98
Perlen der Informatik I Jan Kˇ ret´ ınsk´ y Technische Universit¨ at M ¨ unchen Winter 2020/2021

Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Perlen der Informatik I

Jan Kretınsky

Technische Universitat MunchenWinter 2020/2021

Page 2: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Overview 2/65

I language: English/GermanI voluntary courseI lecture on Tuesday, in the slot 10 a.m. – 12 p.m.I https://www7.in.tum.de/˜kretinsk/teaching/perlen.html

I Godel, Escher, Bach: an Eternal Golden Braidby Douglas R. Hofstadter

Page 3: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Bach 3/65

I Frederick the GreatI Leonhard Euler,. . . , J.S. BachI improvised 6-part fugueI canons

Page 4: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Bach 3/65

I Frederick the GreatI Leonhard Euler,. . . , J.S. BachI improvised 6-part fugueI canons

Page 5: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Bach 3/65

I Frederick the GreatI Leonhard Euler,. . . , J.S. BachI improvised 6-part fugueI canons

I copies differing in time, pitch, speed, direction (upside down, crab)I isomorphicI canon endlessly rising in 6 steps – “strange loop”

Page 6: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Escher 4/65

“Waterfall”6-step endlessly falling loop

Page 7: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Escher 4/65

“Ascending and Descending”illusion by Roger Penrose

Page 8: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Escher 4/65

Penrose triangleFaculty of Informatics, Brno

Page 9: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Escher 4/65

“Drawing hands”his first strange loop

Page 10: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Escher 4/65

“Metamorphosis”copies of one theme

Page 11: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel 5/65

I BrnoI Epimenides paradox: “All Cretans are liars”

I mathematical reasoning in exploring mathematical reasoningI Incompleteness theorem:

All consistent axiomatic formulations of number theoryinclude undecidable propositions.

I strange loop in the proofI statement about numbers can talk about itself

“This statement of number theory does not have any proof”

I numberscode↔ statements

215473077557 is in binary0011001000101011001100100011110100110101 read as ASCII2+2=5

I homework:34723379178930453204433293597543819411782291432109326918654063662

Page 12: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel 5/65

I BrnoI Epimenides paradox: “All Cretans are liars”I mathematical reasoning in exploring mathematical reasoningI Incompleteness theorem:

All consistent axiomatic formulations of number theoryinclude undecidable propositions.

I strange loop in the proof

I statement about numbers can talk about itself“This statement of number theory does not have any proof”

I numberscode↔ statements

215473077557 is in binary0011001000101011001100100011110100110101 read as ASCII2+2=5

I homework:34723379178930453204433293597543819411782291432109326918654063662

Page 13: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel 5/65

I BrnoI Epimenides paradox: “All Cretans are liars”I mathematical reasoning in exploring mathematical reasoningI Incompleteness theorem:

All consistent axiomatic formulations of number theoryinclude undecidable propositions.

I strange loop in the proofI statement about numbers can talk about itself

“This statement of number theory does not have any proof”

I numberscode↔ statements

215473077557 is in binary0011001000101011001100100011110100110101 read as ASCII2+2=5

I homework:34723379178930453204433293597543819411782291432109326918654063662

Page 14: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel 5/65

I BrnoI Epimenides paradox: “All Cretans are liars”I mathematical reasoning in exploring mathematical reasoningI Incompleteness theorem:

All consistent axiomatic formulations of number theoryinclude undecidable propositions.

I strange loop in the proofI statement about numbers can talk about itself

“This statement of number theory does not have any proof”

I numberscode↔ statements

215473077557

is in binary0011001000101011001100100011110100110101 read as ASCII2+2=5

I homework:34723379178930453204433293597543819411782291432109326918654063662

Page 15: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel 5/65

I BrnoI Epimenides paradox: “All Cretans are liars”I mathematical reasoning in exploring mathematical reasoningI Incompleteness theorem:

All consistent axiomatic formulations of number theoryinclude undecidable propositions.

I strange loop in the proofI statement about numbers can talk about itself

“This statement of number theory does not have any proof”

I numberscode↔ statements

215473077557 is in binary0011001000101011001100100011110100110101

read as ASCII2+2=5

I homework:34723379178930453204433293597543819411782291432109326918654063662

Page 16: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel 5/65

I BrnoI Epimenides paradox: “All Cretans are liars”I mathematical reasoning in exploring mathematical reasoningI Incompleteness theorem:

All consistent axiomatic formulations of number theoryinclude undecidable propositions.

