100
Physik und Umwelt – Lerneinheit 4 3 Physik und Umwelt – Lerneinheit 4 Einführung in die Atom- und Kernphysik KKP-1 und KKP-2 Philippsburg, Bildquelle: Fachzeitschrift atw, Ausgabe 06/2009 Dieter Bangert Februar 2017

Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

  • Upload
    vominh

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

Physik und Umwelt – Lerneinheit 4

3

Physik und Umwelt – Lerneinheit 4

Einführung in die Atom- und Kernphysik

KKP-1 und KKP-2 Philippsburg, Bildquelle: Fachzeitschrift atw, Ausgabe 06/2009

Dieter Bangert

Februar 2017

Page 2: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

Inhaltsverzeichnis – Physik und Umwelt - LE 4: Atom- und Kernphysik

4

Inhaltsverzeichnis – Physik und Umwelt - LE 4: Atom- und Kernphysik

1 Atomphysik ................................................................................................................ 5

1.1 Wellen und Photonen ....................................................................................................... 6

1.2 Quantentheorie und Bohrsches Atommodell ................................................................. 13 1.2.1 Quantenzahlen ............................................................................................................... 20 1.2.2 Atombau und das Periodensystem der Elemente .......................................................... 28

1.3 Atomspektren: Strahlungsabsorption und -emission ..................................................... 34

1.4 Laser ............................................................................................................................... 38

1.5 Röntgenstrahlung ........................................................................................................... 42 1.5.1 Röntgenbremsstrahlung ................................................................................................. 43 1.5.2 Charakteristische Röntgenstrahlung .............................................................................. 44

1.6 Übungsaufgaben zu Kapitel 1 ........................................................................................ 45

1.7 Musterlösungen zu Kapitel 1 .......................................................................................... 47

2 Kernphysik ............................................................................................................... 52

2.1 Aufbau der Atomkerne .................................................................................................... 52

2.2 Kernkraft und Bindungsenergie ...................................................................................... 52

2.3 Radioaktivität .................................................................................................................. 62 2.3.1 Das radioaktive Zerfallsgesetz ....................................................................................... 65 2.3.2 Radioaktive Umwandlungsreihen ................................................................................... 67

2.4 Kernreaktionen ............................................................................................................... 68

2.5 Kernspaltung und Kernfusion ......................................................................................... 71

2.6 Wechselwirkung ionisierender Strahlung mit Materie .................................................... 78

2.7 Nachweismethoden für ionisierende Strahlung ............................................................. 82

2.8 Strahlenschutz ................................................................................................................ 85

2.9 Übungsaufgaben zu Kapitel 2 ........................................................................................ 94

2.10 Musterlösungen zu Kapitel 2 .......................................................................................... 95

Anhang 1: Physikalische Konstanten.................................................................................................. 98

Anhang 2: Formelzeichen ................................................................................................................... 99

Anhang 3: Periodensystem der Elemente (IUPAC) .......................................................................... 102

Page 3: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.1 Wellen und Photonen

5

1 Atomphysik

Die Vorstellung einer atomaren Struktur der stofflichen Materie geht auf die griechischen Philosophen Demokrit von Abdera (um 460 – 370 v. Chr.) und Leukipp von Milet (um 500 – 440 v. Chr.) zurück. Sie spekulierten, dass die Materie aus kleinsten unteilbaren Teilchen, den Atomen (grch. atomos = das Unteilbare) besteht. Den ersten wissenschaftlichen Beweis für die Richtigkeit dieser Atomhypothese lieferte 1807 der englische Naturforscher John Dalton (1766 – 1844). Die Atomvorstellung von Dalton beruhte auf einem Billardkugel-Modell. Demnach stellte man sich die Atome als kleinste, massebe-haftete, undurchdringliche Kugeln vor. Mit dieser Modellvorstellung war Dalton in der Lage, die bei chemischen Reaktionen beobachteten Gesetzmäßigkeiten zu beschreiben, z. B. die Tatsache, dass sich zwei Elemente in ein und derselben Verbindung immer im gleichen Mas-senverhältnis vereinigen. Eigentlicher Vorläufer der Atomphysik war dann die in der 2. Hälfte des 19. Jahrhunderts intensiv betriebene Gasentladungsphysik. Dabei wurden in einem evakuierten Glaskol-ben zwei Metallelektroden eingeschmolzen und der Kolben mit einer kleinen Gasmenge gefüllt. Beim Anlegen einer elektrischen Span-nung an die beiden Elektroden wurde ein Stromfluss durch den Gas-raum beobachtet, der i. A. mit Leuchterscheinungen verbunden war. In solchen Gasentladungsröhren wurden aufgrund ihrer unterschied-lichen Ablenkung im Magnetfeld elektrisch positiv geladene Kanal-strahlen und negativ geladene Kathodenstrahlen entdeckt. Die Kanal-strahlen konnten als positiv geladene Gasionen identifiziert werden. Die genauere Untersuchung der Kathodenstrahlen führte 1897 zur Entdeckung des Elektrons durch Joseph John Thomson (1856 – 1940). Kathodenstrahlen sind somit Elektronenstrahlen, und Atome lassen sich in Bestandteile zerlegen, sind also zusammengesetzte Teilchen. Die grundlegende Theorie der Atomphysik ist die Quan-tenmechanik. Sie gestattet eine genaue mathematische Berechnung der atomphysikalischen Vorgänge. Ihre philosophische Interpretation ist allerdings bis heute kontrovers geblieben. Einer der Mitbegründer der Quantenmechanik, der dänische Physiker Niels Bohr (1885 – 1962), hat dazu folgende Bemerkung gemacht: “Wer glaubt, sie ver-standen zu haben, zeigt damit nur, dass er sie nicht einmal ansatz-weise begriffen hat.“ Die Atomphysik beschäftigt sich mit den Vorgängen in den Elektro-nenhüllen der Atome. Das nachfolgende Kapitel soll einen elementa-ren Einblick in dieses Teilgebiet der modernen Physik liefern.

Page 4: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

6

1.1 Wellen und Photonen

Der englische Physiker James Clerk Maxwell (1831 – 1879) hatte in seiner Theorie der Elektrizität vorausgesagt, dass sich elektrische und magnetische Felder wellenartig im Raum ausbreiten können. 1887 gelang es Heinrich Hertz (1857 – 1894) die Existenz solcher elektromagnetischer Wellen experimentell nachzuweisen. Damit wurde klar, dass Lichtstrahlen elektromagnetische Wellen sind. Aus den in Gasentladungsröhren auftretenden Leuchterscheinungen konnte geschlossen werden, dass die Atome die Quelle dieser Licht-strahlen sind. Die Beschreibung von Vorgängen im submikroskopischen Bereich der Atome und Atomkerne ist Aufgabe der Quantenphysik. Sie weist beispielsweise monochromatischem Licht, einer elektromagnetischen Wellenerscheinung mit der Wellenlänge λ , Frequenz f und Ausbrei-tungsgeschwindigkeit c auch eine Teilcheneigenschaft zu. Dabei gilt für elektromagnetische Strahlung: cf =⋅λ . (1.1) In Abbildung 1.1 ist eine unendlich ausgedehnte monochromatische Lichtwelle dargestellt. Dabei steht der elektrische Feldvektor E

rsenk-

recht auf dem magnetischen Feldvektor Br

. Beide Vektorfelder vari-ieren periodisch mit der Zeit t und stehen senkrecht auf der Ausbrei-tungsrichtung

rc der Lichtwelle.

