45
UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 1/?? Photonic-crystal fiber based CARS microspectroscopy UCI 2006 Esben Ravn Andresen, Henrik Nørgaard Paulsen, Victoria Birkedal, Jan Thøgersen, and Søren Rud Keiding Dept. of Physics and Astronomy and Dept. of Chemistry University of Aarhus Femtolab: www.femtolab.au.dk

Photonic-crystal fiber based CARS microspectroscopypotma/UCI2006.pdf · Photonic-crystal fiber based CARS microspectroscopy UCI 2006 Esben Ravn Andresen, Henrik Nørgaard Paulsen,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 1/??

    Photonic-crystal fiber based CARSmicrospectroscopy

    UCI 2006

    Esben Ravn Andresen, Henrik Nørgaard Paulsen, Victoria Birkedal,Jan Thøgersen, and Søren Rud KeidingDept. of Physics and Astronomy and Dept. of Chemistry

    University of Aarhus

    Femtolab: www.femtolab.au.dk

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 2/??

    Introduction

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 3/??

    Motivation

    ■ Coherent anti-Stokes Raman Scattering (CARS)microspectroscopy◆ First realization in 2002 (Muller et al., Cheng et al.)◆ Contrast arises from the Raman spectrum of the sample.◆ Microscopic image with spectral information in every pixel.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 3/??

    Motivation

    ■ Coherent anti-Stokes Raman Scattering (CARS)microspectroscopy◆ First realization in 2002 (Muller et al., Cheng et al.)◆ Contrast arises from the Raman spectrum of the sample.◆ Microscopic image with spectral information in every pixel.

    ■ Can be realized with two inter-locked lasers.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 3/??

    Motivation

    ■ Coherent anti-Stokes Raman Scattering (CARS)microspectroscopy◆ First realization in 2002 (Muller et al., Cheng et al.)◆ Contrast arises from the Raman spectrum of the sample.◆ Microscopic image with spectral information in every pixel.

    ■ Can be realized with two inter-locked lasers.■ Can we realize a simpler implementation?

    ◆ Femtosecond (fs) laser oscillator (Mira).◆ Frequency conversion in photonic-crystal fibres (PCF).

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 4/??

    Multiplex CARS

    ■ Multiplex CARS

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 4/??

    Multiplex CARS

    ■ Multiplex CARS◆ P spectrally narrow

    (spectral resolution); Sspectrally broad (widthof probed spectralregion).

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 4/??

    Multiplex CARS

    ■ Multiplex CARS◆ P spectrally narrow

    (spectral resolution); Sspectrally broad (widthof probed spectralregion).

    ◆ Excitation of 2.-orderpolarization.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 4/??

    Multiplex CARS

    ■ Multiplex CARS◆ P spectrally narrow

    (spectral resolution); Sspectrally broad (widthof probed spectralregion).

    ◆ Excitation of 2.-orderpolarization.

    ◆ Excitation of 3.-orderpolarization.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 4/??

    Multiplex CARS

    ■ Multiplex CARS◆ P spectrally narrow

    (spectral resolution); Sspectrally broad (widthof probed spectralregion).

    ◆ Excitation of 2.-orderpolarization.

    ◆ Excitation of 3.-orderpolarization.

    ◆ The anti-Stokesspectrum.

    Raman (Stokes) CARS (anti−Stokes)Pumpe

    FrekvensIn

    tens

    itet

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 5/??

    The optimal light source for MCARS

    ■ We have◆ Mira fs laser oscillator◆ Pave = 500 mW; Epulse = 5 nJ; ν0 = 12500cm−1;

    ∆ν = 300cm−1; τ0 = 40fs; νrep = 76MHz.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 5/??

    The optimal light source for MCARS

    ■ We have◆ Mira fs laser oscillator◆ Pave = 500 mW; Epulse = 5 nJ; ν0 = 12500cm−1;

    ∆ν = 300cm−1; τ0 = 40fs; νrep = 76MHz.■ We want

    ◆ Pump pulse: ∆ν ≈ 10 cm−1; Pave ≈ 20 mW.◆ Stokes pulse: ∆ν ≈ 300 cm−1; Pave ≈ 20 mW; ν0 must be

    tunable from 12500 cm−1 to 9000 cm−1.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 5/??