I strange loop in the proofI statement about numbers can talk about itself

“This statement of number theory does not have any proof”

I numberscode↔ statements

215473077557 is in binary0011001000101011001100100011110100110101 read as ASCII2+2=5

I homework:34723379178930453204433293597543819411782291432109326918654063662

Page 17: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Mathematical logic 6/65

I different geometries, equally validI real world?I proof?I Russel’s paradox

I “ordinary” sets: x < xI “self-swallowing” sets: x ∈ xI R = set of all ordinary sets

I Grelling’s paradoxI self-descriptive adjectives (“pentasyllabic”) vs non-self-descriptiveI what about “non-self-descriptive”?

I self-referencedrawing handsThe following sentence is false. The preceding sentence is true.

Page 18: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Way out? 7/65

I prohibition (Principia mathematica)I types, metalanguageI “In this lecture, I criticize the theory of types”

cannot discuss the type theoryI David Hilbert: consistency and completeness

Page 19: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Computers 8/65

I BabbageThe course through which I arrived at it was the mostentangled and perplexed which probably ever occupied thehuman mind.

Ada Lovelace (daughter of Lord Byron)Mechanized intelligence“Eating its own tail” (altering own program)

I axiomatic reasoning, mechanical computation, psycholgy ofintelligence

I Alan Turing ∼ Godel’s counterpart in computation theoryHalting problem is undecidable.Can intelligent behaviour be programmed? Rules for inventing newrules...Strange loops in the core of intelligence

I materialism, de la Metrie: L’homme machine

Page 20: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Formal system 9/65

Example (over alphabet M,I,U)I initial string (“axiom”):

I MI

I rules (“inference/production rules”) to enlarge your collection (of“theorems”)requirement of formality: not outside the rules

I last letter I⇒ put U at the endI Mx ⇒ Mxx where x can be any stringI replace III by UI drop UU

Homework: Can you produce/derive/prove MU ?

I Which rule to use? That’s the art.

Page 21: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Working in the system / observing the system 10/65

I human itellingece⇒ notice properties of theoremsI machine can act unobservant, people cannot

Perfect test (“decision procedure”) for theoremsI tree of all theorems?I finite time!

Page 22: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Another formal system 11/65

I alphabet {p,q,−}I axioms (axiom schema – obvious decision procedure):

xp−qx− for any x composed from hyphens

I production rules:

xpyqz ⇒ xpy−qz− for any x, y, z composed from hyphens

Page 23: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Decision procedure 12/65

I only lengthening rules⇒ reduce to shorter ones (top-down)⇒ dovetailing longer axioms and rule application (bottom-up)

I hereditary properties of theorems

Page 24: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Meaning 13/65

IsomorphismI information-preserving transformationI creates meaningI interpretation + correspondence between true statements and

interpreted theoremsI like cracking a codeI meaningless interpretations possibleI “well-formed” strings should produce “gramatical” sentences

Page 25: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Meaning is passive in formal systems 14/65

I it seems the system cannot avoid taking on meaningI is --p--p--q------ a theorem?I subtractionI does not add new additions, but we learn about nature of additionI (is reality a formal system? is universe deterministic?)

Page 26: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Is our formal system accurate? 15/65

I 12 × 12: counting vs proofI basic properties to be believed, e.g. commutatitvity and associativityI in reality not always: raindrop, cloud, trinity, languages in IndiaI ideal numbersI counting cannot check Euclid’s Theorem

I reasoningI non-obvious result from obvious stepsI belief in reasoningI overcoming infinity (“all” N)I patterned structure binding statementsI can thinking be achieved by a formal system?

Page 27: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Escher: Liberation 16/65

Page 28: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Puzzle 17/65

1 3 7 12 18 26 35 45 56 ?