Abb. 1.1: Monochromatische Lichtwelle Bei der graphischen Darstellung einer elektromagnetischen Welle kann der Verlauf des elektrischen oder magnetischen Feldes zu ei-nem bestimmten Zeitpunkt an verschiedenen Orten dargestellt wer-den. Man erhält dann eine Ortsraumdarstellung. Die Periodizität der Wellenerscheinung wird dabei durch die Wellenlänge λ der Licht-welle charakterisiert. Wird dagegen der Verlauf an einem bestimm-ten Ort zu verschiedenen Zeiten betrachtet, erhält man eine Zeit-raumdarstellung derselben Wellenerscheinung.

Page 5: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.1 Wellen und Photonen

7

Ihre Periodizität wird dann durch die Periodendauer T oder ihren Kehrwert, der Frequenz f gekennzeichnet.

T

1f = (1.2) (1.2)

Ortsraumdarstellung Zeitraumdarstellung Abb. 1.2: Monochromatische Lichtwelle in Ortsraum- und Zeitraum-darstellung Die Wellennatur des Lichtes äußert sich in zwei grundlegenden Phänomenen: Beugung und Interferenz. Fällt beispielsweise eine monochromatische Lichtwelle auf eine undurchsichtige Platte mit einer kleinen runden Öffnung, so beobachtet man auf einem dahinter liegenden Schirm eine als Beugung bezeichnete Richtungsänderung der Lichtausbreitung an dieser Öffnung, so dass Licht auch in die geometrische Schattenzone eindringt (1.3).

Abb. 1.3: Beugung und Interferenz monochromatischer Lichtwel-len(Photonen) an einer runden Öffnung (Einzelspalt) Als Beugungsbild dieser runden Öffnung sieht man auf dem un-durchsichtigen Schirm eine Folge sich abwechselnder konzentrischer dunkler und heller Ringe, deren Intensität von der Bildmitte nach außen hin abnimmt. Dieses Beugungsmuster kommt durch Interfe-renz zustande. Zwei monochromatische Lichtwellen können sich an einem bestimmten Punkt im Raum überlagern. Dabei addieren sich sowohl ihre beiden elektrischen als auch magnetischen Feldvektoren nach dem Superpositionsprinzip. Je nach Richtung und Betrag dieser Feldvektoren führt die Überlagerung zu einer Verstärkung, Ab-schwächung oder gar Auslöschung der resultierenden Lichtwelle an dieser Stelle. Die dadurch an bestimmten Orten entstehende Erschei-

d

Page 6: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

8

nung von hellen Lichtmaxima und dunklen Lichtminima wird Inter-ferenz genannt. Die mit dem Auge wahrnehmbaren Lichtwellen stellen nur einen kleinen Ausschnitt aus dem Spektrum der elektromagnetischen Strahlung dar (Abb. 1.4). Dem sichtbaren Bereich schließt sich zu längeren Wellenlängen hin die Infrarot-Strahlung an, die auch als Wärmestrahlung bezeichnet wird. Zu kürzeren Wellenlängen hin setzt sich das elektromagnetische Spektrum über die Ultraviolett-Strahlung fort, dem sich die Röntgenstrahlung anschließt. Die kür-zeste und energiereichste elektromagnetische Strahlung stammt aus dem Atomkern. Sie wird als γ -Strahlung bezeichnet und begleitet

die meisten radioaktiven Zerfallsprozesse.

γ

Licht

UV

IR

Sichtbar

Fernsehen

Längstwellen

Röntgen

Mikrowellen

UKWKurzwellenMittelwellenLangwellen

[Hz]

Frequ

enz

Welle

nlänge

Energ

ie

[m] [eV]

10 10

10

10

10

10

10 10

10

10

1010

10

10

10

4

8

12

16

20

Elektromagnetisches Spektrum(Photonenstrahlung)

4

0

-3

-6

-9

-12

ion

iesi

ere

nd

nic

ht-

on

iesi

ere

nd

6

0

-3

-6

Abb. 1.4: Elektromagnetisches Spektrum Tritt elektromagnetische Strahlung der Frequenz f mit den Elektro-nen der Atome in Wechselwirkung, dann muss sie als ein materie-freier Strom von Energiequanten, den so genannten Photonen, betrachtet werden, von denen jedes die Energie fh ⋅=ε transpor-tiert. Die für die Quantenphysik wichtige Naturkonstante h heißt Plancksches Wirkungsquantum. Es ist

Js10626,6 34−⋅=h (1.3)

Page 7: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.1 Wellen und Photonen

9

Die atomare und subatomare Welt ist der direkten Anschauung nicht zugänglich, denn das menschliche Gehirn ist ein Produkt der Evolu-tion, das sich in Anpassung an die uns umgebene makroskopische Lebenswelt optimiert hat. Daher machte Albert Einstein 1955 fol-gende Aussage: „Die ganzen 50 Jahre bewusster Grübelei haben mich der Antwort der Frage „Was sind Lichtquanten“ nicht näher gebracht. Heute glaubt zwar jeder Lump, er wisse es, aber er täuscht sich.“ Ein wichtiges Experiment, in dem sich die Teilcheneigenschaft der Photonen manifestiert, ist in Abbildung 1.5 dargestellt. Aus einer Lichtquelle L treten Photonen unterschiedlicher Wellenlänge aus. Sie fallen auf einen Monochromator (Farbfilter) M, der nur Photonen mit einer wohldefinierten Wellenlänge durchlässt. Diese monochromati-schen Photonen treffen dann auf eine Fotozelle in Form einer evaku-ierten Glasröhre, in der sich eine durchlässige Gitterelektrode G und eine Fotokathode K genannte Metallplatte befinden. Dabei wird fol-gende Beobachtung gemacht: Wird die Fotokathode mit Licht be-leuchtet, so treten aus ihr Elektronen heraus.

Abb. 1.5: Untersuchung des Photoeffektes

Bereits 1888 wurde dieses Phänomen durch Philipp Lenard be-schrieben. Er beobachtete, dass eine elektrisch negativ geladene Me-tallplatte ihre elektrische Ladung verliert, wenn sie mit Licht hinrei-chend kurzer Wellenlänge bestrahlt wird. Diese Erscheinung wird äußerer Photoeffekt oder lichtelektrischer Effekt genannt. Die ausge-tretenen Elektronen können je nach Wahl einer elektrischen Span-nung U zur Gitterelektrode gelangen und führen zu einem elektri-schen Strom I. Er wird Photostrom genannt, da er durch die Photo-nen der einfallenden Lichtstrahlung verursacht wird. Eine derartige Anordnung stellt eine primitive Form einer Photozelle dar, die eine direkte Umwandlung der Strahlungsenergie des Lichtes in elektri-

I

U

R

G KL

+ -

M

Page 8: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

10

sche Energie ermöglicht. Die Photozelle (Solarzelle) stellt somit einen photovoltaischen Energiewandler dar. Die Nutzung der Son-nenenergie durch Solarzellen soll in Zukunft einen wesentlichen Beitrag zur elektrischen Energieversorgung leisten. 2014 betrug ihr Anteil an der deutschen Bruttostromerzeugung 6,1%. Wird bei gegebener Beleuchtungsstärke des einfallenden Lichtes die elektrische Spannung U zwischen Photokathode und Gitterelektrode erhöht, so steigt auch der Photostrom I an, bis alle ausgetretenen Elektronen zur Gitterelektrode abgesaugt werden. Die dabei auftre-tende Sättigungsstromstärke I ist von der Beleuchtungsstärke L des Lichtes abhängig (Abb. 1.6).