    The optimal light source for MCARS

    ■ We have◆ Mira fs laser oscillator◆ Pave = 500 mW; Epulse = 5 nJ; ν0 = 12500cm−1;

    ∆ν = 300cm−1; τ0 = 40fs; νrep = 76MHz.■ We want

    ◆ Pump pulse: ∆ν ≈ 10 cm−1; Pave ≈ 20 mW.◆ Stokes pulse: ∆ν ≈ 300 cm−1; Pave ≈ 20 mW; ν0 must be

    tunable from 12500 cm−1 to 9000 cm−1.■ What dælen do we do?

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 5/??

    The optimal light source for MCARS

    ■ We have◆ Mira fs laser oscillator◆ Pave = 500 mW; Epulse = 5 nJ; ν0 = 12500cm−1;

    ∆ν = 300cm−1; τ0 = 40fs; νrep = 76MHz.■ We want

    ◆ Pump pulse: ∆ν ≈ 10 cm−1; Pave ≈ 20 mW.◆ Stokes pulse: ∆ν ≈ 300 cm−1; Pave ≈ 20 mW; ν0 must be

    tunable from 12500 cm−1 to 9000 cm−1.■ What dælen do we do?

    ◆ Two interlocked lasers? Too expensive.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 5/??

    The optimal light source for MCARS

    ■ We have◆ Mira fs laser oscillator◆ Pave = 500 mW; Epulse = 5 nJ; ν0 = 12500cm−1;

    ∆ν = 300cm−1; τ0 = 40fs; νrep = 76MHz.■ We want

    ◆ Pump pulse: ∆ν ≈ 10 cm−1; Pave ≈ 20 mW.◆ Stokes pulse: ∆ν ≈ 300 cm−1; Pave ≈ 20 mW; ν0 must be

    tunable from 12500 cm−1 to 9000 cm−1.■ What dælen do we do?

    ◆ Two interlocked lasers? Too expensive.◆ Parametric conversion? Not enough laser power.

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 5/??

    The optimal light source for MCARS

    ■ We have◆ Mira fs laser oscillator◆ Pave = 500 mW; Epulse = 5 nJ; ν0 = 12500cm−1;

    ∆ν = 300cm−1; τ0 = 40fs; νrep = 76MHz.■ We want

    ◆ Pump pulse: ∆ν ≈ 10 cm−1; Pave ≈ 20 mW.◆ Stokes pulse: ∆ν ≈ 300 cm−1; Pave ≈ 20 mW; ν0 must be

    tunable from 12500 cm−1 to 9000 cm−1.■ What dælen do we do?

    ◆ Two interlocked lasers? Too expensive.◆ Parametric conversion? Not enough laser power.◆ Photonic-crystal fibers!

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 6/??

    Photonic-crystal fibers

    ■ PCF: microstuctured fiber◆ Very small core (high

    nonlinearity (frequencyconversion))

    ◆ Novel dispersionproperties

    600 800 1000 1200 1400

    −2

    0

    2

    4

    6

    8

    10x 10

    4

    β 2 /

    fs2 /

    m

    λ / nm

    Fiber1

    Fiber2

  • Introduction

    ● Motivation

    ● Multiplex CARS

    ● The optimal light source for

    MCARS● Photonic-crystal fibers

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 6/??

    Photonic-crystal fibers

    ■ PCF: microstuctured fiber◆ Very small core (high

    nonlinearity (frequencyconversion))

    ◆ Novel dispersionproperties

    ◆ New nonlinearphenomena becomepossible at ν0 = 12500cm−1:■ Spectral compression■ Continuum generation

    by four-wave mixing■ Soliton generation and

    soliton self-frequencyshift

    ■ (...and other veryexotic phenomena)

    600 800 1000 1200 1400

    −2

    0

    2

    4

    6

    8

    10x 10

    4

    β 2 /

    fs2 /

    m

    λ / nm

    Fiber1

    Fiber2

  • Introduction

    Spectral Compression

    ● Spectrallyl compressed P

    pulse

    ● Setup

    ● Results

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 7/??