Page 29: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Escher: Mosaic II 18/65

Page 30: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Can we distinguish primes from composites? 19/65

Formal systems ∼ typographical operations:I read, write, copy, erase, and compare symbolsI keep generated theorems

Multiplication:I axiom xt-qx for every hyphen-string xI rule xtyqz ⇒ xty-qzx for hyphen-strings x, y, z

Composites:I rule x-ty-qz ⇒Cz for hyphen-strings x, y, z

Primes:

I rule: Cx is not a theorem⇒ Px for every hyphen-string xI reasoning what cannot be generated is outside of system,

requirement of formality

Page 31: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Can we distinguish primes from composites? 19/65

Formal systems ∼ typographical operations:I read, write, copy, erase, and compare symbolsI keep generated theorems

Multiplication:I axiom xt-qx for every hyphen-string xI rule xtyqz ⇒ xty-qzx for hyphen-strings x, y, z

Composites:I rule x-ty-qz ⇒Cz for hyphen-strings x, y, z

Primes:

I rule: Cx is not a theorem⇒ Px for every hyphen-string xI reasoning what cannot be generated is outside of system,

requirement of formality

Page 32: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Can we distinguish primes from composites? 19/65

Formal systems ∼ typographical operations:I read, write, copy, erase, and compare symbolsI keep generated theorems

Multiplication:I axiom xt-qx for every hyphen-string xI rule xtyqz ⇒ xty-qzx for hyphen-strings x, y, z

Composites:I rule x-ty-qz ⇒Cz for hyphen-strings x, y, z

Primes:I rule: Cx is not a theorem⇒ Px for every hyphen-string x

I reasoning what cannot be generated is outside of system,requirement of formality

Page 33: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Can we distinguish primes from composites? 19/65

Formal systems ∼ typographical operations:I read, write, copy, erase, and compare symbolsI keep generated theorems

Multiplication:I axiom xt-qx for every hyphen-string xI rule xtyqz ⇒ xty-qzx for hyphen-strings x, y, z

Composites:I rule x-ty-qz ⇒Cz for hyphen-strings x, y, z

Primes:I rule: Cx is not a theorem⇒ Px for every hyphen-string xI reasoning what cannot be generated is outside of system,

requirement of formality

Page 34: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Negative definitions: figure and ground 20/65

Page 35: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Negative definitions: figure and ground 21/65

Page 36: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Negative definitions: figure and ground 22/65

SetsI recursive: decision procedureI recursively enumerable (r.e.): can be generatedI non-r.e.

Page 37: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Negative definitions: figure and ground 23/65

Characterize false statementsI negative space of theoremsI altered copy of theorems

Impossible!

Page 38: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Impossibility 24/65

I some negative spaces cannot be positiveI = there are non-recursive r.e. setsI ⇒ there are formal sytems with no decision procedure

Page 39: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Primes are recursive 25/65

I axiom xyDNDx for hyphen-strings x, yI rules

xDNDy ⇒ xDNDxy--DNDz ⇒ zDF--zDFx and x-DNDz ⇒ zDFx-z-DFz ⇒Pz-

I axiom P--

Page 40: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Impossibility 26/65

I if a set is generatable in increasing order then so is its complementI lengthening interleaved with shortening causes Godel’s Theorem,

Turing’s Halting Problem etc.

Page 41: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Diagonalisation: Cantor 27/65

f : S → P(S)

C = {s ∈ S | s < f(s)}

Page 42: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Diagonalisation: Cantor 27/65

f : S → P(S)

C = {s ∈ S | s < f(s)}

Page 43: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Diagonalisation: Russell 28/65

R = {x | x < x}

Then R ∈ R ⇐⇒ R < R

Page 44: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Diagonalisation: Turing 29/65

program e: if f(i,i) == 0 then return 0 else loop forever

I f(e, e) = 0 =⇒ g(e) = 0 =⇒ program e halts on input e=⇒ f(e, e) = 1

I f(e, e) , 0 =⇒ g(e) undef. =⇒ program e doesn’t halt on input e=⇒ f(e, e) = 0

Page 45: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Diagonalisation: Godel (vague idea) 30/65

”, when preceded by itself in quotes, is unprovable.”, when preceded byitself in quotes, is unprovable.

Page 46: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel and the strange loop 31/65

For any player, there is a record which it cannot play because it will causeits indirect destruction.

Bach – self-reference in the Art of the Fugue

Page 47: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Story isomorphism 32/65

Page 48: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Consistency 33/65

Example: pq-system

I Axiom schema II: xp-qx for every hyphen-string xI inconsistent with external world

I reinterpret: ≥I consistency depends on interpretationI consistency = Every theorem, when interpreted, becomes a true

statement.