I

I1 L1

I2 L2

– U0 U

Abb. 1.6: Photostrom I in Abhängigkeit von der Beschleunigungs-spannung U bei verschiedenen Beleuchtungsstärken (

21LL > )

Wird eine negative elektrische Spannung U gewählt, so stößt ihr elektrisches Feld die Photoelektronen zurück. Der Photostrom sinkt und geht bei einer bestimmten negativen Spannung

0U auf null

zurück. Diese Spannung wird Grenzspannung genannt. Die kineti-sche Energie der schnellsten Photoelektronen reicht dann nicht mehr aus, um die Arbeit

0UeW ⋅= aufzubringen, die zur Überwindung

der elektrischen Abstoßung notwendig wäre. Die Photoelektronen gelangen dann – unabhängig von der Größe der Beleuchtungsstärke des Lichtes – nicht mehr zur Gitterelektrode. Albert Einstein fand 1905 die Erklärung für den Photoeffekt. Licht stellt demnach einen Strom aus endlichen im Raum lokalisierten Energiequanten dar, „welche sich bewegen, ohne sich zu teilen und nur als Ganze absorbiert und erzeugt werden können.“ Diese Licht-quanten oder Photonen besitzen die Energie

λ

==εhc

hf . (1.4)

Die experimentelle Beobachtung, dass Lichtwellen nur in Form von diskreten Energiequanten, den Photonen, absorbiert werden können,

Page 9: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.1 Wellen und Photonen

11

begründet das korpuskulare Verhalten von Wellen. Besitzt ein Licht-quant genügend Energie ε kann es beim Auftreffen auf ein Elektron dieses durch Absorption über die Schwelle der Austrittsarbeit

AW

heben und mit einer kinetischen Energie kin

E aus dem Metallverband

freisetzen. Aufgrund der Energieerhaltung gilt dann: kinA EW +=ε (1.5)

oder AAkin WhfWE −=−ε= . (1.6)

Photonen mit einer Energie AW<ε , die kleiner als die materialspe-

zifischen Austrittsarbeit A

W der Elektronen ist, können keine Elekt-

ronen auslösen und tragen deshalb nicht zum Photostrom I bei. Die Frequenz f der Lichtquanten muss die untere Grenzfrequenz

Gf für

den Photoeffekt überschreiten, um zum Photostrom beitragen zu können.

f

0

Ekin

fG

-WA

Abb. 1.7: Kinetische Energie der Photoelektronen als Funktion von der Lichtfrequenz

Durch Messung der Spannung 0

U kann die kinetische Energie kin

E

der Photoelektronen als Funktion der Frequenz f der Lichtquanten bestimmt werden. Für eine gegebene Metalloberfläche als Photo-elektrode ergibt sich experimentell eine Gerade (Abb. 1.7), die durch die Gleichung AAkin WhfWeUE −=−ε== 0 (1.7)

beschrieben wird. Aus dieser Geraden kann sowohl die Plancksche Konstante h als auch die Austrittsarbeit

AW graphisch bestimmt

werden. Der Schnittpunkt dieser Geraden mit der f-Achse liegt bei der Grenzfrequenz

Gf . Durch die Grenzfrequenz wird die Lage des

Page 10: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

12

Schnittpunktes mit der kinE -Achse und damit die Größe der Aus-

trittsarbeit A

W festgelegt. Es gilt:

AG Whf ==εmin (1.8)

h

Wf A

G= (1.9)

Die untere Grenzfrequenz

Gf besitzen die Photonen, die bei Ab-

sorption gerade die Austrittsarbeit der gebundenen Elektronen auf-bringen ( 0=kinE ). Photonen mit

Gff > können diese aus dem

Metallverbund der Photokathode befreien und ihnen eine kinetische Energie 0>

kinE übertragen.

Metall Austrittsarbeit WA / eV

Li 2,38

Na 2,33

K 2,26

Cs 1,94

Cu 4,29

Ag 4,73

Au 5,1

Pt 5,65

Tab. 1.1: Austrittsarbeit WA für einige Metalle

Werden verschiedene Metalloberflächen bestrahlt, so erhält man – je nach Größe ihrer Austrittsarbeit versetzte – parallele Geraden, die alle die gleiche Steigung besitzen. Die Steigung der Geraden ist für alle Metalle konstant; sie ist durch die Plancksche Konstante h bestimmt. Der Photoeffekt wird auch bei der Verstärkung schwacher Lichtsig-nale mit Hilfe von Sekundär-Elektronen-Vervielfachern (SEV) in Photomultiplieren und Channel-Plates ausgenutzt; letztere werden in Restlichtverstärkern eingesetzt. Neben dieser Teilcheneigenschaft der Lichtwellen besitzen atomare Teilchen auch Welleneigenschaften. Man spricht in diesem Zusam-menhang von einem Welle-Teilchen-Dualismus der Materie. Eine Vielzahl von Beugungs- und Interferenzexperimenten mit atomaren Teilchen zeigt: Die Bewegung von materiellen Teilchen muss durch interferenzfähige Materiewellen beschrieben werden. So demons-trierten 1927 die amerikanischen Physiker Davisson und Germer

Page 11: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

13

Beugungsphänomene, die beim Beschuss der Kristallgitter dünner Metallfolien mit Elektronenstrahlen auftreten. Auch Neutronenstrah-len, die aus Neutronen bestehen, besitzen Welleneigenschaften. Die Neutronenbeugung wird in der Materialuntersuchung und bei der Strukturaufklärung komplizierter chemischer Verbindungen einge-setzt. Dabei hängt die Wellenlänge λ dieser Materiewellen nach einer von Louis-Victor de Broglie (1892 – 1987) angegebenen Be-ziehung mit dem Impuls vmp ⋅= der Teilchen zusammen:

p

h=λ . (1.10)

Der Impuls p ist eine Teilcheneigenschaft, die Wellenlänge λ eine Eigenschaft der Wellennatur der Materie. Wellen besitzen dabei die Eigenschaft der Nichtlokalisierbarkeit. Bei der Beschreibung von Teilchen durch Wellen muss wegen der räumlichen Lokalisierbarkeit des Teilchens die Ausdehnung der Welle begrenzt werden. Dies kann durch Überlagerung von ebenen Wellen mit geringfügig verschiede-nen Frequenzen geschehen. Durch eine solche Wellengruppe kann ein Elektron dargestellt werden. Die Atomhülle der Atome besteht aus Elektronen, über deren räumliche Verteilung nur Wahrschein-lichkeitsaussagen gemacht werden können.

