21
Penerima Optik Photodetectors

Photo Detector

Embed Size (px)

DESCRIPTION

optik

Citation preview

Page 1: Photo Detector

Penerima Optik

Photodetectors

Page 2: Photo Detector

2

Receiver Optik - Photo DiodaPIN (p-layer, Instrinsic layer, n-layer)

Highly linear, low dark current

Detektor diikuti dengan penguat transimpedansi

APD (Avalanche Photo Diode)

Gain sampai 100x (thd noise elektrik receiver)

Sangat tergantung dari temperatur

Karakteristik Utama

Efisiensi Kuantum

Dark Current

Responsivitas dan ketergantungan panjang

gelombang

Page 3: Photo Detector

Jenis detektor optik berupa dioda :

1. Dioda PIN (P Intrinsic N)

2. Dioda APD (Avalanche Photo Diode)

Prinsip kerja dioda PIN :

- Mengubah energi optik (photon) yang diterima menjadi arus keluaran berdasarkan photo voltaic effect.

- Memerlukan bias mundur (terbalik).

Karakteristik detektor optik :

1. Responsitivity (R)

2. Efesiensi kuantum ()

3. Kecepatan respon (rise time)

4. Daya optik minimum (MRP: Minimum Required Power)

3

Receiver Optik

Page 4: Photo Detector

1. Responsitivity ( R )

Ip = Arus photo detektor

Po = Daya optik diterima

= Efisiensi kuantum

e = Muatan elektron

h = konstanta plank

f = frekuensi

2. Efisiensi kuantum ( )

R dalam A /W

: panjang gelombang dalam m

4

Parameter Detektor Optik – Dioda PIN

Page 5: Photo Detector

3. Kecepatan respon

Ditentukan oleh rise time dari detektor tersebut (kapasitansi) dan waktu hidup pembawa muatan

4. Minimum Required Power (MRP)

Daya minimum diperlukan pada BER (Bit Error Rate) tertentu.

5

Parameter Detektor Optik – Dioda PIN

Page 6: Photo Detector

Prinsip kerja dioda APD :

• APD bekerja pada reverse bias yang besar

• Pada medan listrik yang tinggi terjadi avalanche effect yang menghasilkan impact ionization berantai dan terjadi multiplikasi avalanche

• Terjadi penguatan atau multiplikasi arus

Karakteristik dioda APD :

Responsitivity = RAPD = RPiN . M

M = Faktor multiplikasi APD.

M berharga antara 10 - 250.

Panjanq qelombang operasi

6

Page 7: Photo Detector

7

Receiver: Sensitivitas dan Bandwidth

ModulasiSensitivitas tinggi memerlukan detektor yang besar/dalam

Mendeteksi tiap foton = meningkatkan efisiensi spektrum

Bandwidth yang lebar memerlukan detektor yang kecil/dangkal

Perlu untuk menditeksi secara cepat untuk mengakomodasi pulsa yang pendek

Semakin besar detektor semakin panjang waktu relaksasi dari proses deteksi

Tradeoff antara sensitivitas dan bandwidth: bandwidth yang lebih lebar, sensitivitas yang

lebih rendah

Page 8: Photo Detector

8

Perbandingan Fotodioda PIN dan APD

Page 9: Photo Detector

pin Photodetector

The high electric field present in the depletion region causes photo-generated carriers to

Separate and be collected across the reverse –biased junction. This give rise to a current

Flow in an external circuit, known as photocurrent.

w

Page 10: Photo Detector

Energy-Band diagram for a pin photodiode

Page 11: Photo Detector

Photocurrent

• Optical power absorbed, in the depletion region can be written in terms

of incident optical power, :

• Absorption coefficient strongly depends on wavelength. The upper

wavelength cutoff for any semiconductor can be determined by its energy

gap as follows:

)1()()(

0

xsePxP

[6-1]

)( s

)(xP

0P

(eV)

24.1)m(

g

cE

[6-2]

Page 12: Photo Detector

Responsivity

• Arus yg mengalir:

• Quantum Efficiency:

• Responsivity:

)1)(1()(

0 f

w

p RePh

qI s

[6-3]

hP

qI P

/

/

photonsincident of #

pairs atedphotogener hole-electron of #

0

[6-4]

[A/W] 0

h

q

P

I P [6-5]

Page 13: Photo Detector

Avalanche Photodiode (APD)

APDs internally multiply the

primary photocurrent before it

enters to following circuitry.

