59
A theoretical plasma physicist’s take on Turbulence in the ISM : popular beliefs, some observational data, some speculations about their meaning, and some rigourous approaches Perm 7.09.06 Alexander Schekochihin (DAMTP, Cambridge) in collaborations with Steve Cowley, Alexey Iskakov & Jim McWilliams (UCLA) Bill Dorland & Tomo Tatsuno (Maryland) Greg Hammett (Princeton) Greg Howes & Eliot Quataert (Berkeley) Tarek Yousef & François Rincon (Cambridge) Torsten Enßlin & André Waelkens (MPA, Garching) ts/references on http://www.damtp.cam.ac.uk/user/as629 or ask me for

Perm 7.09.06

  • Upload
    oakes

  • View
    54

  • Download
    0

Embed Size (px)

DESCRIPTION

Alexander Schekochihin (DAMTP, Cambridge) in collaborations with Steve Cowley, Alexey Iskakov & Jim McWilliams (UCLA) Bill Dorland & Tomo Tatsuno (Maryland) Greg Hammett (Princeton) Greg Howes & Eliot Quataert (Berkeley) Tarek Yousef & François Rincon (Cambridge) - PowerPoint PPT Presentation

Citation preview

Page 1: Perm 7.09.06

A theoretical plasma physicist’s take on

Turbulence in the ISM:popular beliefs, some observational data,some speculations about their meaning,

and some rigourous approaches

Perm 7.09.06

Alexander Schekochihin (DAMTP, Cambridge)

in collaborations withSteve Cowley, Alexey Iskakov & Jim McWilliams (UCLA)

Bill Dorland & Tomo Tatsuno (Maryland)Greg Hammett (Princeton)

Greg Howes & Eliot Quataert (Berkeley)Tarek Yousef & François Rincon (Cambridge)

Torsten Enßlin & André Waelkens (MPA, Garching) Reprints/references on http://www.damtp.cam.ac.uk/user/as629 or ask me for a copy

Page 2: Perm 7.09.06

Electron-density fluctuations in the interstellar medium[Armstrong et al. 1995, ApJ 443, 209]

The Great Power Law in the Sky

k–5/3

• Turbulence is stirred by supernovae at L ~ 100 pc• Fluctuations of velocity and magnetic field are Alfvénic:

Page 3: Perm 7.09.06

Electron-density fluctuations in the interstellar medium[Armstrong et al. 1995, ApJ 443, 209]

The Great Power Law in the Sky

k–5/3

• Turbulence is stirred by supernovae at L ~ 100 pc• Fluctuations of velocity and magnetic field are Alfvénic:• They have a Kolmogorov k–5/3

spectrum• Density is a passive tracer:

so it has the same spectrum

Page 4: Perm 7.09.06

MHD Turbulence à la K41

Energy at scale l

Cascade time(rate of transfer)

• Universality• Alfvénic:• Locality in scale space

energyinjected

Kinetic energy

k

energy flux

energy

dissipated

Magnetic energy

k–??

Page 5: Perm 7.09.06

MHD Turbulence à la K41

energyinjected

Kinetic energy

k

energy flux

energy

dissipated

Magnetic energy

k–??

Energy at scale l

Cascade time(rate of transfer)

• Two time scales available:

and , so

MHD turbulence spectrum not fixed solely by dimensional analysis

• Universality• Alfvénic:• Locality in scale space

Page 6: Perm 7.09.06

Goldreich-Sridhar Turbulence

Energy at scale l

Cascade time(rate of transfer)

• Strong interactions: (critical balance)

[Goldreich & Sridhar 1995, ApJ 438, 763]

energyinjected

Kinetic energy

k

energy flux

energy

dissipated

Magnetic energy

k–5/3

• Universality• Alfvénic:• Locality in scale space

Page 7: Perm 7.09.06

Goldreich-Sridhar Turbulence

Energy at scale l

Cascade time(rate of transfer)

• Strong interactions: (critical balance)

energyinjected

Kinetic energy

k

energy flux

energy

dissipated

Magnetic energy

k–5/3

ANISOTROPIC![Goldreich & Sridhar 1995, ApJ 438, 763]

• Universality• Alfvénic:• Locality in scale space

Page 8: Perm 7.09.06

Goldreich-Sridhar Turbulence

Energy at scale l

Cascade time(rate of transfer)

• Strong interactions: (critical balance) GS95

energyinjected

Kinetic energy

k

energy flux

energy

dissipated

Magnetic energy

k–5/3

[Goldreich & Sridhar 1995, ApJ 438, 763] ANISOTROPIC!