1.2 Quantentheorie und Bohrsches Atommodell

Die wellenmechanische Beschreibung der Elektronen führt zur Quantenmechanik, die im Wesentlichen von Erwin Schrödinger (1887 – 1961) und Werner Heisenberg (1901 – 1976) formuliert wurde. Nach Max Born (1882 – 1970) kann die ein Elektron be-schreibende „Wellenfunktion“ nur statistisch interpretiert werden: Das Quadrat ihrer Amplitude stellt ein Maß für die Wahrscheinlich-keit dar, ein Elektron in einem bestimmten Raumbereich aufzufin-den. Die de Brogliesche Beziehung verbindet die Wellen- und die Teilcheneigenschaft miteinander. Das Verbindungsglied zwischen diesen beiden Eigenschaften ist das Plancksche Wirkungsquantum h. Aufgrund der Kleinheit von h tritt die Wellennatur der Teilchen nicht in der makroskopischen, sondern nur in der mikroskopischen Welt in Erscheinung. Je leichter und je langsamer ein Teilchen ist, desto größer ist seine Materie-Wellenlänge, und umso ausgeprägter ist somit sein Wellencharakter. Beispiel:

Es soll die Wellenlänge eines Elektrons ( kgme

31109 −⋅= ) be-

rechnet werden, das sich in einem H-Atom mit einer Geschwin-

digkeit von scmv /103 8⋅= bewegt.

Page 12: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

14

cmp

h 8102 −⋅==λ

Damit entspricht die Materie-Wellenlänge des Elektrons etwa dem Durchmesser des H-Atoms.

Eine technische Anwendung, die auf der Wellennatur von Elektro-nenstrahlen beruht, stellt das Elektronenmikroskop dar. Es besitzt ein etwa zehntausendfach höheres Auflösungsvermögen als ein Licht-mikroskop. Das Auflösungsvermögen A wird dabei über den kleins-ten noch getrennt wahrnehmbaren Abstand d zweier Punkte definiert. Das Auflösungsvermögen wird durch Beugungseffekte der durch die Wellenlänge λ charakterisierten Strahlung begrenzt. Die Beugungs-theorie der Wellenoptik liefert für das Auflösungsvermögen die Be-ziehung:

d

= (1.11)

Aufgrund der de Broglie-Beziehung

Uem

h

Em

h

p

h

ekine22

===λ (1.12)

nimmt die Materie-Wellenlänge von Elektronen mit wachsender kinetischer Energie ab. Durch die Wahl einer großen Beschleuni-gungsspannung U, welche die Elektronen durchlaufen, können kleinste Strukturen mit hoher Auflösung sichtbar gemacht werden. Das Verhalten der Materiewellen wird durch komplex-wertige Funk-tionen beschrieben, die sich als Lösung der Schrödinger-Gleichung, einer partiellen Differentialgleichung von grundlegender Bedeutung für die Atomphysik, ergeben. Aus der Quantenmechanik folgt, dass weder Energie und Zeit noch Ort und Impuls eines bestimmten Elektrons gleichzeitig beliebig genau gemessen werden können. Für diese im Wellencharakter der Elementarteilchen begründeten natur-gesetzlichen Beschränkungen der Messgenauigkeit gelten die 1925 von Heisenberg formulierten Unbestimmtheitsrelationen:

hpx

htE

≈∆⋅∆

≈∆⋅∆ (1.13)

Energie E und Zeitpunkt t, an dem ein Teilchen die Energie E be-sitzt, können nicht gleichzeitig beliebig genau gemessen werden. Das Produkt aus der Energieunschärfe E∆ und der Ungenauigkeit der Zeitmessung t∆ wird durch die Plancksche Konstante h bestimmt. Bedingt durch die Wellennatur der Materie können auch bei größtem messtechnischem Aufwand Energie und Zeit eines Teilchens gleich-zeitig nicht genauer gemessen werden. Während in der klassischen

Page 13: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

15

Physik ein Teilchen einen im Prinzip beliebig genau messbaren Ort x und einen beliebig genau messbaren Impuls p besitzt, besagt die Quantenmechanik, dass bei einem sehr genau gemessenen Impuls p (mit verschwindender Impulsunschärfe 0pp

x=∆=∆ ) der Ort des

betrachteten Teilchens völlig unbestimmt ist ( ∞=∆x ) und umge-kehrt. Beispiel:

Ein sich in der Atomhülle eines H-Atoms befindliches Elektron besitze eine kinetische Energie von

JeVm

pv

mE

e

ekin

182

2 102,26,1322

⋅==== .

Der Betrag des linearen Impulses p ergibt sich dann zu

NsEmpkine

241022 −⋅== .

Je nach Bewegungsrichtung kann der Impuls zwischen +p und –p schwanken. Daraus ergibt sich dann eine Impulsunschärfe

pppp 2)( =−−+=∆ . Die Unbestimmtheit des Ortes (Ortsun-schärfe) x∆ des Elektrons im H-Atom liegt dann gemäß der Heisenbergschen Unschärferelation in der Größenordnung

mp

h

p

hx 10106,1

2−⋅==

∆≈∆ .

Ein Elektron im H-Atom beansprucht somit aufgrund seiner wellen-mechanischen Unschärfe die gesamte Atomhülle. In der Atomphysik kann daher die Vorstellung der klassischen Mechanik, nach der die Elektronen auf definierten Bahnen den Atomkern umkreisen, nicht aufrechterhalten werden. Die Elektronen bilden in der Atomhülle vielmehr räumlich ausgedehnte Verteilungen um den Atomkern aus, die auch als diffuse Elektronenwolken bezeichnet werden. Zur ge-nauen Beschreibung der Elektronenzustände werden so genannte Quantenzahlen eingeführt. Eine einfache modellmäßige Beschreibung der Atome liefert das Bohrsche Atommodell, das eine semiklassische Vorstufe der quan-tenmechanischen Beschreibung der Atome darstellt. Es basiert auf den beiden Bohrschen Postulaten: 1. Postulat: Für das Elektron sind nur Kreisbahnen möglich, für die der Drehimpuls des Elektrons ein Vielfaches von π2/h=h ist; h ist dabei das Plancksche Wirkungsquantum. hnL = mit n = 1, 2, ... (1.14)

Page 14: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

16

Auf diesen Bahnen verläuft nach Niels Bohr (1885 – 1962) das Elektron strahlungslos. Nach der Vorstellung der Elektrodynamik strahlt nämlich eine beschleunigte elektrische Ladung elektromagne-tische Wellen ab. Das Elektron würde demnach laufend Energie ver-lieren und auf einer Spiralbahn allmählich in den Atomkern stürzen. Im Rahmen der klassischen Physik ist daher die Stabilität der Atome nicht erklärbar. Anschaulich kann das Bohrsche Atommodell wie folgt interpretiert werden: Im Atom sind nur solche Elektronenbahnen erlaubt, die stehenden Wellen entsprechen. Ein typisches Beispiel für stehende Wellen lie-fert eine an beiden Enden eingespannte Saite. Die Schwingungsfrequenzen dieser Saite sind quantisiert, d. h. es sind nur solche Frequenzen möglich, die ein ganzzahliges Vielfaches

1fn ⋅ einer Grundfrequenz

1f annehmen (Abb. 1.8).

2. Oberschwingung (Frequenz f )

1. Oberschwingung (Frequenz f )

Grundschwingung (Frequenz f )

n = 3

n = 2

n = 1

3

2

1

Abb. 1.8: Stehende Wellen auf einer eingespannten Saite

Ein Elektron mit dem Impuls p kann sich nur dann auf einer stabilen atomaren Bahn um den Atomkern bewegen, wenn die Bahnlänge ein ganzzahliges Vielfaches der zugehörigen de Broglie Materiewellen-länge ist. Dabei muss der Umfang U der Kreisbahn mit dem Radius r dem n-fachen der Materiewellenlänge λ des umlaufenden Elektrons entsprechen. Beispiel:

λπ nrU == 2

πλ

2

nr =

Mit n = 4 erhält man die in Abb. 1.9 gezeigte Darstellung.