In order to carrier multiplication

take place, the photogenerated

carriers must traverse along a

high field region. In this region,

photogenerated electrons and

holes gain enough energy to

ionize bound electrons in VB

upon colliding with them. This

multiplication is known as

impact ionization. The newly

created carriers in the presence of

high electric field result in more

ionization called avalanche

effect.

Reach-Through APD structure (RAPD)

showing the electric fields in depletion

region and multiplication region.

Optical radiation

Page 14: Photo Detector

Responsivity padaAPD

• Gain arus pada photodiode(M):

• dimana rata2 nilai output arus dan arus utama

• The responsivity pada APD adalah:

p

M

I

IM [6-6]

MI PI

MMh

q0APD

[6-7]

Page 15: Photo Detector

Persamaan sinyal pada photodetektor

• Optical power signal P(t) :

• Where s(t) adalah sinyal informasi and m adalah indek modulasi. Shg arus

yang mengalir adalah (untukpin photodiode M=1):

• RMS arus adalah:

)](1[)( 0 tmsPtP [6-8]

]current AC)[(] valueDC[)(ph tiItMPh

qi pP

[6-9]

signal sinusoidalfor 2

2222

2222

Ppp

sps

Imi

Mii

[6-9]

[6-10]

Page 16: Photo Detector

Noise pada Photodetektor

• The principal noises associated with photodetectors are :

1- Quantum (Shot) noise: arises from statistical nature of the production

and collection of photo-generated electrons upon optical illumination. It has

been shown that the statistics follow a Poisson process.

2- Dark current noise: is the current that continues to flow through the

bias circuit in the absence of the light. This is the combination of bulk

dark current, which is due to thermally generated e and h in the pn

junction, and the surface dark current, due to surface defects, bias voltage

and surface area.

• In order to calculate the total noise presented in photodetector, we should

sum up the root mean square of each noise current by assuming that those

are uncorrelated.

• Total photodetector noise current=quantum noise current +bulk dark

current noise + surface current noise

Page 17: Photo Detector

Photodetector Response Time

• The response time of a photodetector with its output circuit depends mainly

on the following three factors:

1- The transit time of the photocarriers in the depletion region. The transit

time depends on the carrier drift velocity and the depletion layer

width w, and is given by:

2- Diffusion time of photocarriers outside depletion region.

3- RC time constant of the circuit. The circuit after the photodetector acts

like RC low pass filter with a passband given by:

dt dv

d

dv

wt [6-18]

TT CRB

2

1 [6-19]

daTLsT CCCRRR and ||

Page 18: Photo Detector

Respon photodiode thd pulsa optik

Typical response time of the

photodiode that is not fully depleted

Page 19: Photo Detector

Variasi respon optik photodetector:

Trade-off between quantum efficiency & response time

• To achieve a high quantum efficiency, the depletion layer width must be larger than

(the inverse of the absorption coefficient), so that most of the light will be absorbed. At the same time with large width, the capacitance is small and RC time constant getting smaller, leading to faster response, but wide width results in larger transit time in the depletion region. Therefore there is a trade-off between width and QE. It is shown that the best is:

s/1

ss w /2/1

Page 20: Photo Detector

struktur InGaAs pada APD

• Separate-absorption-and multiplication (SAM) APD

• InGaAs APD superlattice structure (The multiplication region is composed

of several layers of InAlGaAs quantum wells separated by InAlAs barrier

layers.

Metal contact

InP multiplication layer

INGaAs Absorption layer

InP buffer layer

InP substrate

light

Page 21: Photo Detector

Perbandingan Photodetector