• Universality• Alfvénic:• Locality in scale space

Page 9: Perm 7.09.06

Anisotropy: It Is Really There

• Strong interactions: (critical balance) GS95

• Simulations of MHD turbulence unambiguously demonstrate that it is anisotropic and are consistent with GS95

[Maron & Goldreich 2001, ApJ 554, 1175; Cho et al. 2002, ApJ 564, 291]

Page 10: Perm 7.09.06

Anisotropy: It Is Really There

• Strong interactions: (critical balance) GS95

• Observations of SW and ISM also show that turbulencethere is anisotropic with , although it is difficult

to check the GS95 scaling. In SW, it has recently beenfound that while

as should be the case in GS95[T. Horbury 2006, private communication].

• Simulations of MHD turbulence unambiguously demonstrate that it is anisotropic and are consistent with GS95

[Maron & Goldreich 2001, ApJ 554, 1175; Cho et al. 2002, ApJ 564, 291]

Page 11: Perm 7.09.06

Solar Wind: Alfvénic Turbulence

Magnetic- and electric-field fluctuationsin the solar wind at ~1 AU (19 Feb. 2002)

[Bale et al. 2005, PRL 94, 215002]

Alfvénicfluctuations

k–5/3k–5/3k–5/3

Page 12: Perm 7.09.06

ISM: Alfvénic Turbulence?

Alfvénicfluctuations

I have not seen a nice plot likethis for the ISM…

Bottle of port to anyone whocan give me one!

Page 13: Perm 7.09.06

So, It’s All Sorted Then?

Magnetic- and electric-field fluctuationsin the solar wind at ~1 AU (19 Feb. 2002)

[Bale et al. 2005, PRL 94, 215002]

k–5/3k–5/3k–5/3

Does all this meanwe understand plasmaturbulence in the sky?

SEE PART II OFTHIS TALK

Page 14: Perm 7.09.06

What if there is no guide field?

• Clusters of galaxies• Some parts of the ISM

Strong guide field: Weak guide field:

waves, random tangle,

Page 15: Perm 7.09.06

Fluctuation Dynamo

Stretching by random fluid motions:

• Exponential growth with • Direction reversals at the resistive scale, k ~ k

• Field varies slowly along itself: k|| ~ kflow

Stretch/shear

[AAS et al. 2002, PRE 65, 016305; AAS et al. 2004, ApJ 612, 276Review: AAS & Cowley, astro-ph/0507686]

Page 16: Perm 7.09.06

Fluctuation Dynamo: DNS (Pm >> 1)

[AAS et al. 2004, ApJ 612, 276Review: AAS & Cowley, astro-ph/0507686]

Folded structure

Page 17: Perm 7.09.06

Fluctuation Dynamo: DNS (Pm >> 1)

[AAS et al. 2004, ApJ 612, 276Review: AAS & Cowley, astro-ph/0507686]

Folded structure

Page 18: Perm 7.09.06

Dynamo: The Movie

Page 19: Perm 7.09.06

QuickTime™ and aDV/DVCPRO - NTSC decompressor

are needed to see this picture.

Page 20: Perm 7.09.06

Fluctuation Dynamo: Saturated State

|u| |B|

Magnetic energy at resistive scales [AAS et al. 2004, ApJ 612, 276; Yousef, Rincon & AAS 2006, JFM, submitted

Review: AAS & Cowley, astro-ph/0507686]

Page 21: Perm 7.09.06

Folded Fields Observed in Clusters

[AAS et al. 2004, ApJ 612, 276]A2256: polarised emission[Enßlin & Clarke 2005, AJ, submitted]

Page 22: Perm 7.09.06

What Are the Saturated Spectra?

[AAS et al. 2004, ApJ 612, 276]

with prob. 1/2

Page 23: Perm 7.09.06

What Are the Saturated Spectra?

[Yousef, Rincon & AAS 2006, JFM submitted]

with prob. 1/2

Page 24: Perm 7.09.06

What Are the Saturated Spectra?

with prob. 1/2

[AAS et al. 2004, ApJ 612, 276]

k–1

Page 25: Perm 7.09.06

What Are the Saturated Spectra?

with prob. 1/2

[AAS et al. 2004, ApJ 612, 276]

k–?

