13
Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 17-Jan-2018

PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

  • Upload
    others

  • View
    15

  • Download
    1

Embed Size (px)

Citation preview

Page 1: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Semester II, 2017-18 Department of Physics, IIT Kanpur

PHY103A: Lecture # 7

(Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)

Anand Kumar Jha 17-Jan-2018

Page 2: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Notes β€’ HW # 3 is uploaded on the course webpage. β€’ Solutions to HW#2 have also been uploaded.

β€’ Class this Saturday (Jan 20th).

β€’ Are lecture notes sufficient for exams? β€’ Office Hours??

2

Page 3: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Summary of Lecture # 6: β€’ Poisson’s Equation: 𝛁𝛁2V = βˆ’ 𝜌𝜌

πœ–πœ–0

β€’ The work required to construct a system of one point charge 𝑄𝑄:

π‘Šπ‘Š = QV 𝐫𝐫

π‘Šπ‘Š =12οΏ½π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

𝑉𝑉(𝐫𝐫𝐒𝐒)

β€’ Total work required to put together 𝑛𝑛 point charges:

β€’ Energy of a continuous charge distribution: W =

12οΏ½ 𝜌𝜌 𝑉𝑉𝑉𝑉𝑉𝑉

π‘£π‘£π‘œπ‘œπ‘œπ‘œ=πœ–πœ–02οΏ½ 𝐸𝐸2𝑉𝑉𝑉𝑉

π‘Žπ‘Žπ‘œπ‘œπ‘œπ‘œ π‘ π‘ π‘ π‘ π‘Žπ‘Žπ‘ π‘ π‘ π‘ 

𝜌𝜌

V 𝐄𝐄 𝐄𝐄 = βˆ’π›π›V

V 𝐫𝐫 = βˆ’ �𝐄𝐄 β‹… 𝑉𝑉π₯π₯𝐫𝐫

∞

3

Page 4: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Where is the electrostatic energy stored ?

W =12οΏ½ 𝜌𝜌 𝑉𝑉𝑉𝑉𝑉𝑉

π‘£π‘£π‘œπ‘œπ‘œπ‘œ

The Energy of a Continuous Charge Distribution:

β€’ The first expression has a volume integral of 𝜌𝜌 𝑉𝑉 over the localized space whereas the second one has the volume integral of 𝐸𝐸2over all space.

β€’ Just as both the integrals are mathematically correct, both the interpretations are also correct. The electrostatic energy can be interpreted as stored locally within the charge distribution or globally over all space.

β€’ Again, at this point, as regarding fields, we know how to calculate different physical quantities but we don’t really know what exactly the field is. 4

So, where is the electrostatic energy stored? Within the localized charge distribution or over all space?

=πœ–πœ–02οΏ½ 𝐸𝐸2𝑉𝑉𝑉𝑉

π‘Žπ‘Žπ‘œπ‘œπ‘œπ‘œ π‘ π‘ π‘ π‘ π‘Žπ‘Žπ‘ π‘ π‘ π‘ 

Page 5: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Where is the electrostatic energy stored ?

Ex. 2.8 (Griffiths, 3rd Ed. ): Find the energy of a uniformly charged spherical shell of total charge π‘žπ‘ž and radius 𝑅𝑅.

π‘Šπ‘Šshell =12οΏ½ 𝜌𝜌 𝑉𝑉𝑉𝑉𝑉𝑉

π‘£π‘£π‘œπ‘œπ‘œπ‘œ

π‘Šπ‘Šshell =πœ–πœ–02οΏ½ 𝐸𝐸2𝑉𝑉𝑉𝑉

π‘Žπ‘Žπ‘œπ‘œπ‘œπ‘œ π‘ π‘ π‘ π‘ π‘Žπ‘Žπ‘ π‘ π‘ π‘ 

=12οΏ½

π‘žπ‘ž4πœ‹πœ‹ 𝑅𝑅2

Γ—π‘žπ‘ž

4πœ‹πœ‹πœ–πœ–0𝑅𝑅 𝑅𝑅2sinΞΈ 𝑉𝑉𝑑𝑑 𝑉𝑉𝑑𝑑

=12

π‘žπ‘ž4πœ‹πœ‹ 𝑅𝑅2

Γ—π‘žπ‘ž

4πœ‹πœ‹πœ–πœ–0𝑅𝑅 𝑅𝑅2 4πœ‹πœ‹ =

π‘žπ‘ž2

8πœ‹πœ‹πœ–πœ–0𝑅𝑅

=12�𝜎𝜎 𝑉𝑉𝑉𝑉𝑉𝑉

Alternatively:

What is 𝐸𝐸? 𝐄𝐄 = 0 inside and 𝐄𝐄 = π‘žπ‘ž4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ2

𝒓𝒓� outside

π‘Šπ‘Šshell =πœ–πœ–02οΏ½

π‘žπ‘ž4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ2

2

π‘Ÿπ‘Ÿ2sinΞΈ π‘‰π‘‰π‘Ÿπ‘Ÿπ‘‰π‘‰π‘‘π‘‘ 𝑉𝑉𝑑𝑑

π‘Žπ‘Žπ‘œπ‘œπ‘œπ‘œ π‘ π‘ π‘ π‘ π‘Žπ‘Žπ‘ π‘ π‘ π‘  =

πœ–πœ–02

π‘žπ‘ž4πœ‹πœ‹πœ–πœ–0

2

4πœ‹πœ‹οΏ½1π‘Ÿπ‘Ÿ2π‘‰π‘‰π‘Ÿπ‘Ÿ

∞

π‘Ÿπ‘Ÿ=𝑅𝑅

=π‘žπ‘ž2 8πœ‹πœ‹πœ–πœ–0

1𝑅𝑅

The two expressions for energy indeed give us the same information

Page 6: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Where is the electrostatic energy stored ?

Ex. 2.8 (Griffiths, 3rd Ed. ): Find the energy of a uniformly charged solid sphere of total charge π‘žπ‘ž and radius 𝑅𝑅.

Wsphere =πœ–πœ–02οΏ½ 𝐸𝐸2𝑉𝑉𝑉𝑉

π‘Žπ‘Žπ‘œπ‘œπ‘œπ‘œ π‘ π‘ π‘ π‘ π‘Žπ‘Žπ‘ π‘ π‘ π‘ 

HW Prob 2.5(a): 𝐄𝐄 = πœŒπœŒπ‘Ÿπ‘Ÿ3πœ–πœ–0

𝒓𝒓�

Wsphere

𝐄𝐄 = π‘žπ‘ž4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ2

𝒓𝒓�, outside

For the same charge and radius, a solid sphere has more total energy than a spherical shell.

π‘Šπ‘Šshell =π‘žπ‘ž2 8πœ‹πœ‹πœ–πœ–0

1𝑅𝑅

=π‘žπ‘ž2

4πœ‹πœ‹πœ–πœ–012𝑅𝑅

Recall:

=π‘žπ‘ž

4πœ‹πœ‹π‘…π‘…3/3π‘Ÿπ‘Ÿ

3πœ–πœ–0 𝒓𝒓� =

π‘žπ‘žπ‘Ÿπ‘Ÿ 4πœ‹πœ‹πœ–πœ–0𝑅𝑅3

𝒓𝒓� , inside

=πœ–πœ–02

14πœ‹πœ‹πœ–πœ–0 2 π‘žπ‘ž

2 οΏ½1π‘Ÿπ‘Ÿ44πœ‹πœ‹π‘Ÿπ‘Ÿ2π‘‰π‘‰π‘Ÿπ‘Ÿ

𝑅𝑅

0+ οΏ½

π‘Ÿπ‘Ÿ2

𝑅𝑅64πœ‹πœ‹π‘Ÿπ‘Ÿ2π‘‰π‘‰π‘Ÿπ‘Ÿ

∞

𝑅𝑅 =

π‘žπ‘ž2

4πœ‹πœ‹πœ–πœ–035𝑅𝑅

Page 7: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Electrostatic Boundary Conditions (Consequences of the fundamental laws):

1. Normal component of E is Discontinuous

𝛁𝛁 β‹… 𝐄𝐄 =𝜌𝜌 πœ–πœ–0

οΏ½ 𝐄𝐄 β‹… π‘‰π‘‰πšπš

π‘ π‘ π‘’π‘’π‘Ÿπ‘Ÿπ‘’π‘’=𝑄𝑄encπœ–πœ–0

𝐄𝐄above𝐴𝐴 βˆ’ 𝐄𝐄below𝐴𝐴 + 0 + 0 + 0 + 0 =𝜎𝜎 π΄π΄πœ–πœ–0

Eaboveβˆ’Ebelow =𝜎𝜎 πœ–πœ–0

2. Parallel component of E is Continuous 𝛁𝛁 Γ— 𝐄𝐄 = 0 οΏ½ 𝐄𝐄 β‹… 𝑉𝑉π₯π₯

π‘ π‘ π‘Žπ‘Žπ‘Žπ‘Žπ‘Ž= 𝟎𝟎

𝐄𝐄above 𝑙𝑙 βˆ’ 𝐄𝐄below𝑙𝑙 + 0 + 0 = 0

Eabove βˆ’ Ebelow = 0

𝐄𝐄aboveβˆ’ 𝐄𝐄below=𝜎𝜎 πœ–πœ–0𝐧𝐧�

7

How does electric field (𝐄𝐄) change across a boundary containing surface charge 𝜎𝜎?