Page 15: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

17

Für den Bahndrehimpuls L dieser Elektronenbahn erhält man dann mit Hilfe der de Broglie-Beziehung λ/hp = :

prL ⋅=

hnh

nhn

pn

L =⋅=⋅=⋅=πλπ

λπλ

222 (1.15)

Abb. 1.9: Stehende Elektronenwelle für n = 4

2. Postulat: Beim Übergang zwischen zwei Bahnen mit den Ener-gien Ea und Ee wird die Energiedifferenz als Photon ausgestrahlt, wobei für die Photonenenergie gilt:

eaEEfh −=⋅ . (1.16)

––

Photon

Abb.1.10: Photonenemission infolge eines Elektronenübergangs in der Atomhülle

Page 16: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

18

Es sollen nun die den stabilen Bahnen entsprechenden Energiezu-stände im H-Atom berechnet werden. Dazu soll die Energie E des Elektrons ermittelt werden, das sich im Abstand r vom Atomkern (Proton) befindet. Die Energie E setzt sich dabei als Summe aus ki-netischer und potentieller Energie zusammen:

potkinEEE += (1.17)

Auf das den Atomkern im Abstand r umkreisende Elektron wirken die Coulombsche Anziehungskraft und die Zentrifugalkraft. Im Gleichgewicht gilt:

r

vm

r

e e2

2

2

04

1=

πε (1.18)

Für die kinetische Elektronenenergie folgt:

r

evmE

ekin

2

0

2

8

1

2

1

πε== (1.19)

Für die potentielle Energie folgt:

r

edr

r

edrFE

rr

Cpot

2

02

2

04

1

4

1

πεπε−=== ∫∫

∞∞

(1.20)

Damit erhält man für die Gesamtenergie E des Elektrons im H-Atom:

r

eEEE

potkin

2

08

1

πε−=+=

Anmerkung: Für ein einzelnes Elektron im Feld eines Atomkerns mit Z Protonen (Element mit der Ordnungszahl Z) erhält man für die Gesamtenergie:

r

ZeE

2

08

1

πε−=

Ein Atomkern mit nur einem Elektron in der Hülle stellt ein positiv geladenes Ion dar, welches als „wasserstoffähnliches“ Atom aufge-fasst werden kann. Das Elektron ist im H-Atom an das Proton gebunden. Dies kommt durch das negative Vorzeichen zum Ausdruck. Ein gebundenes Teil-chen besitzt immer eine negative Gesamtenergie. Durch Energiezu-fuhr kann das Elektron vom Atomkern getrennt werden. Im Grenzfall

Page 17: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

19

∞→r erhält man für ein freies ruhendes Elektron die Gesamtener-gie Null. Im H-Atom sind nur solche Bahnen stabil, für die das 1. Bohrsche Postulat erfüllt ist. Die Beziehung

π2

hnL =

stellt eine Quantisierungsbedingung für den Drehimpuls L dar. Der Drehimpuls L kann nur ganzzahlige Vielfache von π2/=h anneh-men. Wegen prL ⋅= folgt:

vmrprnL ⋅⋅=⋅=⋅= h

bzw.

emr

nv

⋅⋅

=h

.

Eingesetzt in

r

evmE

ekin

2

0

2

8

1

2

1

πε==

ergibt:

r

e

mr

n

e

2

02

22

8

1

2

1

πε=

⋅h

Auflösen nach )(nrr = liefert für die Radien der stabilen Bahnen im H-Atom:

22

20

4)( n

emrnr

en

hπε== (1.21)

Anmerkung: Für ein „wasserstoffähnliches“ Atom mit der Ord-nungszahl Z gilt:

2

2

204

nZem

re

n

hπε=

Eingesetzt in die Formel für die Gesamtenergie

r

eE

2

08

1

πε−=

ergibt schließlich: Das Elektron in einem Wasserstoffatom kann sich nur in Zuständen mit den Energien

Page 18: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

20

)(1

6,1311

8)(

222220

4

eVnn

Rnh

meEnEE

He

n−=−−=⋅−===

ε (1.22)

aufhalten, wobei die sog. Hauptquantenzahl n nur die ganzzahligen Wert n = 1, 2, ... annehmen kann. Die zugelassenen Energiezustände des Elektrons im H-Atom hängen nur von der Hauptquantenzahl n ab. Für die möglichen energetischen Elektronenzustände im „wasser-stoffähnlichen“ Atom mit der Ordnungszahl Z folgt:

)(6,1311

8 2

22

22

2

220

4

eVn

ZZ

nR

nZ

h

meE H

en −=−=⋅⋅

ε−=

Die Konstante

HR wird nach dem schwedischen Physiker Rydberg

benannt. Für die Rydberg-Konstante gilt:

eVh

meR e

H6,13

8 220

4

==ε

(1.23)

Die atomphysikalische Einheit der Energie ist das Elektronenvolt (Kurzzeichen: eV). Ein Elektronenvolt ist die kinetische Energie, die

ein Elektron mit der Ladung Aseqe

1910602,1 −⋅== beim Durch-

laufen einer elektrischen Potentialdifferenz (elektrischen Spannung) von 1 Volt im Vakuum gewinnt. Die Umrechnung in SI-Einheiten ergibt:

JWsVAseV 191919 10602,110602,1110602,11 −−− ⋅=⋅=⋅⋅= (1.24)

1.2.1 Quantenzahlen

Das Bohrsche Atommodell kann auch auf Atome mit mehreren Elektronen angewendet werden. Es erhebt sich die Frage, wie diese Elektronen angeordnet sind bzw. wie man sich ihre Bewegung um den Kern vorstellen kann. Eine vereinfachte Antwort hierauf gibt – wie bereits erwähnt – das Bohrsche Atommodell, eine exakte die Quantentheorie ( →Lösungen der Schrödinger-Gleichung). Nachfolgend sollen nur die Grundvor-stellungen und Ergebnisse erörtert werden. Sie führen – in Verbin-dung mit dem Pauli-Prinzip – zu verschiedenen Quantenzahlen, mit deren Hilfe man die möglichen Zustände von Atomen beschreiben und verstehen kann. Es erweist sich dabei als zweckmäßig, zunächst immer das Wasserstoff-Atom mit – im Normalfall – nur einem Pro-ton als Kern und einem Elektron zu diskutieren und dann zu versu-

Page 19: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

21

chen, die gewonnenen Erkenntnisse auf die Atome anderer Elemente zu übertragen. Geht man vom Bohrschen Atommodel für das H-Atom aus, nach dessen Vorstellungen ein Elektron auf einer stabilen Bahn den Atomkern umkreist, so kommt man zu dem Ergebnis, dass vier charakteristische Merkmale ( → Quantenzahlen) den Zustand des Atoms im Hinblick auf sein Elektron kennzeichnen und beschreiben: Auf jeder möglichen Bahn hat das Elektron eine bestimmte

(1) Bahnenergie ( ↔ Hauptquantenzahl n). Das umlaufende Elektron hat aber auch einen Drehimpuls. Dieser ist ein axialer Vektor (vgl. 1. Lerneinheit), d. h. es muss gefragt werden nach den möglichen

(2) Beträgen des Drehimpulsvektors. Diese werden durch Ein-führung einer weiteren Quantenzahl charakterisiert ( ↔ Neben-quantenzahl l ).

und nach möglichen (3) Richtungen, die der Drehimpulsvektors im Raum in Bezug

auf eine physikalisch ausgezeichnete Richtung einnehmen kann ( ↔ Magnetquantenzahl ml). Diese Richtungsorientie-rung kann beispielsweise durch ein äußeres Magnetfeld vorgegeben werden.

