19
Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors 1. Introduction 2. The Ballistic MOSFET 3. Scattering Theory of the MOSFET 4. Beyond the Si MOSFET 5. Summary additional information at: www.ece.purdue.edu/celab Lundstrom Purdue Acknowledgements collaborators: Professor Supriyo Datta, Jing Guo, Sayed Hasan, Zhibin Ren, Jung-Hoon Rhew, Anisur Rahman, Ramesh Venugopal, Jing Wang sponsors: NSF, SRC MARCO Focus Center on Materials, Devices Structures ARO DURINT Indiana 21st Century Research and Technology Fund

Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

Mark LundstromElectrical and Computer Engineering

Purdue University, West Lafayette, IN

Physics of Nanoscale

Transistors

1. Introduction2. The Ballistic MOSFET3. Scattering Theory of the MOSFET4. Beyond the Si MOSFET5. Summary

additional information at: www.ece.purdue.edu/celab

Lundstrom Purdue

Acknowledgements

collaborators: Professor Supriyo Datta, Jing Guo, Sayed Hasan, Zhibin Ren, Jung-Hoon Rhew, Anisur Rahman, Ramesh Venugopal, Jing Wang sponsors: NSF, SRC

MARCO Focus Center on Materials, Devices Structures ARO DURINT Indiana 21st Century Research and Technology Fund

Page 2: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

1. Introduction

MOSFET

Bachtold, et al.,Science, Nov. 2001

CNTFET

MolecularFETs?

Drain

Source

GATE

Lundstrom Purdue

1. Introduction

EF

EF - qVDS

Gate

DrainSource

VD

1) self-consistent electrostatics

2) transport

Page 3: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

1. Introduction

EF

EF - qVDS

Gate

Drain

Source VD

Q C V C VGS GS DS DS= +

Q Q E Q E qVF F DS= + −+ −( ) ( )

I I E I E qVD F F DS= − −+ −( ) ( )

+k-k

E(k)

EF

EF - qVDS

Q E qVF DS− −( )

I E qVF DS− −( )

Q E qVF DS+ −( )

I E qVF DS+ −( )

(electrostatics)

Lundstrom Purdue

1. Introduction

EF

EF - qVDS

Gate

Drain

Source VD

Q x( )

x

at x = 0…..

Q C V C VGS GS GD GD( )0 ≈ +

C CGS ox≈ (constant)

C CDS GS<<

1) Compute Q(VGS,VDS) 2) Determine EF 3) Compute ID

Q C V Vox GS T( )0 ≈ −( )

Page 4: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

1. Introduction

Now……

let’s see how these ideas work out for MOSFETs

Lundstrom Purdue

1. Introduction nanoMOS simulations

effective massHamiltonian

VG

VDVS

L=10nm

tox= 0.6 nmtSi= 3 nm

Z. Ren, R. Venugopal, S. Datta, and M. Lundstrom, IEDM, 2001

position (nm)

ener

gy (

eV)

Page 5: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

1. Introduction energy band diagrams

.

VGS VGS

VDS VDS

VDS =0.05

VGS =0.05 VGS =0.6

VDS =0.6

(a) (b)

(d)(c)

Lundstrom Purdue

1. Introduction energy band diagrams

Ene

rgy

(eV

)

ε1

ε2

z

ε1

EC(z)

ε2

x

zy

Page 6: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

1. Introduction transport

x

zy

VGS=VDS=0.6

• 2D Electrostatics• Strong off-equilibrium transport• Scattering

Lundstrom Purdue

2. The Ballistic MOSFET Natori’s theory

VDS

IDS

VGS

E(k)

E(k)

Gate

Source Drain ε1(x)

“on-current”

linear current

EF EF -qVDS

EF

EF -qVDS

ε1(x)

Page 7: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

2. The Ballistic MOSFET..... thermionic emission

f

fυx

υx

Small VDS

Large VDS

+

+

-

VG

x

y EC(x)

f e eoE k T m k TB x B= − −/ /~

*υ 2 2

n (E

)

Qi(0)

n (E

)ε1(x)

small VDS

large VDS

Lundstrom Purdue

2. The Ballistic MOSFET.... charge control in a “well-tempered MOSFET”

f

fυx

υx

Qi(0) ≈ Cox (VGS - VT )

+

+

-

VG

x

y

Small VDS

Large VDS

ε1(x)

small VDS

large VDS

Page 8: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

2. The Ballistic MOSFET..... numerical solution of the ballistic BTE

Increasing VDS

ε 1 (

eV)

---

>

-10 -5 0 5 10

f (kx, ky)ε1 vs. x for VGS = 0.5V

J.-H. Rhew, Purdue University

Lundstrom Purdue

Increasing VDS

charge control2. The Ballistic MOSFET.....