Page 49: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Consistency 33/65

Example: pq-system

I Axiom schema II: xp-qx for every hyphen-string xI inconsistent with external worldI reinterpret: ≥I consistency depends on interpretationI consistency = Every theorem, when interpreted, becomes a true

statement.

Page 50: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Consistency 34/65

Example: non-Euclid geometry

I ElementsI rigorI axiomatic systemI fifth postulate not a consequenceI Saccheri, Lambert, Bolyai, LobachevskiyI elliptical/spherical (no parallel) and hyperbolical (≥ 2 parallels)

geometry (4 geometrical postlates remain, “absolute geometry”included)

I real points and lines vs. explicit definitions vs. implicit propositions

Page 51: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Consistency 35/65

I internal consistency: theorems mutually compatibleholds in some “imaginable” world

I logical, mathematical, physical, biological etc. consistencyI Is number theory/geometry the same in all conceivable worlds?

I Peano arithmetic ∼ absolute (core) geometryI number theories are the same for practical purposesI Gauss attmepted to measure angles between three mountains

general relativitymore geometries in mathematics and even physics

Page 52: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Consistency 36/65

Relativity

Page 53: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Completeness 37/65

Consistency: minimal condition for passive meaning

Completeness: maximal confirmation of passive meanings

“ Every true statement which can be expressed in the notation of thesystem is a theorem”I Example: 2+3+4=9 in pqI Example: pq with Axiom schema II

(1) add rules or (2) tighten the interpretation

Page 54: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel’s 1st incompleteness theorem 38/65

TheoremThere are true arithmetical formulae unprovable in PA (or other consistentformal systems).

Godel’s proof (sketch)

I it is possible to construct a PA formula ρ such that

PA ` ρ ⇐⇒ ¬Provable([ρ])

i.e. “ρ says “I’m not provable”” is provable in PAI by consistency of PA this is true in arithmeticsI if ¬ρ then Provable([ρ]), a contradiction

if ρ then ¬Provable([ρ]) hence PA 0 ρ �

Page 55: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel’s 1st incompleteness theorem 39/65

Recall:I Accept := {i | Mi accepts i}I Accept is r.e., but not recursiveI Accept is not r.e.

Alternative proof:

I Provable is r.e. (for PA and similar)I Provable ⊆ Valid by consistencyI we prove Valid is not r.e., hence (

I construct a program transforming n ∈ N into a formula ϕ:

ϕ ∈ Valid iff n ∈ Accept

it computes the formula “Mn does not accept n”I computation is a sequence of configurations (numbers)I one can encode that a configuration c follows a given configuration dI every finite sequence can be encoded by a formula β:

For every n1, . . . , nk there are a, b ∈ N such that

β(a, b , i, x) iff x = ni

Page 56: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel’s 1st incompleteness theorem 40/65

Let β(a, b , i, x) be true iff x = a mod (1 + b(1 + i))I expressible in simple arithmetics:

a ≥ 0∧b ≥ 0∧∃k(k ≥ 0∧k ∗c ≤ a∧(k +1)∗c > a∧x = a−(k ∗b)

)where c is a shortcut for (1 + b ∗ (1 + i))

I for every a, b the predicate β induces a unique sequence,where the ith element is a mod (1 + b(1 + i))

I every finite sequence can be encoded by β for some a, b:

TheoremFor every n1, . . . , nk there are a, b ∈ N such that

β(a, b , i, x) iff x = ni

Page 57: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel’s 1st incompleteness theorem 41/65

β(a, b , i, x) iff x = a mod (1 + b(1 + i))

TheoremFor every n1, . . . , nk there are a, b ∈ N such that

β(a, b , i, x) iff x = ni

Proof.

I b := (max{k , n1, . . . , nk })!

I pi := 1 + b(1 + i) is ≥ ni and mutually incommensurableI ci :=

∏j,i pj

I ∃! 0 ≤ di ≤ pi : ci · di mod pi = 1I a :=

∑ki=1 ci · di · ni

I hence ni = a mod pi

Page 58: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Recursion 42/65

ExamplesI recursive defintions

I in terms of simpler versions of itselfI some part avoids self-reference (vs. circular definitions)

I pushdown systemsI music: tonic and pseudo-tonicI language: verb at the endI indirect recursion in EpimenidesI Fib(n)=Fib(n-1)+Fib(n-2)I computer programsI fractalsI Cantor set

Page 59: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Mandelbrot set 43/65

Page 60: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Mandelbrot set 44/65

Page 61: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Further examples 45/65

energies of electrons in a crystal in a magnetic field

Cantor set

Page 62: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Sidenote: Location of meaning 46/65

I is meaning of a message an inherent property of the message?I meaning is part of an object to the extent that it acts upon

intelligence in a predictable wayI levels of informtion

I frame message: “this bears information”I outer message: “this is in Japanese”I inner message: “this says ...”