This is probably too simplistica model…

Page 26: Perm 7.09.06

Saturated Spectra: DNS

[AAS et al. 2004, ApJ 612, 276]

NB:Velocity spectrumstill has a negative

exponent,possibly Kolmogorov

(Alfvén waves can propagatealong the folds)

Page 27: Perm 7.09.06

Spectra Observed in Clusters Coma cluster: pressure fluctuations[Schuecker et al. 2004, A&A 426, 387]

Core of Hydra A cluster: magnetic fields[Vogt & Enßlin 2005, A&A 434, 67]

Outer scale of turbulenceis roughly here

Viscous scale isroughly here

Page 28: Perm 7.09.06

ISM: Spiral Arms vs. Interarm Regions

Structure functions of Faraday rotation measure in ISM [Haverkorn et al. 2006, ApJ 637, L33]

Kolmogorov?

Flat?

INTERARMS:

ARMS:

Page 29: Perm 7.09.06

ISM: Two Types of Turbulence?

Structure functions of Faraday rotation measure in ISM [Haverkorn et al. 2006, ApJ 637, L33]

Strong guide field

Weak guide field

Alfvénic turbulence

Saturated small-scaledynamo

ARMS:

INTERARMS:

[AAS, Cowley & Dorland 2006, PPCF to be published Iskakov, Cowley & AAS 2006, in preparation]

Page 30: Perm 7.09.06

ISM: Two Types of Turbulence?

Strong guide field

Weak guide field

Alfvénic turbulence

Saturated small-scaledynamo

ARMS:

INTERARMS:This is only a speculation: let us discuss it!Here are some points in favour:• Turbulence in the arms is stronger? [Rohlfs & Kreitschmann 1987, A&A 178, 95]

Stronger urms gives stronger Brms in arms• Mean-field dynamo in the interarms is more efficient? [Shukurov & Sokoloff 1998, SGG 42, 391]

Stronger B0 in interarms• Mean field pushed out of arms by turbulence diamagnetism? Stronger B0 in interarms• Stronger B0 in interarms indeed observed? [in other galaxies: Beck 2006, astro-ph/0603531]• Marijke’s estimates yesterday consistent with Brms < urms in arms, Brms > urms in interarms

Page 31: Perm 7.09.06

Now the Rigourous Bit…

PART II

THE PLASMA PHYSICS OFINTERSTELLAR TURBULENCE

[Howes, Cowley, Dorland, Hammett, Quataert, AAS, astro-ph/0511812AAS, Cowley & Dorland 2006, PPCF to be published

(preprint on www.damtp.cam.ac.uk/user/as629)]

Page 32: Perm 7.09.06

Turbulence in Weakly Collisional Plasma

KAW

k–5/3

k–7/3

energyinjected

ionheating electron

heating

Observed spectra

collisional(fluid)

collisionless(kinetic)

Alfvén waves:

SWISMIGM

Page 33: Perm 7.09.06

Turbulence in Weakly Collisional Plasma

KAW

k–5/3

k–7/3

energyinjected

ionheating electron

heating

Observed spectra

collisional(fluid)

collisionless(kinetic)

Alfvén waves:

MUST USE KINETICS, NOT MHD!

SWISMIGM

Page 34: Perm 7.09.06

Gyrokinetics: Ordering

[Taylor & Hastie 1968, Plasma Phys. 10, 479; Frieman & Chen 1982, Phys. Fluids 443, 209]

Ordering based on anisotropy + critical balanceapplied to kinetic theory gives GK

• Critical balance as an ordering assumption:

• Small parameter:

• Finite Larmor radius:

[Howes, Cowley, Dorland, Hammett, Quataert, AAS, astro-ph/0511812]

Page 35: Perm 7.09.06

Gyrokinetics: Ordering

• Critical balance as an ordering assumption:

• Small parameter:

• Finite Larmor radius:

Low frequency

Ordering based on anisotropy + critical balanceapplied to kinetic theory gives GK

[Taylor & Hastie 1968, Plasma Phys. 10, 479; Frieman & Chen 1982, Phys. Fluids 443, 209][Howes, Cowley, Dorland, Hammett, Quataert, AAS, astro-ph/0511812]

Page 36: Perm 7.09.06

Gyrokinetics: Ordering

• Critical balance as an ordering assumption:

• Small parameter:

• Finite Larmor radius:

Low frequencyGK ORDERING:

Ordering based on anisotropy + critical balanceapplied to kinetic theory gives GK

[Taylor & Hastie 1968, Plasma Phys. 10, 479; Frieman & Chen 1982, Phys. Fluids 443, 209][Howes, Cowley, Dorland, Hammett, Quataert, AAS, astro-ph/0511812]

Page 37: Perm 7.09.06

Gyrokinetics: Kinetics of Larmor Rings

[Howes, Cowley, Dorland, Hammett, Quataert, AAS, astro-ph/0511812]

Particle dynamics can beaveraged over the Larmororbit and everything reduces to kinetics of Larmor ringscentered at

and interacting withthe electromagnetic fluctuations.

[Taylor & Hastie 1968, Plasma Phys. 10, 479; Frieman & Chen 1982, Phys. Fluids 443, 209]

Page 38: Perm 7.09.06

Gyrokinetics: Kinetics of Larmor Rings

Particle dynamics can beaveraged over the Larmororbit and everything reduces to kinetics of Larmor ringscentered at

and interacting withthe electromagnetic fluctuations.

++ Maxwell’s equations

Page 39: Perm 7.09.06

Gyrokinetics: Kinetics of Larmor Rings

Averaged gyrocentre drifts:• EB0 drift• B drift• motion along perturbed fieldline

Averagedwave-ringinteraction

++ Maxwell’s equations

Page 40: Perm 7.09.06

Gyrokinetics Covers Everything

KAW

k–5/3

k–7/3

energyinjected

ionheating electron

heating

Observed spectra

collisional(fluid)

collisionless(kinetic)

Alfvén waves:

GYROKINETICSFLUID THEORY

Page 41: Perm 7.09.06

Gyrokinetics: DNS

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Numerical simulations(gyrokinetics in 3+2D)are possible (piece-wise!)at the limit of currentlyavailable computing powerusing codes developed forfusion problems.

Transatlantic projectunderway with

Bill Dorland (Maryland)Greg Howes (Berkeley)Steve Cowley (UCLA)Tarek Yousef (Cambridge)Eliot Quataert (Berkeley)Greg Hammett (Princeton)… et al. Simulations using GS2

[picture courtesy Bill Dorland 2005]

Page 42: Perm 7.09.06

Gyrokinetics: DNS

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Numerical simulations(gyrokinetics in 3+2D)are possible (piece-wise!)at the limit of currentlyavailable computing powerusing codes developed forfusion problems.

Reduced fluid/kinetic/hybridmodels necessary to understand and to simulatewhat happens in variousparameter regimes.

Simulations using GS2 [picture courtesy Bill Dorland 2005]

Page 43: Perm 7.09.06

Kinetic Reduced MHD

k–5/3

k–7/3

energyinjected

ionheating electron

heatingcollisional(fluid)

collisionless(kinetic)

Alfvén waves:

GYROKINETICSFLUID THEORY

magnetised ions

isothermal electrons

Page 44: Perm 7.09.06

KRMHD: Alfvén Waves

• Alfvénic fluctuations and

rigourously satisfy Reduced MHD Equations:

[cf. Kadomtsev & Pogutse 1974, Sov. Phys. JETP 38, 283

Strauss 1976, Phys. Fluids 19, 134]

[AAS, Cowley & Dorland 2006, PPCF to be publishedcf. Higdon 1984, ApJ 285, 109; Lithwick & Goldreich 2001, ApJ 562, 279]

Page 45: Perm 7.09.06

KRMHD: Alfvén Waves

• Alfvénic fluctuations and

rigourously satisfy Reduced MHD Equations:

[cf. Kadomtsev & Pogutse 1974, Sov. Phys. JETP 38, 283

Strauss 1976, Phys. Fluids 19, 134]

• Alfvén-wave cascade is indifferent to collisions and damped only at the ion gyroscale• The GS95 theory describes this part of the turbulence• Alfvén waves are decoupled from density and magnetic-field-strength fluctuations (slow waves and entropy mode in the fluid limit)

[AAS, Cowley & Dorland 2006, PPCF to be publishedcf. Higdon 1984, ApJ 285, 109; Lithwick & Goldreich 2001, ApJ 562, 279]

Page 46: Perm 7.09.06

Alfvén-Wave Cascade in the Solar Wind

• Alfvénic fluctuations

Magnetic- and electric-field fluctuationsin the solar wind at ~1 AU (19 Feb. 2002)