Außerdem hat das Elektron einen Eigendrehimpuls, auch Spin ge-nannt, der ebenfalls ein axialer Vektor ist, bei dem aber die Be-tragsquantenzahl (in der Einheit h ) immer den gleichen Wert

21+=s hat, sodass nur die variablen (4) Richtungen des Eigendrehimpulsvektors

( ↔ Spinquantenzahl ms) zur Charakterisierung anzugeben sind. (Grundsätzlich haben auch die Kerne Eigendrehimpulse, was z. B. in der Kernspintomographie Anwendung findet, nicht aber bei dem o. a. Problem zu berücksichtigen ist, bei dem es nur auf die Elektronen ankommt und Feinheiten außer Acht gelassen werden). Mit Hilfe der genannten Quantenzahlen können also mögliche oder tatsächliche Energie- und Drehimpulszustände im Atom angegeben werden. Insbesondere lässt sich eine Antwort geben auf die Fragen:

(a) Welche Zustände besetzen die Elektronen im Grundzustand einer Atomart?

(b) Welche Übergänge in andere Zustände sind möglich bzw. erlaubt?

Elektronen können aus der jeweils äußeren – besetzten – Bahn unter Aufnahme (Absorption) von Energie in eine höhere – unbesetzte – Bahn springen oder von dort unter Abgabe von Energie – im Allge-meinen durch Emission von Licht (-Quanten) – wieder zurückkeh-

Page 20: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

22

ren. Hier sind aber nicht alle Übergänge erlaubt, die theoretisch mög-lich sind: Es gelten Auswahlregeln.

1.2.1.1 Hauptquantenzahl n

Fassen wir noch einmal kurz die bisherigen Erkenntnisse zusammen: Nach dem Bohrschen Atommodell umkreist das Elektron den Was-serstoffkern strahlungsfrei auf stabilen Bahnen. Jede dieser Bahnen ist gekennzeichnet durch die Energie:

eVnn

RE Hn 22

6,131−=⋅−= (1.25)

wobei n die Hauptquantenzahl ist. Diese kann nur diskrete Werte annehmen, und zwar alle ganzzahligen positiven Werte n = 1, 2, 3 ..., womit auch für die einzelnen Bahnenergien diskrete Werte resultie-ren. Befindet sich das einzige Elektron des H-Atoms auf der untersten – energieärmsten – Bahn (n = 1), so spricht man vom Grundzustand, auf einer höheren Bahn vom angeregten Zustand des Atoms. Bei Zufuhr von Energie kann das Elektron auf eine höhere Bahn „springen“, bei Entzug von dort – unter Abgabe der Energie in Form von Photonen – auf eine niedrigere Bahn „zurückspringen“. Erlaubt sind nach der Auswahlregel alle ganzzahligen Übergänge, also

...3,2,1 ±±±=∆n . Obwohl das Bohrsche Atommodell erfolgreich das Spektrum des Wasserstoffatoms erklären konnte, musste es korrigiert bzw. durch Erkenntnisse aus der Quantentheorie ersetzt werden, da es vor allem auch bei Atomen mit mehreren Elektronen versagt. So widerspricht die Existenz diskreter Umlaufbahnen der Heisenbergschen Unschär-fe-Relation. Deshalb setzt man bei Atomen mit zwei und mehr Elekt-ronen das Bahn- durch das Schalenmodell der Atomhülle, ausgehend von folgenden Fakten:

1. Die im Atom energetisch möglichen und erlaubten Zustände können von mehreren Elektronen besetzt und zu Gruppen mit ähnlicher Gesamtenergie, die man dann als Schalen be-zeichnet, zusammengefasst werden. Diese Schalen kenn-zeichnet man mit großen lateinischen Buchstaben, wobei folgende Beziehung zwischen ihnen und den Hauptquanten-zahlen n besteht:

n = 1 2 3 4 ... K L M N ...-Schale

Page 21: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

23

2. Jede Schale bietet nur einer ganz bestimmten Zahl von Elektronen Platz. Auf einer Schale mit der Hauptquanten-zahl n können maximal 2n2 Elektronen untergebracht wer-den, d. h. die maximale Aufnahmekapazität an Elektronen beträgt bei der K-Schale 212 2 =⋅ , bei der L-Schale

822 2 =⋅ und bei der M-Schale 1832 2 =⋅ . Die einzelnen Schalen bestehen noch aus „Unterschalen“, wie im nachfolgenden Kapitel 1.2.1.2 näher ausgeführt wird. Anmerkung: Statt einer diskreten Elektronenbahn liefert die jeweili-ge Lösung der Schrödinger-Gleichung eine Wellenfunktion. Diese kann man einigermaßen anschaulich darstellen als räumlichen Be-reich, in dem sich das entsprechende Elektron mit maximaler Wahr-scheinlichkeit aufhält. Statt Wellenfunktion bzw. wahrscheinlichem Aufenthaltsbereich verwendet man im Allgemeinen den Begriff (Atom-) Orbital.

1.2.1.2 Nebenquantenzahl l

Die möglichen Bahn-Drehimpulse Lr

des Elektrons können folgende Beträge annehmen:

hll )1( +=L (1.26)

Hierbei ist l die Nebenquantenzahl oder auch (Bahn-) Drehim-pulsquantenzahl. Sie kann nach den Regeln der Quantenmechanik die folgenden Werte haben: l = 0, 1, 2, ..., n – 1 (1.27) d. h. die Nebenquantenzahl ist ganzzahlig, positiv und kann jeweils genau n Werte annehmen. Dementsprechend gilt: n = 1 → l = 0 n = 2 → l = 0 oder 1 n = 3 → l = 0 oder 1 oder 2. Die Auswahlregel fordert hier: 1±=∆l . Die Drehimpulsquantenzahl l = 0 entspricht klassisch der Kreisbahn des Elektrons. Die anderen Drehimpulsquantenzahlen beschreiben im Rahmen einer mechanischen Interpretation die Exzentrizität von Ellipsenbahnen. Das H-Atom ist bezüglich der Drehimpulsquanten-zahl l energetisch entartet, d.h. es besitzt für beliebige l -Werte die gleiche Energie

nE . Die Atome aller anderen Elemente sind nicht

entartet, d. h. bei gegebenen n-Werten nimmt die Energie ihrer Elekt-

Page 22: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

24

ronen mit wachsender Drehimpulsquantenzahl l zu. Zu festen Wer-ten von n und l sind mehrere Zustände mit gleicher Energie l,nE

erlaubt. Elektronen einer Schale mit gleicher Nebenquantenzahl bilden eine Unterschale. In der Chemie ist es üblich, diese Unterschalen mit kleinen lateinischen Buchstaben zu kennzeichnen, wobei folgende Zuordnung besteht: l = 0 1 2 3 ... s p d f ...-Unterschale Haupt- und zugehörige Unterschalen sind in Abb. 1.11 schematisch dargestellt.