I if all juke-boxes would play the same song on “A-5”, it wouldn’t bejust a trigger but a meaning of “A-5”

I mass is intrinsic, weight is not; or yes, but at the cost of geocentricityI

·

·

Page 63: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Definition 47/65

I purely typographicI alphabet: < > P Q R ′ ∧ ∨ ⊃ ∼ [ ]

I well-formed strings:I atoms: P, Q, R + adding primesI formation rules: if x and y are wel-formed then so are∼ x, < x ∧ y >, < x ∨ y >, < x ⊃ y >

I rulesI joining: x and y ⇒ < x ∧ y >I separation:< x ∧ y >⇒ x and yI double-tilde: ∼∼ can be deleted or insertedI contrapositive: < x ⊃ y > and <∼ y ⊃∼ x interchangableI De Morgan: ∼< x ∨ y > and <∼ x∧ ∼ y interchangableI Switcheroo: < x ∨ y > and <∼ x ⊃ y interchangableI no axioms

I fantasy rule (Deduction Theorem): y derived from x ⇒< x ⊃ y >I carry-over theorems into fantasyI detachment (Modus Ponens): x and < x ⊃ y >⇒ y

Page 64: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Definition 47/65

I purely typographicI alphabet: < > P Q R ′ ∧ ∨ ⊃ ∼ [ ]

I well-formed strings:I atoms: P, Q, R + adding primesI formation rules: if x and y are wel-formed then so are∼ x, < x ∧ y >, < x ∨ y >, < x ⊃ y >

I rulesI joining: x and y ⇒ < x ∧ y >I separation:< x ∧ y >⇒ x and yI double-tilde: ∼∼ can be deleted or insertedI contrapositive: < x ⊃ y > and <∼ y ⊃∼ x interchangableI De Morgan: ∼< x ∨ y > and <∼ x∧ ∼ y interchangableI Switcheroo: < x ∨ y > and <∼ x ⊃ y interchangableI no axiomsI fantasy rule (Deduction Theorem): y derived from x ⇒< x ⊃ y >I carry-over theorems into fantasyI detachment (Modus Ponens): x and < x ⊃ y >⇒ y

Page 65: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Properties 48/65

I decision procedure:

truth tables

I simplicity, precisionI other versions (axiom schemata + detachment)

extensions (valid propositional inferences,incompleteness/inconsistency only due to embedding system)

InformalI proof: normal thoughtI simplicity: sounds rightI complexity: human language

FormalI derivation: artificial, explicitI simplicity: trivialI astronomical size

Page 66: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Properties 48/65

I decision procedure: truth tables

I simplicity, precisionI other versions (axiom schemata + detachment)

extensions (valid propositional inferences,incompleteness/inconsistency only due to embedding system)

InformalI proof: normal thoughtI simplicity: sounds rightI complexity: human language

FormalI derivation: artificial, explicitI simplicity: trivialI astronomical size

Page 67: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Properties 48/65

I decision procedure: truth tables

I simplicity, precisionI other versions (axiom schemata + detachment)

extensions (valid propositional inferences,incompleteness/inconsistency only due to embedding system)

InformalI proof: normal thoughtI simplicity: sounds rightI complexity: human language

FormalI derivation: artificial, explicitI simplicity: trivialI astronomical size

Page 68: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Contradictions 49/65

I < <P ∧ ∼P> ⊃ Q >

I infection vs. mental break-downI 1 − 1 + 1 − 1 + 1 · · ·I relevant implication

Page 69: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Syntax 50/65

I natural-numbers theory N→ TNT1. 2 is not a square.2. 5 is a prime.3. There are infinitely many primes.

I primitives: for all numbers, there exists a number, equals, greaterthan, times, plus, 0, 1, 2, . . .

