota tanah dan menghasilkan produk yang aman dan sehat untuk mendukung pertanian organik. Pemanfaatan MOL merupakan salah satu upaya untuk meningkatkan kemandirian petani karena dalam pembuatan dan pengaplikasiannya murah dan mudah dilaksanakan oleh petani dengan memanfaatkan sumberdaya yang ada disekitarnya.