X (nm) ---> VDS (V) --->

Qin

v(0

) --

->

i) Qi(0) ≈ constant

-10 -5 0 5 10

Qinv(0)

ε1 vs. x for VGS = 0.5V

ε 1 (

eV)

---

>

Page 9: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

Increasing VDS

X (nm) --->

Increasing VDS

2. The Ballistic MOSFET.....

-10 -5 0 5 10

i) Qi(0) ≈ constantii) <υ(0)> --> υT

ε1 vs. x for VGS = 0.5V

υ ave

(10

7 cm

/s)

---

>

X (nm) --->

ε 1 (

eV)

---

>

Lundstrom Purdue

Increasing VDS

velocity saturation in a ballistic FET2. The Ballistic MOSFET.....

X (nm) --->

-10 -5 0 5 10

i) Qi(0) ≈ constantii) <υ(0)> --> υT

υ(0)

ε1 vs. x for VGS = 0.5V

υ υ( ) ˜0 → T

ε 1 (

eV)

---

>

υ inj (

107

cm/s

) -

-->

VDS --->

Page 10: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

2. The Ballistic MOSFET.....

IDS

VDS

I on W C V VDS ox T GS T( ) ˜= −( )υI WQ V

F U

FF U

F

DS i GS T

F DS

F

F DS

F

= ×−

+ −

( ) ˜

( )

( )( )

( )

/

ηη

ηη

1

1

1 2

1 2

0

0

quantum conductanceG = M 2e2/h

V VG T−( )α

IDS

Lundstrom Purdue

2. The Ballistic MOSFET..... comparison with measurements.....

Leff = 115/125 nm technology

NMOS: ~ 50% of limit

PMOS: ~ 33% of limit

ballistic(with measured Rs)

• F. Assad, et al. (1999 IEDM)• G. Timp, J. Bude, et al., (1999 IEDM)• D. Rumsey (TECHON 2000)• A. Lochtefeld, D. Antoniadis (EDL, Feb 2001)

measured

Page 11: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

Increasing VDS ballistic

ballistic

-10 -5 0 5 10

X (nm) --->

3. Scattering Theory of the MOSFET.....

scattering

scattering

ε 1 (

eV)

---

>

υ inj (

107

cm/s

) -

-->

VDS --->

Lundstrom Purdue

EF - qVDSEF

Qi ≈ constant ≈ Cox (VGS - VT)

J nT

+ + += υ̃

J T J TJball− + −= − +( )1

I Wq J JD = −( )+ −

Q Vq J J

i GST

( )˜

=+( )+ −

I WQ VT

T

F U

FT

T

F U

F

DS i GS T

F DS

F

F DS

F

=−

×

−−

+−

( ) ˜

( )

( )( )

( )

/

ηηη

η2

1

12

1 2

1 2

0

0

J +J −

3. Scattering Theory of the MOSFET.....

Page 12: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

I WC V VT

TDS ox GS T T= −( )−

×υ̃

2

F

e

F U

F

T

T

e

e

F

F DS

FUF F DS

F

1 2

1 2

1 2

1

1

12

11

/

/

/

ln( )

( )

( )ln( )

ln( )

ηη

ηη η

η

( )+

×−

+−

++

T V VGS DS( , )

Landauer/McKelvey model

VDS (V)

I DS (

µA/µ

m)

NEGFsimulation

ballistic

inelasticscattering

T ≈≈≈≈ 0.6

T ≈≈≈≈ 0.1

3. Scattering Theory of the MOSFET.....

Lundstrom Purdue

computing T: low VDS

a

(1-T)aTa T

L=

λ0

0

xL

I W Ck T q

T V V VDS oxT

BGS T DS=

−( )υ/

I CW

LV V VDS eff ox GS T DS=

+

−( )µλ0

3. Scattering Theory of the MOSFET.....

Page 13: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

3. Scattering Theory of the MOSFET.....

position, x

ener

gy

Eb

Ei X

qV(x)

px

pyp’

ppi

?