I variables: a, b , a′

terms: (a · b), (a + b), 0,S0,SS0atoms: S0 + S0 = SS0quantifiers: ∃b : (b + S0) = SS0, similarly ∀

Puzzle: encode the followingI b is a power of 2I b is a power of 10

Page 70: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Syntax 50/65

I natural-numbers theory N→ TNT1. 2 is not a square.2. 5 is a prime.3. There are infinitely many primes.

I primitives: for all numbers, there exists a number, equals, greaterthan, times, plus, 0, 1, 2, . . .

I variables: a, b , a′

terms: (a · b), (a + b), 0,S0,SS0atoms: S0 + S0 = SS0quantifiers: ∃b : (b + S0) = SS0, similarly ∀

Puzzle: encode the followingI b is a power of 2I b is a power of 10

Page 71: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Syntax 50/65

I natural-numbers theory N→ TNT1. 2 is not a square.2. 5 is a prime.3. There are infinitely many primes.

I primitives: for all numbers, there exists a number, equals, greaterthan, times, plus, 0, 1, 2, . . .

I variables: a, b , a′

terms: (a · b), (a + b), 0,S0,SS0atoms: S0 + S0 = SS0quantifiers: ∃b : (b + S0) = SS0, similarly ∀

Puzzle: encode the followingI b is a power of 2I b is a power of 10

Page 72: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Examples 51/65

I ∼∀c : ∃b : (SS0 · b) = cI ∀c : ∼∃b : (SS0 · b) = cI ∀c : ∃b : ∼(SS0 · b) = cI ∼∃b : ∀c : (SS0 · b) = cI ∃b : ∼∀c : (SS0 · b) = cI ∃b : ∀c : ∼(SS0 · b) = c

Page 73: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Derivations 52/65

Axioms:1. ∀a : ∼Sa = 02. ∀a : (a + 0) = a3. ∀a : ∀b : (a + Sb) = S(a + b)4. ∀a : (a · 0) = 05. ∀a : ∀b : (a · Sb) = ((a · b) + a)

Rules:1. specification: ∀u : x ⇒ x[u′/u] for any term u′

2. generalization: x ⇒ ∀u : x for a free variable u3. interchange: ∀u :∼ and ∼ ∃u : are interchangeable4. existence: x[u′/u]⇒ ∃u : x5. symmetry: r = s ⇒ s = r6. transitivity: r = s and s = t ⇒ r = t7. successorship: r = t ⇔ Sr = St

Example: S0 + S0 = SS0

Page 74: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Derivations 52/65

Axioms:1. ∀a : ∼Sa = 02. ∀a : (a + 0) = a3. ∀a : ∀b : (a + Sb) = S(a + b)4. ∀a : (a · 0) = 05. ∀a : ∀b : (a · Sb) = ((a · b) + a)

Rules:1. specification: ∀u : x ⇒ x[u′/u] for any term u′

2. generalization: x ⇒ ∀u : x for a free variable u3. interchange: ∀u :∼ and ∼ ∃u : are interchangeable4. existence: x[u′/u]⇒ ∃u : x5. symmetry: r = s ⇒ s = r6. transitivity: r = s and s = t ⇒ r = t7. successorship: r = t ⇔ Sr = St

Example: S0 + S0 = SS0

Page 75: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Propositional calculus: Derivations 52/65

Axioms:1. ∀a : ∼Sa = 02. ∀a : (a + 0) = a3. ∀a : ∀b : (a + Sb) = S(a + b)4. ∀a : (a · 0) = 05. ∀a : ∀b : (a · Sb) = ((a · b) + a)

Rules:1. specification: ∀u : x ⇒ x[u′/u] for any term u′

2. generalization: x ⇒ ∀u : x for a free variable u3. interchange: ∀u :∼ and ∼ ∃u : are interchangeable4. existence: x[u′/u]⇒ ∃u : x5. symmetry: r = s ⇒ s = r6. transitivity: r = s and s = t ⇒ r = t7. successorship: r = t ⇔ Sr = St

Example: S0 + S0 = SS0

Page 76: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Induction 53/65

I can deriveI (0 + 0) = 0I (0 + S0) = S0I (0 + SS0) = SS0

I

...

I can derive ∀a : (0 + a) = a ?