    Spectral Compression

  • Introduction

    Spectral Compression

    ● Spectrallyl compressed P

    pulse

    ● Setup

    ● Results

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 8/??

    Spectrallyl compressed P pulse

    ■ Principle◆ Send negatively chirped

    pulse through a PCF(large nonlinearity, smallβ2 > 0).

    ◆ Self-phase modulation(SPM) compensates thechirp.

    Tid

    Inst

    anta

    n fr

    ekve

    ns d

    φ / d

    t SPM

    Input

    Output

  • Introduction

    Spectral Compression

    ● Spectrallyl compressed P

    pulse

    ● Setup

    ● Results

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 8/??

    Spectrallyl compressed P pulse

    ■ Principle◆ Send negatively chirped

    pulse through a PCF(large nonlinearity, smallβ2 > 0).

    ◆ Self-phase modulation(SPM) compensates thechirp.

    ◆ Redistribution offrequency components.

    Tid

    Inst

    anta

    n fr

    ekve

    ns d

    φ / d

    t SPM

    Input

    Output

    Frekvens

    Nor

    mal

    iser

    et in

    tens

    itet

    Input

    Output

  • Introduction

    Spectral Compression

    ● Spectrallyl compressed P

    pulse

    ● Setup

    ● Results

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 8/??

    Spectrallyl compressed P pulse

    ■ Principle◆ Send negatively chirped

    pulse through a PCF(large nonlinearity, smallβ2 > 0).

    ◆ Self-phase modulation(SPM) compensates thechirp.

    ◆ Redistribution offrequency components.

    ■ By virtue of the chosenPCF, dispersion can beneglected.

    Tid

    Inst

    anta

    n fr

    ekve

    ns d

    φ / d

    t SPM

    Input

    Output

    Frekvens

    Nor

    mal

    iser

    et in

    tens

    itet

    Input

    Output

  • Introduction

    Spectral Compression

    ● Spectrallyl compressed P

    pulse

    ● Setup

    ● Results

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 9/??

    Setup

    ■ Fiber parametersβ2(800nm) = 3400 fs2 / m(v. small); γ = 0.09W−1m−1 (v. large); L = 60cm.

    ■ Laser parametersνrep = 76 MHz, ∆ν = 300cm−1, τ0 = 50 fs, Epulse ≈ 5nJ.

    600 700 800 900 1000 1100 1200 1300−1

    0

    1

    2

    3

    4

    5

    6

    7x 10

    4

    β 2 /

    fs2 /

    m

    λ / nm

  • Introduction

    Spectral Compression

    ● Spectrallyl compressed P

    pulse

    ● Setup

    ● Results

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 10/??

    Results

    ■ Best results◆ ∆ν = 14 cm−1.◆ Compression factor =

    21.◆ Brightness increase

    factor = 5.

    0 2000 4000 6000 80000

    10

    20

    30

    40

    50

    60

    Længde af chirpet puls (FWHM) / fs

    Min

    . spe

    ktra

    l bre

    dde

    (FW

    HM

    ) / c

    m−

    1 BeregningMåling

  • Introduction

    Spectral Compression

    ● Spectrallyl compressed P

    pulse

    ● Setup

    ● Results

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 10/??

    Results

    ■ Best results◆ ∆ν = 14 cm−1.◆ Compression factor =

    21.◆ Brightness increase

    factor = 5.■ Dependency of input pulse

    energy (calculated) 0 2000 4000 6000 8000010

    20

    30

    40

    50

    60

    Længde af chirpet puls (FWHM) / fs

    Min

    . spe

    ktra

    l bre

    dde

    (FW

    HM

    ) / c

    m−

    1 BeregningMåling

    01020304050600

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    Min. spektral bredde (FWHM) / cm−1

    Pul

    sene

    rgi /

    nJ

  • Introduction

    Spectral Compression

    Continuum generation

    ● S pulse: Continuum

    generation 1

    ● S pulse: Continuum

    generation 2

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 11/??

    Continuum generation

  • Introduction

    Spectral Compression

    Continuum generation

    ● S pulse: Continuum

    generation 1

    ● S pulse: Continuum

    generation 2

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 12/??