The electrostatic boundary condition

Page 8: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

How does electric potential (V) change across a boundary containing surface charge 𝜎𝜎?

V 𝐛𝐛 βˆ’ V(𝐚𝐚) = βˆ’οΏ½π„π„ β‹… 𝑉𝑉π₯π₯𝒃𝒃

𝒂𝒂

Vabove βˆ’ Vbelow = βˆ’οΏ½π„π„ β‹… 𝑉𝑉π₯π₯𝒃𝒃

𝒂𝒂

For πœ–πœ– β†’ 0,

Vabove βˆ’ Vbelow = 0

3. Potential 𝑉𝑉 is continuous across a boundary

βˆ’οΏ½π„π„ β‹… 𝑉𝑉π₯π₯𝒃𝒃

𝒂𝒂

= 0

8

Electrostatic Boundary Conditions (Consequences of the fundamental laws):

Page 9: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Uniformly charged spherical shell

9

Ex. 2.6 (Griffiths, 3rd Ed. ): Find the electric field and electric potential inside and outside a uniformly charged sphere of radius 𝑅𝑅 and total charge π‘žπ‘ž.

The electric field outside the shell: 𝐄𝐄(𝐫𝐫) =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žr2

rΜ‚

The electric field inside the shell: The electric potential at a point outside the shell (r > 𝑅𝑅):

V 𝐫𝐫 = βˆ’ �𝐄𝐄 β‹… 𝑉𝑉π₯π₯π‘Ÿπ‘Ÿ

∞

The electric potential for a point inside the shell (r < 𝑅𝑅):

V 𝐫𝐫 = βˆ’ �𝐄𝐄 β‹… 𝑉𝑉π₯π₯𝑅𝑅

∞

βˆ’ �𝐄𝐄 β‹… 𝑉𝑉π₯π₯π‘Ÿπ‘Ÿ

𝑅𝑅

Check the boundary condition on Electric field at r = 𝑅𝑅

Eaboveβˆ’Ebelow =𝜎𝜎 πœ–πœ–0

Check the boundary condition on Electric potential

Vabove βˆ’ Vbelow = 0

OK Βͺ

OK Βͺ

Eabove βˆ’ 0 =π‘žπ‘ž

πœ–πœ–0 4πœ‹πœ‹π‘…π‘…2 Eabove =

1 4πœ‹πœ‹πœ–πœ–0

π‘žπ‘ž 𝑅𝑅2

1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žR βˆ’

14πœ‹πœ‹πœ–πœ–0

π‘žπ‘žR = 0

𝐄𝐄 𝐫𝐫 = 0

=1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žr = βˆ’ οΏ½

14πœ‹πœ‹πœ–πœ–0

π‘žπ‘žrβ€²2π‘‰π‘‰π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ

∞

=1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žR = βˆ’ οΏ½

14πœ‹πœ‹πœ–πœ–0

π‘žπ‘žrβ€²2π‘‰π‘‰π‘Ÿπ‘Ÿβ€² βˆ’ 0

𝑅𝑅

∞

Page 10: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Conductors (Materials containing unlimited supply of electrons)

10

This is true even when the conductor is placed in an external electric field π„π„πžπžπžπžπžπž.

(2) The charge density 𝜌𝜌 = 0 inside a conductor.

(3) Any net charge resides on the surface.

This is because 𝐄𝐄 = 0.

(5) 𝐄𝐄 is perpendicular to the surface, just outside the conductor.

> Wsphere =π‘žπ‘ž2

4πœ‹πœ‹πœ–πœ–035𝑅𝑅

π‘Šπ‘Šshell =π‘žπ‘ž2

4πœ‹πœ‹πœ–πœ–012𝑅𝑅

To minimize the energy Why?