I nor its negationundecidable in TNT (like Euclid’s 5th postulate in absolute geometry)

I rule of induction: u variable, X{u} well-formed formula with u free,X{0/u}, ∀u :< X{u} ⊃ X{Su/u} > ⇒ ∀u : X{u}

Page 77: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Induction 53/65

I can deriveI (0 + 0) = 0I (0 + S0) = S0I (0 + SS0) = SS0

I

...

I can derive ∀a : (0 + a) = a ?I nor its negation

undecidable in TNT (like Euclid’s 5th postulate in absolute geometry)I rule of induction: u variable, X{u} well-formed formula with u free,

X{0/u}, ∀u :< X{u} ⊃ X{Su/u} > ⇒ ∀u : X{u}

Page 78: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Consistency 54/65

I we believe in each ruleI are natural numbers a coherent construct??

Peano’s axioms:1. zero is a number2. every number has a successor (which is a number)3. zero is not a successor of any number4. different numbers have different successors5. if zero has X and every number relays X to its successor, then all

numbers have X

I want to convince of consistency of TNT using a weaker systemI Godel’s 2nd Theorem: Any system that is strong enough to prove

TNT’s consistency is at least as strong as TNT itself.

Page 79: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Consistency 54/65

I we believe in each ruleI are natural numbers a coherent construct??

Peano’s axioms:1. zero is a number2. every number has a successor (which is a number)3. zero is not a successor of any number4. different numbers have different successors5. if zero has X and every number relays X to its successor, then all

numbers have X

I want to convince of consistency of TNT using a weaker systemI Godel’s 2nd Theorem: Any system that is strong enough to prove

TNT’s consistency is at least as strong as TNT itself.

Page 80: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Consistency 54/65

I we believe in each ruleI are natural numbers a coherent construct??

Peano’s axioms:1. zero is a number2. every number has a successor (which is a number)3. zero is not a successor of any number4. different numbers have different successors5. if zero has X and every number relays X to its successor, then all

numbers have X

I want to convince of consistency of TNT using a weaker system

I Godel’s 2nd Theorem: Any system that is strong enough to proveTNT’s consistency is at least as strong as TNT itself.

Page 81: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Typographical number theory: Consistency 54/65

I we believe in each ruleI are natural numbers a coherent construct??

Peano’s axioms:1. zero is a number2. every number has a successor (which is a number)3. zero is not a successor of any number4. different numbers have different successors5. if zero has X and every number relays X to its successor, then all

numbers have X

I want to convince of consistency of TNT using a weaker systemI Godel’s 2nd Theorem: Any system that is strong enough to prove

TNT’s consistency is at least as strong as TNT itself.

Page 82: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Recall: MIU system 55/65

I alphabet M,I,UI initial string (“axiom”):

I MI

I rules1. xI⇒ xIU2. Mx ⇒ Mxx3. xIIIy ⇒ xUy4. xUUy ⇒ xy

I Can you produce MU ?

I No:I I-count starts at 1 (not multiple of 3)I I-count is a multiple of 3 only it was before applying the most recent

rule

Page 83: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Recall: MIU system 55/65

I alphabet M,I,UI initial string (“axiom”):

I MI

I rules1. xI⇒ xIU2. Mx ⇒ Mxx3. xIIIy ⇒ xUy4. xUUy ⇒ xy

I Can you produce MU ?I No:

I I-count starts at 1 (not multiple of 3)I I-count is a multiple of 3 only it was before applying the most recent

rule

Page 84: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel numbering 56/65

I All problems about any formal system can be encoded into numbertheory!

I define arithmetization on symbols (Godel number):I M↔ 3I I↔ 1I U↔ 0

I extend it to all strings1. MI↔ 312. MIU↔ 310

Example: Rule 11. xI⇒ xIU2. x1⇒ x103. x ⇒ 10 · x for any x mod 10 = 1

Typographical rules on numerals are actually arithmetical rules onnumbers.I Is MU a theorem of the MIU-system?I Is 30 a MIU-number?

1. “MU is a theorem” into number theory2. number theory into TNT

Page 85: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Godel numbering 56/65

I All problems about any formal system can be encoded into numbertheory!

I define arithmetization on symbols (Godel number):I M↔ 3I I↔ 1I U↔ 0

I extend it to all strings1. MI↔ 312. MIU↔ 310

Example: Rule 11. xI⇒ xIU2. x1⇒ x103. x ⇒ 10 · x for any x mod 10 = 1

Typographical rules on numerals are actually arithmetical rules onnumbers.I Is MU a theorem of the MIU-system?I Is 30 a MIU-number?