    S pulse: Continuum generation 1

    ■ Brute force approach.Send high-power (nJ) fspulse through PCF.

    800 900 1000 11000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.

    0 1000 2000 3000 4000

    ∆E / cm−1

  • Introduction

    Spectral Compression

    Continuum generation

    ● S pulse: Continuum

    generation 1

    ● S pulse: Continuum

    generation 2

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 12/??

    S pulse: Continuum generation 1

    ■ Brute force approach.Send high-power (nJ) fspulse through PCF.

    ■ Produces very widespectra, output pulse is stilla fs pulse. 800 900 1000 1100

    0

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.

    0 1000 2000 3000 4000

    ∆E / cm−1

    600 700 800 900 10000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.600 700 800 900 1000 1100 1200 13000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.

  • Introduction

    Spectral Compression

    Continuum generation

    ● S pulse: Continuum

    generation 1

    ● S pulse: Continuum

    generation 2

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 12/??

    S pulse: Continuum generation 1

    ■ Brute force approach.Send high-power (nJ) fspulse through PCF.

    ■ Produces very widespectra, output pulse is stilla fs pulse.

    ■ Can probe wide region ofthe Raman spectrum at thesame time.

    800 900 1000 11000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.

    0 1000 2000 3000 4000

    ∆E / cm−1

    600 700 800 900 10000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.600 700 800 900 1000 1100 1200 13000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.

  • Introduction

    Spectral Compression

    Continuum generation

    ● S pulse: Continuum

    generation 1

    ● S pulse: Continuum

    generation 2

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 12/??

    S pulse: Continuum generation 1

    ■ Brute force approach.Send high-power (nJ) fspulse through PCF.

    ■ Produces very widespectra, output pulse is stilla fs pulse.

    ■ Can probe wide region ofthe Raman spectrum at thesame time.

    ■ Fiber parameters:◆ Middle: γ = 0.04

    (Wm)−1; L ≈ 5 cm;◆ Bottom: γ = 0.09

    (Wm)−1; L ≈ 5 cm;

    800 900 1000 11000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.

    0 1000 2000 3000 4000

    ∆E / cm−1

    600 700 800 900 10000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.600 700 800 900 1000 1100 1200 13000

    0.2

    0.4

    0.6

    0.8

    1

    λ / nm

    Inte

    nsity

    / a.

    u.

  • Introduction

    Spectral Compression

    Continuum generation

    ● S pulse: Continuum

    generation 1

    ● S pulse: Continuum

    generation 2

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 13/??

    S pulse: Continuum generation 2

    ■ Advantages:◆ Very simple and compact light source◆ Very wide spectra◆ Generation of hard-to-generate colours◆ Fiber nonlinearity so high that dispersion can almost be

    neglected■ Disadvantages:

    ◆ Low spectral density (wide spectra...)◆ Output spectra are hard to control

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    ● S pulse: Soliton generation 1

    ● S pulse: Soliton generation 2

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 14/??

    Soliton generation

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    ● S pulse: Soliton generation 1

    ● S pulse: Soliton generation 2

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 15/??

    S pulse: Soliton generation 1

    ■ Soliton◆ A pulse that is unaltered

    upon propagation in thefiber.

    ◆ Input pulse converges toa soliton in certainPCFs.

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    ● S pulse: Soliton generation 1

    ● S pulse: Soliton generation 2

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 15/??

    S pulse: Soliton generation 1

    ■ Soliton◆ A pulse that is unaltered

    upon propagation in thefiber.

    ◆ Input pulse converges toa soliton in certainPCFs.

    ■ Soliton self-frequency shift:◆ Intrapulse stimulated

    Raman scattering =>.◆ Adiabatic frequency shift

    of the soliton.

    0 2000 40000

    50

    100

    Con

    v. /

    %

    ∆ν / cm−1

    010002000300040005000

    Frequency shift / cm−1

    Inte

    nsity

    / a.

    u.

    8009001000110012001300

    λ / nm

    0 2000 40000

    5

    10

    Pou

    t / m

    W

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    ● S pulse: Soliton generation 1

    ● S pulse: Soliton generation 2

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 15/??

