30
Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State Physics and the Nanometer Structure Consortium, Lund University, Sweden [email protected]

Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Physical, Chemical, and Electronic Properties of Nanostructured 

Photocathodes: III–V nanowires

Jonas Johansson

Solid State Physics and the Nanometer Structure Consortium, Lund University, Sweden

[email protected]

Page 2: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Outline

• Introduction to nanowires and their formation• Morphology and crystal structure• Heterostructures

– Axial– Radial (core/shell)

• Doping and pn­junctions• Patterned growth• Processing (including applications)

Page 3: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

1–10 μm

10–100 nm 

Au

Semiconductormaterial

Introduction to nanowires• Nanowires in most III–V combinations

• Gold particle seeded growth (and gold–free growth)

– Aerosol particles– Lithography, evaporation, and lift–off 

• Growth by– Metal Organic Vapor Phase Epitaxy– Chemical Beam Epitaxy

1 µm

InSbP. Caroff, ICMOVPE­XIV,France, 2008 GaP

Page 4: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

How nanowires grow1. Deposit size­selected Au nanoparticle

2. Supply precursors of the relevant materials

3. The nanowire grows under the Au particle

Electron microscopeimage of GaAs nanowires

Page 5: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

What is so special with nanowires?1. Perfect crystal

structures

Potential for many applications, including high­efficiency and low­cost solar­cells,light­emitting structures, 1D electronic devices, as well as photocathode structures…

4. On low­costsilicon

3. Atomicallysharp interfaces

2. Mismatched materialcombinations

GaS

bG

aAs

Page 6: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

19.5°

• The same angle as for regular octahedra

• Straight when rotated 30°

• The wire is built of ”octahedron slices” and is consequently limited by {111} side facets

Page 7: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Geometric model

• Models built with ATOMS<­110> <11­2> 3D perspective view

Page 8: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

In nature

compare

Johansson et al, Nat Mater, 5 (2006) 574

Page 9: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Our special case: twin plane superlattices (TPS) in InAs

40 6 0 80 10 0 120 1 40 160

0

1 0

2 0

3 0

4 0

5 0

6 0  E xp er im e n ta l  d a ta M o d e l

 

 

Sin

gle

 seg

men

t len

gth

 (nm

)

N an o w ire D iam eter  (n m )

b c

d

100 nm

a

<111>B

100 nm

D= 115 nmD= 105 nm D= 140 nm

 A  B

z= Dσ / 4γ− DΔμ

Page 10: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Extreme case:• Wurtzite structure formation in nanowires with zinc blende as bulk 

crystal structure.

• Wurtzite can be described as an uninterrupted sequence of faulty stacked layers (twin planes)

• Can this behaviour be controlled?• Yes, to some extent…

Page 11: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

GaP NW growth at different conditionsPulsed growthIn background

Continuous growthIn background

Continuous growthIn free background

Extended zinc blende (ZB) segments

Short ZB segments (lamellar twinning)

Extended wurtzite (WZ) segments

low Supersaturation (∆µ, C/Ceq) highJ Johansson et al., Crystal Growth & Des. 9 (2009) 766 

Page 12: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Fraction of wurtzite in InAs NWs 

T = 420°C

• Thin wires WZ, thick wires ZB• Cross­over diameter for the WZ to ZB transition

Page 13: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Nanowires – heterostructures unlimited?

Substrate–wire

(III–V on Si) 

Axial

(QD, barriers)

Radial

(QW, passivation)

Page 14: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Atomically flat interfaces• Example of axial heterostructure: High­angle annular dark field TEM 

of Double Barrier Resonant Tunneling Diode

Page 15: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Combinations

K.A. Dick et al., Nano Lett. 7 (2007) 1817

Page 16: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Core/shell wires• Example of radial heterostructure: characterization of AlInP shells 

on GaAs nanowires 

Scale bar = 100 nm  N. Sköld et al., Nano Lett. 6 (2006) 2743

Page 17: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Band structure calculations 

Phys Rev B accepted

Page 18: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Band structure calculations 