This is because 𝐄𝐄 = 0 inside a conductor

(1) The electric field 𝐄𝐄 = 0 inside a conductor

(4) A conductor is an equipotential.

and therefore 𝜌𝜌 = πœ–πœ–0𝛁𝛁 β‹… 𝐄𝐄 = 0.

V 𝐛𝐛 βˆ’ V 𝐚𝐚

So, for any two points 𝐚𝐚 and 𝐛𝐛,

This means V 𝐛𝐛 = V 𝐚𝐚 . = 0. = βˆ’οΏ½ 𝐄𝐄 β‹… 𝑉𝑉π₯π₯𝒃𝒃

𝒂𝒂

Page 11: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Induced Charges

11

Charge inside the cavity

No charge inside the cavity

No charge inside the cavity, Conductor in an external field

Page 12: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Induced Charges

12

Prob. 2.36 (Griffiths, 3rd Ed. ):

- Surface charge πœŽπœŽπ‘Žπ‘Ž? πœŽπœŽπ‘Žπ‘Ž = βˆ’π‘žπ‘žπ‘Žπ‘Ž4πœ‹πœ‹π‘‰π‘‰2

- Surface charge πœŽπœŽπ‘π‘? πœŽπœŽπ‘π‘ = βˆ’π‘žπ‘žπ‘π‘4πœ‹πœ‹π‘π‘2

- Surface charge πœŽπœŽπ‘…π‘…? πœŽπœŽπ‘…π‘… =π‘žπ‘žπ‘Žπ‘Ž + π‘žπ‘žπ‘π‘4πœ‹πœ‹π‘…π‘…2

- Force on π‘žπ‘žπ‘Žπ‘Ž ? 0

- Force on π‘žπ‘žπ‘π‘ ? 0

- 𝐄𝐄out(𝐫𝐫) ? 𝐄𝐄out =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘Žπ‘Ž + π‘žπ‘žπ‘π‘π‘Ÿπ‘Ÿ2

𝐫𝐫�

- 𝐄𝐄(𝐫𝐫𝒂𝒂) ? 𝐄𝐄out =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘Žπ‘Žπ‘Ÿπ‘Ÿπ‘Žπ‘Ž2

𝐫𝐫𝒂𝒂�

- 𝐄𝐄(𝐫𝐫𝒃𝒃) ? 𝐄𝐄out =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘π‘π‘Ÿπ‘Ÿπ‘π‘2

𝐫𝐫𝒃𝒃�

Page 13: PHY103A: Lecture # 7home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 7 (Text Book: Intro to Electrodynamics

Induced Charges

13

Prob. 2.36 (Griffiths, 3rd Ed. ):

- Surface charge πœŽπœŽπ‘Žπ‘Ž? πœŽπœŽπ‘Žπ‘Ž = βˆ’π‘žπ‘žπ‘Žπ‘Ž4πœ‹πœ‹π‘‰π‘‰2

- Surface charge πœŽπœŽπ‘π‘? πœŽπœŽπ‘π‘ = βˆ’π‘žπ‘žπ‘π‘4πœ‹πœ‹π‘π‘2

- Surface charge πœŽπœŽπ‘…π‘…? πœŽπœŽπ‘…π‘… =π‘žπ‘žπ‘Žπ‘Ž + π‘žπ‘žπ‘π‘4πœ‹πœ‹π‘…π‘…2

- Force on π‘žπ‘žπ‘Žπ‘Ž ? 0

- Force on π‘žπ‘žπ‘π‘ ? 0

Same Βͺ

Same Βͺ

Changes οΏ½

Same Βͺ

Same Βͺ

Same Βͺ

Same Βͺ

Changes οΏ½ - 𝐄𝐄out(𝐫𝐫) ? 𝐄𝐄out =

14πœ‹πœ‹πœ–πœ–0

π‘žπ‘žπ‘Žπ‘Ž + π‘žπ‘žπ‘π‘π‘Ÿπ‘Ÿ2

𝐫𝐫�

- 𝐄𝐄(𝐫𝐫𝒂𝒂) ? 𝐄𝐄out =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘Žπ‘Žπ‘Ÿπ‘Ÿπ‘Žπ‘Ž2

𝐫𝐫𝒂𝒂�

- 𝐄𝐄(𝐫𝐫𝒃𝒃) ? 𝐄𝐄out =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘π‘π‘Ÿπ‘Ÿπ‘π‘2

𝐫𝐫𝒃𝒃�

Bring in a third charge π‘žπ‘žπ‘ π‘