1. “MU is a theorem” into number theory2. number theory into TNT

Page 86: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Self-swallowing TNT 57/65

I Godel-number TNTI S0 = 0 is a theorem of TNT −→ 123, 666, 111, 666 is a TNT-number

I for any formalization of number theory, its metalanguage isembedded in it

I find a string G that says “G is not a theorem”I thoerem =⇒ truth =⇒ not a theorem =⇒ truth, but unprovableI summary:

There is a string of TNT expressing a statement about numbers(interpretable as “I am not a theorem (of TNT)”). By reasoningoutside of the system, we can show it is true. But still it is not atheorem of TNT (TNT says neither true nor false).

Page 87: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Self-swallowing TNT 57/65

I Godel-number TNTI S0 = 0 is a theorem of TNT −→ 123, 666, 111, 666 is a TNT-numberI for any formalization of number theory, its metalanguage is

embedded in it

I find a string G that says “G is not a theorem”I thoerem =⇒ truth =⇒ not a theorem =⇒ truth, but unprovableI summary:

There is a string of TNT expressing a statement about numbers(interpretable as “I am not a theorem (of TNT)”). By reasoningoutside of the system, we can show it is true. But still it is not atheorem of TNT (TNT says neither true nor false).

Page 88: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Self-swallowing TNT 57/65

I Godel-number TNTI S0 = 0 is a theorem of TNT −→ 123, 666, 111, 666 is a TNT-numberI for any formalization of number theory, its metalanguage is

embedded in itI find a string G that says “G is not a theorem”I thoerem =⇒ truth =⇒ not a theorem =⇒ truth, but unprovable

I summary:There is a string of TNT expressing a statement about numbers(interpretable as “I am not a theorem (of TNT)”). By reasoningoutside of the system, we can show it is true. But still it is not atheorem of TNT (TNT says neither true nor false).

Page 89: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Self-swallowing TNT 57/65

I Godel-number TNTI S0 = 0 is a theorem of TNT −→ 123, 666, 111, 666 is a TNT-numberI for any formalization of number theory, its metalanguage is

embedded in itI find a string G that says “G is not a theorem”I thoerem =⇒ truth =⇒ not a theorem =⇒ truth, but unprovableI summary:

There is a string of TNT expressing a statement about numbers(interpretable as “I am not a theorem (of TNT)”). By reasoningoutside of the system, we can show it is true. But still it is not atheorem of TNT (TNT says neither true nor false).

Page 90: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Last words

Page 91: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Free will, consciousness 59/65

I computer vs. human?I self-design, choosing one’s wants?

I Do words and thoughts follow formal rules?

I rules on the lowest level, e.g. neuronsI software rules change, harware cannot

Page 92: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Free will, consciousness 59/65

I computer vs. human?I self-design, choosing one’s wants?

I Do words and thoughts follow formal rules?I rules on the lowest level, e.g. neuronsI software rules change, harware cannot

Page 93: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Strange loops, tangled hierarchies: Examples 60/65

I self-modifying gameI Escher’s handsI symbols in brain (on neuronal substrate)I ? washing hands, dialogueI language, Klein bottleI Watergate

Page 94: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Klein bottle 61/65

Page 95: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Dualism 62/65

Subject vs ObjectI old scienceI prelude to modern phase: quantum mechanics, metamathematics,

science methodology, AI

Use vs MentionI symbols vs just beI John Cage: Imaginary Landscape No.4I Rene Magritte: Common Sense, The Two Mysteries

Page 96: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Magritte: Common Sense 63/65

Page 97: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Magritte: The Two Mysteries 64/65

Page 98: Perlen der Informatik I - Theoretical Computer Sciencekretinsk/teaching/perlen/slides.pdf · Perlen der Informatik I Jan Kˇret ´ınsk y´ Technische Universitat M¨ unchen¨ Winter

Self 65/65

I evidence, meta-evidence... → built-in hardwareI limitative theorems (Godel, Church, Turing, Tarski,. . . )

I imagine your own non-existenceI cannot be done fully, TNT does not contain its full meta-theory

I “self” necessary for free willI strange loops necessaryI not non-determinism, but choice-maker: identification with a

high-level description of the process when program is runningI Godel, Escher, Bach