For more information, visit: http://semiconductor.physics.uiowa.edu/

Page 19: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Nanowire doping• n+p junctions in InP nanowires

n­ InP (111)B

n­InPp­InP

• XTESn=1E­5, XDMZn=5.5 E­5• ND=6E18 cm­3, NA= xE17• 80 nm Au catalyst

order is important

Page 20: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

­3­2­10120

5

10

15

20

25

30

 

 

I (nA)

U (V)

 Gate ­10V Gate 0 Gate +10 V

0 1 2

1

1 0

1 0 0

1 0 0 0

 

 

I (n

A)

U  ( V )

 G ate  ­ 10V G ate  0 G ate  + 10 V

n = 2 .9 7

n = 1 0 .1

n = 1 5 ,6

n+p junction I­V characteristics

• pn junction behaviour• Reverse breakdown voltage about 20V• Ideality factor around 3

Page 21: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Optical activity

• Light emitting diode• Quantum efficiency ~10­5 at 300K

Electroluminescence  Photo current 

Page 22: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Patterned growth• Instead of randomly deposited aerosol deposition – use e­beam 

lithography (ebl) + lift–off to define the gold particles  • Nanowires in any 2D pattern

• Potential for upscaling: use nanoimprint lithography (NIL) instead of eblInP nanowires on InP(111)B

T. Mårtensson, PhD thesisT. Mårtensson et al, Nanotechnology 14 (2003) 1255; Nano Letters 4 (2004) 699

Page 23: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Patterned growth, core/shell, doping

C. P. T Svensson et al, Nanotechnology 19 (2008) 305201

Schematics ofthe device

SEM image CCD imageshowing EL

Page 24: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Nanowire field effect transistor • Process technology for 

InAs nanowire wrap­gate FETs:– HfO2 by ALD– SiOx by evaporation– HfO2 by ALD– Cr by evaporation– Photoresist as insulator– Ti/Au drain contact 

evaporation

C Thelander et al, IEEE Electron Device Lett., 29 (2008) 206 

Page 25: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Electrical characteristics• High scalability

– High­k dielectric (HfO2)– Wrap gate architecture

• Promising material for integration– InAs nanowires can be grown 

directly on Si (also without gold)*

C Thelander et al, IEEE Electron Device Lett., 29 (2008) 206*T Mårtensson et al, Adv Mat, 19 (2007) 1801 and B Mandl, unpublished

Si

Page 26: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Summary 

• Good understanding of nanowire growth

• Many possibilities for heterostructures

• Demonstration of pn­junctions in nanowires

• Process technology for nanowire devices

Page 27: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Acknowledgements • Nanowire growth:

– Kimberly Dick– Brent Wacaser– Jessica Bolinsson– Thomas Mårtensson– Werner Seifert– Magnus Borgström

• TEM characterization:– Reine Wallenberg – Lisa Karlsson

• Aerosol fabrication:– Knut Deppert– Kimberly Dick– Maria Messing

• Optical characterization– Niklas Sköld– Johanna Trägårdh– Dan Hessman– Mats­Erik Pistol

• Electronics applications– Claes Thelander– Linus Fröberg– Carl Rehnstedt– Lars­Erik Wernersson

• Scientific leadership– Lars Samuelson

Page 28: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Lund

Page 29: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

New EU­STREP: AMON­RA

• Architectures, Materials and One­dimensional Nanowires for Photovoltaics ­ Research and Applications

• Partners:– ULUND: Development of NW materials, NWPV physics, project 

coordination– ISE: Design of PV architecture, verification, system design– ETH: Modeling of NWPV structure– QuNano: Development of processing– JKU: X­ray and PL characterization of materials– DTU: TEM characterization of materials

Page 30: Physical, Chemical, and Electronic Properties of ......Physical, Chemical, and Electronic Properties of Nanostructured Photocathodes: III–V nanowires Jonas Johansson Solid State

Schematic of tandem PV cell with embedded Esakitunneling diode and surrounding light guide

Silicon substrate

Front contacting gridConductive

layer

Back contact

n

p

n

n+

p

n

p

n

n+

p

n

p

n

n+

p

n

p

n

n+

p

Pass

ivatin

g sh

ell

> λ/n  or< λ/neff

Embe

ddin

g(m

echa

nica

l/ele

ctric

al/o

ptica

l)

Low­bandgapsegment

Esaki diode

High­bandgapsegment