1 2 21m qV xxυ > ( )

x1

ε1(x)

longitudinal energy

first scattering event

computing T: high VDS

Lundstrom Purdue

ε1(x)

1

1-T

l

mobility is important for nanoscale FETs

computing T: high VDS 3. Scattering Theory of the MOSFET.....

qV E Ei b( )l ≈ −( )

P(x1): probability of returningto the source after

scattering first at x1

x1 < P(x1) large

x1 > P(x1) small

≈ −( )E Ei b

T o

o

≈+λ

λl

l

l

Page 14: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

I W CT

TV VD ox T GS T=

−( )υ

2

I W Ck T q

T V V VD oxT

BGS T DS=

−( )υ //2

VDS

ID

T ≈≈≈≈ 0.1

T ≈≈≈≈ 0.6 I WC V VT

TDS ox GS T T= −( )−

×υ̃

2

1

12

11

1 2

1 2

−−

+−

++

F U

F

T

T

e

e

F DS

FUF DS

F

/

/

( )

( )ln( )

ln( )

ηη

η

η

Landauer/McKelvey model

T o

o

=+λ

λl

3. Scattering Theory of the MOSFET.....

Lundstrom Purdue

• transmission theory provides a clear picture of MOSFETs at the scaling limit:

-source velocity is limited by thermal injection

-velocity saturation occurs at the source

-the scattering that matters occurs near the source

-”mobility” is relevant to nanoscale MOSFETs

Page 15: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

4. Beyond the Si MOSFET.....

VG

VDVS

VG

VDVS

Bachtold, et al.,Science, Nov.2001

3) CNTFET1) MOSFET

2) SBFET

4) MolecularFETs?

Drain

Source

GATE

Lundstrom Purdue

4. Beyond the Si MOSFET.....

Jing Guo (Purdue)

VG

VDVS

tox= 0.6 nmtsi= 3 nm

off-state

on-state

φBn

φBn

EF

EF

the Schottky barrier MOSFET

12 nm

Page 16: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

4. Beyond the Si MOSFET..... the Schottky barrier MOSFET

equivalent MOSFET

φBn = −0 25. eV

φBn = 0 0. eV

φBn = 0 1. eV

Lundstrom Purdue

4. Beyond the Si MOSFET..... the Schottky barrier MOSFET

EF

EF

EF

EF

φBn = −0 25. eV

φBn = 0 0. eV

φBn = 0 1. eV

MOSFET

SBFETφBn = −( )0 25. eV

Page 17: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

4. Beyond the Si MOSFET..... the Schottky barrier MOSFET

E(k)EF

EF -qVDS

E(k)EF

EF -qVDS

MOSFET SBFETφBn <( )0

Lundstrom Purdue

4. Beyond the Si MOSFET.....

C a a1 2= +n m

graphene

E

(n, m) carbon nanotube

k C• = 2πq

E E

ky

kx

ky

kx

ky

kx

(n-m) = multiple of 3 (n-m) ≠ multiple of 3

the CNTFET

Page 18: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

4. Beyond the Si MOSFET.....

VS VDVG

insulator gate

coaxial geometry

the CNTFET

planar geometry CNTFET

Gate1 nm κ=4

Lundstrom Purdue

4. Beyond the Si MOSFET..... the CNTFET

D = 1 nmtins = 1 nmκins = 4VDD = 0.4

Page 19: Physics of Nanoscale Transistors Lundstrom... · Lundstrom Purdue Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN Physics of Nanoscale Transistors

Lundstrom Purdue

5. Summary

• Essential physics of nanoscale transistors is controlled by: -electrostatics -state filling

-transmission

• Transmission theory provides insights into nanoscale MOSFET physics

-velocity saturation at the source-importance of scattering near the source-relevance of mobility

• The performance of transistors based on charge control is largely material-independent

www.ece.purdue.edu/celab