    S pulse: Soliton generation 1

    ■ Soliton◆ A pulse that is unaltered

    upon propagation in thefiber.

    ◆ Input pulse converges toa soliton in certainPCFs.

    ■ Soliton self-frequency shift:◆ Intrapulse stimulated

    Raman scattering =>.◆ Adiabatic frequency shift

    of the soliton.■ Fiber parameters:

    ◆ γ = 0.09 (Wm)−1; L = 2m

    0 2000 40000

    50

    100

    Con

    v. /

    %

    ∆ν / cm−1

    010002000300040005000

    Frequency shift / cm−1

    Inte

    nsity

    / a.

    u.

    8009001000110012001300

    λ / nm

    0 2000 40000

    5

    10

    Pou

    t / m

    W

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    ● S pulse: Soliton generation 1

    ● S pulse: Soliton generation 2

    CARS microspectroscopy

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 16/??

    S pulse: Soliton generation 2

    ■ Advantages◆ Excellent conversion efficiency◆ Frequency shift easily tunable 0-4000 cm−1.◆ Spectral density similar to that obtained by continuum

    generation◆ Stokes pulse is transform-limited because of its solitonic

    nature■ Downsides

    ◆ Shift is coupled to input power◆ Soliton energy is intrinsically limited to ≈ 10 pJ.

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    ● Setup

    ● Results 1

    ● Results 2

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 17/??

    CARS microspectroscopy

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    ● Setup

    ● Results 1

    ● Results 2

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 18/??

    Setup

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    ● Setup

    ● Results 1

    ● Results 2

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 19/??

    Results 1

    10 20 30 40

    5

    10

    15

    20

    25

    30

    35

    40

    pixels

    pixe

    ls

    Polystyren5um_3000cm_2

    2000 2500 3000 35000

    500

    1000

    1500Active...

    νP − ν

    S / cm−1

    10 20 30 40

    5

    10

    15

    20

    25

    30

    35

    40

    pixels

    pixe

    ls

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    ● Setup

    ● Results 1

    ● Results 2

    Conclusion and Outlook

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 20/??

    Results 2

    10 20 30 40

    5

    10

    15

    20

    25

    30

    35

    40

    pixels

    pixe

    ls

    polystyren5um_1600cm_2

    800 1000 1200 1400 1600 1800 2000 2200165

    170

    175

    180

    185

    190

    195

    Active...

    νP − ν

    S / cm−1

    10 20 30 40

    5

    10

    15

    20

    25

    30

    35

    40

    pixels

    pixe

    ls

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    ● Conclusion

    ● Outlook

    ● Publications

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 21/??

    Conclusion and Outlook

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    ● Conclusion

    ● Outlook

    ● Publications

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 22/??

    Conclusion

    ■ Presented low-budget, alternative implementations of CARSmicrospectroscopy◆ Spectral compression (pump)◆ Continuum generation (Stokes)◆ Soliton self-frequency shift (Stokes)

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    ● Conclusion

    ● Outlook

    ● Publications

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 22/??

    Conclusion

    ■ Presented low-budget, alternative implementations of CARSmicrospectroscopy◆ Spectral compression (pump)◆ Continuum generation (Stokes)◆ Soliton self-frequency shift (Stokes)

    ■ Discussion◆ Pump pulse is ok - fs pulse -> near-TFL ps pulse (spectral

    density ≈ 5 · 10−11 J/cm−1.◆ Difficult to reach high spectral density in Stokes pulse

    (≈ 5 · 10−14 J/cm−1).

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    ● Conclusion

    ● Outlook

    ● Publications

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 23/??

    Outlook

    ■ Remedy low Stokes spectral density with a fiber amplifier.■ CARS microscopy with chirped pump and chirped Stokes

    pulse.■ Replace Mira with (cheap) fiber laser, and entire light source

    fits in a shoe box.■ Heterodyne detection with PCF-generated local oscillator.

  • Introduction

    Spectral Compression

    Continuum generation

    Soliton generation

    CARS microspectroscopy

    Conclusion and Outlook

    ● Conclusion

    ● Outlook

    ● Publications

    UCI 3 March 2006 PCF-based CARS microspectroscopy - p. 24/??

    Publications