[Bale et al. 2005, PRL 94, 215002]

k–5/3 KRMHD

Page 47: Perm 7.09.06

KRMHD: Density and Field Strength

• Density and field strength require kinetic description

[AAS, Cowley & Dorland 2006, PPCF to be publishedcf. Higdon 1984, ApJ 285, 109; Lithwick & Goldreich 2001, ApJ 562, 279]

Page 48: Perm 7.09.06

KRMHD: Density and Field Strength

• Density and field strength require kinetic description

• They are passively mixed by Alfvén waves• Equations are linear in the Lagrangian frame, so there is no refinement of fluctuation scale along the field by nonlinear interactions• Therefore, despite collisional and collisionless (Landau) damping, this cascade is also undamped above the ion gyroscale

[AAS, Cowley & Dorland 2006, PPCF to be publishedcf. Higdon 1984, ApJ 285, 109; Lithwick & Goldreich 2001, ApJ 562, 279]

Page 49: Perm 7.09.06

Density and Field Strength in the Solar Wind

[Bershadskii & Sreenivasan 2004,PRL 93, 064501]

Spectrum of magnetic-field strengthin the solar wind at ~1 AU (1998)

Density fluctuations in the solar windat ~1 AU (31 Aug. 1981)

[Celnikier, Muschietti & Goldman1987,A&A 181, 138]

k–5/3

FLR: density modemixing with

Alfvén waves

Page 50: Perm 7.09.06

Density and Field Strength in the ISM

Anyone knows anything?

k–5/3

Electron-density fluctuations in the interstellar medium[Armstrong et al. 1995, ApJ 443, 209]

Page 51: Perm 7.09.06

Density and Field Strength in the ISM

Anyone knows anything?

k–5/3

Electron-density fluctuations in the interstellar medium[Armstrong et al. 1995, ApJ 443, 209]

Is this scaling correct?

Page 52: Perm 7.09.06

Density and Field Strength in the ISM

Anyone knows anything?

k–1.46±0.20

Structure function from scintillation measurements[Smirnova, Gwinn & Shishov 2006, astro-ph/0603490]

Is this scaling correct?

Page 53: Perm 7.09.06

Ion Heating

k–5/3

k–7/3

energyinjected

ionheating electron

heating

GYROKINETICSFLUID THEORY

KRMHD

GKions

(and isothermalelectrons)

Page 54: Perm 7.09.06

Electron Reduced MHD

k–5/3

k–7/3

energyinjected

ionheating electron

heating

GYROKINETICSFLUID THEORY

KRMHD

GKions

Boltzmann ions

magnetised electrons

ERMHD

Page 55: Perm 7.09.06

ERMHD: Kinetic Alfvén Waves

• KAW fluctuations and

• Critical balance + constant flux argument à la K41/GS95 give spectrum of magnetic field with anisotropy

[Biskamp et al. 1999, Phys. Plasmas 6, 751; Cho & Lazarian 2004, ApJ 615, L41]

• This is a cascade of KAW,

• Electric field has spectrum:

[AAS, Cowley & Dorland 2006,PPCF to be published; this is theanisotropic version of EMHD,see Kingsep et al. 1990,Rev. Plasma Phys. 16, 243]

Page 56: Perm 7.09.06

KAW Cascade in the Solar Wind

• Alfvénic fluctuations

Magnetic- and electric-field fluctuationsin the solar wind at ~1 AU (19 Feb. 2002)

[Bale et al. 2005, PRL 94, 215002]

• Ion Heating

k–5/3 KRMHD

ERMHD

k–7/3

k–1/3

GKions

• KAW

Page 57: Perm 7.09.06

KAW Cascade in the ISM?

• Alfvénic fluctuations

• Ion Heating

• KAW

Electron-density fluctuations in the interstellar medium[Armstrong et al. 1995, ApJ 443, 209]

Again, I have not seen any data.Should be there.

Page 58: Perm 7.09.06

Conclusions

It is too early for conclusions!

Page 59: Perm 7.09.06

Observational Desiderata• Scalings (spectra):

Arms:

Interarms:

(Alfvénic) (passive) • Measures of anisotropy:

Compare

(Alfvénic)

Is the same true for (passive)

• Turbulence below ion gyroscale: Kinetic Alfvén waves

• What is the reversal scale of the folded fields?