K

L

M

3d

3p

3s

2p

2s

1s

n = 3

n = 2

n = 1

Abb. 1.11: Schematische Darstellung der energetischen Struktur der Atomhülle in Form von Haupt- und Unterschalen

Die hier willkürlich erscheinende Quantisierung des Drehimpulses in diskrete l -Werte ergibt sich mathematisch zwangsläufig aus der Lösung der Schrödinger-Gleichung, der grundlegenden Wellenglei-chung der Quantenmechanik. Diese besitzt nur für diskrete Eigen-werte l des Drehimpulses eindeutige und endliche Lösungen.

1.2.1.3 Magnetquantenzahl ml

Die möglichen Richtungen, in welche die Achse der Drehbewegung des Elektrons um den Atomkern und damit sein Drehimpulsvektor zeigen kann, ist durch die Magnetquantenzahl ml festgelegt. Sie kann nur die folgenden diskreten Werte annehmen: ml = – l , – l + 1, ..., –1, 0, 1, ... l – 1, l (1.28) insgesamt also 2 l + 1 Werte. Dementsprechend gilt:

Page 23: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

25

l = 0 → ml = 0 l = 1 → ml = –1 oder 0 oder +1 l = 2 → ml = –2 oder –1 oder 0 oder +1 oder +2 ... Der Name Magnetquantenzahl ist dadurch zu erklären, dass der Übergang von einer Ausrichtung des axialen Bahndrehimpulsvektors in eine andere räumliche Lage die Zu- oder Abfuhr von Energie er-fordert. Die Zufuhr lässt sich z. B. mit Hilfe eines Magnetfeldes er-reichen, dessen Richtung man im Allgemeinen mit der Raumkoordi-nate z verbindet (Abb. 1.12). Es gilt dann für den Betrag, den die Komponente des Drehimpulses in z-Richtung hat: h⋅=

lzmL (1.29)

0

1

m =2l

3

–1

–2

–3

L

B

z

Abb. 1.12: Richtungsquantisierung des Drehimpulses

Entdeckt wurde dieser Effekt von dem niederländischen Physiker Pieter Zeeman. Er beobachtete 1896 in Spektren von Atomen, die einem äußeren Magnetfeld ausgesetzt waren, eine Aufspaltung der Spektrallinien in mehrere Einzellinien. Diese Erscheinung wird da-her als Zeeman-Effekt bezeichnet.

Page 24: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

26

1.2.1.4 Spinquantenzahl ms

Der mögliche Eigendrehimpuls eines Elektrons hat folgenden Be-trag:

h)1( += ssLs

(1.30)

wobei s die (Betrags-) Spinquantenzahl ist. Sie hat nur den einen Wert:

2

1+=s (1.31)

sodass auch für Ls nur ein Wert resultiert. Da s also konstant ist, führt man sie nicht eigens als Quantenzahl auf. Die möglichen Richtungen, in welche die Achse der Eigendreh-bewegung des Elektrons und damit sein Eigen-Drehimpulsvektor zeigen kann, gibt die (magnetische Richtungs-) Spinquantenzahl ms an. Sie kann – in Analogie zur Magnetquantenzahl ml – insgesamt 2s + 1 diskrete, d. h. für das einzelne Elektron die zwei Werte an-nehmen: 21+=

sm und 21−=

sm (1.32)

Anmerkung

1) Zwischen s und ms wird häufig nicht scharf unterschieden: Es wird nur von „Spinquantenzahl“ gesprochen, da für s und ms der Betrag gleichermaßen ½ ist. Zur Beschreibung der räumli-chen Orientierung des Elektronenspins muss aber die (variable) Quantenzahl ms angegeben werden, die aus Wert und Vorzeichen besteht.

2) Man darf die – für das einzelne Elektron konstante – Quantenzahl s nicht verwechseln mit dem Symbol s, das für die Unterschale mit der Nebenquantenzahl l = 0 verwendet wird

Die Ausführungen über die Spinquantenzahl gehen zurück auf eine Entdeckung der Physiker Otto Stern und Walter Gerlach. Sie beo-bachteten 1922 bei Messungen der atomaren magnetischen Momente in Atomstrahlexperimenten, dass sich ein Strahlenbündel von neutra-len Ag-Atomen im Grundzustand mit einem äußeren 5s-Elektron (n = 5, l = 0, kurz auch als 5s-Zustand bezeichnet), im inhomoge-nen Magnetfeld in zwei Strahlenbündel (1) aufteilt (Abb. 1.13). Die Silberatome besitzen wegen ihrer Elektronenstruktur der Atomhülle das gleiche magnetische Moment wie ein einzelnes Elektron. Nach klassischer Vorstellung hatte man eine kontinuierliche Verteilung der Ag-Atome erwartet (2).

Page 25: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

27

Atomstrahl

N

(1)

S

(2)

Abb. 1.13: Stern-Gerlach-Versuch in schematischer Darstellung

Das magnetische Moment der Atome, das mit der Bahnbewegung des Elektrons verbunden ist, ist dem Bahndrehimpuls proportional. Im 5s-Zustand ist der Bahndrehimpuls des Elektrons jedoch Null, weshalb das magnetische Moment des Ag-Atoms in diesem Zustand ebenfalls Null ist und folglich das Magnetfeld keine Wirkung auf die Bewegung der Silberatome haben sollte. Des Weiteren zeigten spekt-roskopische Untersuchungen mit hoher Auflösung, dass die Spektral-linien des Wasserstoffatoms eine Feinstruktur in Form von Doppel-linien (Dublettes) aufwiesen, die auch bei Abwesenheit eines Mag-netfeldes auftraten. Diese Beobachtungen wiesen auf einen noch nicht erfassten Parameter hin. Zur Erklärung dieser Untersuchungs-ergebnisse nahmen 1925 die amerikanischen Physiker G. Uhlenbeck und S. Goudsmith an, dass das Elektron über einen Eigendrehimpuls verfügt, der nicht mit der Bewegung des Elektrons im Raum verbun-den ist und der als Spin bezeichnet wurde. Der Spin des Elektrons stellt wie die Ladung und Masse eine intrinsische Eigenschaft des

Elektrons dar. Der mit dem Spin verbundene Eigendrehimpuls S

Lr

ist die Ursache dafür, dass das Elektron als Elementarteilchen ein magnetisches Moment besitzt

Der Vektor S

Lr

des Elektronspins kann nur solche Orientierungen im

Raum annehmen, bei denen seine Projektion zS

L,

auf eine willkür-

lich festgelegte Richtung eines äußeren Magnetfeldes (historisch wird diese als z-Richtung bezeichnet) diskrete Werte

sm besitzt, die

ein Vielfaches von h sind. Es gilt: h

szSmL =

, (1.33)

Durch die beiden Werte der magnetischen Spinquantenzahl ms ver-doppelt sich die Anzahl der unterschiedlichen Zustände, die von Elektronen mit derselben Hauptquantenzahl n besetzt werden kön-nen. Insgesamt lassen sich in einer Schale mit der Hauptquantenzahl n maximal

∑ =+−

=

1

0)12(2

n

l

l 2n2 (1.34)

Page 26: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

28

Elektronen unterbringen, die sich auf n Unterschalen verteilen. Zusammenfassend sei noch einmal festgestellt: Für die vollständige Beschreibung des Zustands eines Elektrons im Atom sind vier Quan-tenzahlen erforderlich: Haupt-, Bahndrehimpuls-, Magnet- und (magnetische) Spinquantenzahl. Um Übereinstimmung mit sämtli-chen experimentellen Befunden zu erzielen, formulierte 1925 Wolf-gang Pauli ein Ausschließungsprinzip, heute kurz als Pauli-Prinzip bezeichnet:

„Es kann niemals zwei oder mehrere äquivalente Elekt-ronen im Atom geben, für welche die Werte aller Quan-tenzahlen (n, l , ml, ms) übereinstimmen. Ist ein Elekt-ron im Atom vorhanden, für das diese Quantenzahlen bestimmte Werte haben, so ist dieser Zustand „be-setzt“. Zu jedem Satz dieser vier Quantenzahlen gibt es in einem Atom höchstens ein Elektron.“

Das Ausschließungsprinzip ist mit dem Spin des Elektrons ver-knüpft, der anschaulich mit der Vorstellung eines rotierenden Elekt-rons, analog eines um eine eigene Achse rotierenden Kreisels, in Zusammenhang gebracht werden kann. Das Pauli-Prinzip beschränkt dabei die Höchstbesetzungszahl pro Zustand auf eins. Der Spin der Elektronen bildet eine unveränderliche Größe, die stets den gleichen, festen Wert hat. Aus den oben genannten historischen Gründen be-sitzt der Spin des Elektrons den Wert 1/2h . Es handelt sich dabei um die kleinste und nicht weiter teilbare Größe, in der Drehimpulse in der Natur vorkommen. Träger dieser Drehimpulse sind Elementar-teilchen, die als Fermionen bezeichnet werden. Zu dieser Gruppe gehören auch die Protonen und Neutronen.

1.2.2 Atombau und das Periodensystem der Elemente

Die unübersichtliche Fülle der uns umgebenden Substanzen lässt sich chemisch auf wenige Grundstoffe, die chemischen Elemente, zurückführen. 1869 ordneten Dmitrij Mendelejew (1834 – 1907) und Lothar Meyer (1830 - 1895) unabhängig voneinander die Gesamtheit der chemischen Elemente mit zunehmender relativer Atommasse zu einem periodischen System. Die chemischen Elemente werden im periodischen System so ange-ordnet, dass Elemente mit ähnlichen chemischen und physikalischen Eigenschaften untereinander in senkrechten Spalten, den so genann-ten Gruppen, zusammengefasst werden. Dadurch ergeben sich unter-schiedlich lange waagrechte Reihen, die so genannten Perioden, bis zum erneuten Auftreten von Elementen mit entsprechendem Verhal-ten (Abb. 1.14). Noch vor der Entdeckung des Elektrons, die erst 1897 durch Joseph John Thomson (1856 – 1940) erfolgte, deuteten

Page 27: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

29

die Regelmäßigkeiten des Periodensystems auf eine innere Struktur der Atome hin. Erst 1913 erkannte der englische Physiker Henry Moseley (1887 – 1915), dass nicht die Atommasse, sondern die Kernladungszahl Z die richtige Reihenfolge der Elemente im Periodensystem bestimmt. Die Elemente werden dabei entsprechend ihrer Reihenfolge mit Ord-nungszahlen Z durchnumeriert, durch die ihr Platz im periodischen System charakterisiert wird. Die Ordnungszahl ist identisch mit der Anzahl der Elektronen in der Atomhülle und entspricht wegen der elektrischen Neutralität der Atome ihrer Kernladungszahl.

Abb. 1.14: Hauptgruppenelemente des Periodensystems

Erst mit Hilfe des Pauli-Prinzips, das eine Begrenzung der Beset-zungszahlen der Elektronenzustände in den Atomen postuliert, konn-te die Periodizität der Eigenschaften der chemischen Elemente infol-ge der schalenartigen Elektronenstruktur der Atomhüllen erklärt werden. Ein vollständiges Periodensystem der Elemente (Version: 2007) der International Union of Pure and Applied Chemistry (IU-PAC) ist im Anhang 3 dargestellt. Die Elemente der ersten Periode, Wasserstoff und Helium, besitzen eine einzige Elektronenschale. Das Wasserstoffatom hat nur ein Elektron, das sich im 1s-Zustand befindet. Dieser Zustand wird durch die Quantenzahlen n = 1, l = 0, 0=

lm und – da die Orientie-

rung des Spins beliebig ist –, entweder 2/1+=s

m oder 2/1−=s

m

gekennzeichnet. Nach dem Aufbauprinzip entsteht jedes Element aus dem vorausgegangenen durch Hinzufügen sowohl eines Protons zum Atomkern als auch eines Elektrons zur Atomhülle. Damit kommt man zum Heliumatom, dessen beide Elektronen sich im 1s-Zustand befinden, jedoch wegen des Paulischen Ausschließungsprinzips mit antiparallelen Spinorientierungen. Seine Elektronenkonfiguration hat

Page 28: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

30

in symbolischer Schreibweise die Form 21s . Die Besetzung der K-Schale ist damit abgeschlossen. Mit dem nächsten Element, dem Lithium, beginnt die 2. Periode des Periodensystems der Elemente. Die Elemente der zweiten Periode besitzen zwei Elektronenschalen. Das dritte Elektron des Lithiumatoms (Z = 3) wird in den energetisch tiefstgelegenen Zustand der L-Schale mit n = 2 eingebaut. Dieser wird als 2s-Zustand bezeichnet. Die Elektronenkonfiguration des Li-

Atoms lautet damit: ss 21 2 . Das nächste Element ist Beryllium. Es besitzt 4 Elektronen. Nach dem Aufbauprinzip wird das vierte Elekt-ron in die 2s-Unterschale eingebaut, womit diese vollständig besetzt

ist. Die Elektronenkonfiguration des Be-Atoms lautet: 22 21 ss . Die L-Schale mit n = 2 besitzt zwei Unterschalen mit l = 0 (2s-Unterschale mit der maximalen Besetzungszahl 2) und l = 1 (2p-Unterschale mit der maximalen Besetzungszahl 6). Durch sukzessives Auffüllen der 2p-Unterschale mit Elektronen erhält man für die nächsten Elemente folgende Elektronenkonfigura-tionen: Bor (Z = 5): pss 221 22 Kohlenstoff (Z = 6): 222 221 pss Stickstoff (Z = 7): 322 221 pss Sauerstoff (Z = 8): 422 221 pss Fluor (Z = 9): 522 221 pss Neon (Z = 10): 622 221 pss Die 2. Periode des Periodensystems endet mit der vollständigen Be-setzung der 2p-Unterschale mit dem Edelgas Neon. Allgemein gelten folgende Gesetzmäßigkeiten beim Aufbau des Periodensystems: – Die Periodenummer eines Elements gibt an, welches die

äußerste Hauptschale ist, auf der sich Elektronen befinden. – Aus der Zugehörigkeit eines Elementes zu einer Hauptgruppe

ergibt sich die Anzahl der Elektronen auf der äußersten Haupt-schale. Diese werden Außen- oder Valenzelektronen genannt.

– Das chemische Verhalten eines Elements wird bestimmt durch

die Anzahl der Elektronen auf der äußersten Elektronenschale. Daher verhalten sich Elemente der gleichen Hauptgruppe che-misch ähnlich.

Aus energetischen Gründen sind Atome, bei denen die äußerste s- und p-Unterschalen vollständig besetzt sind und bei denen sich noch keine Elektronen auf den nächst höheren Schalen befinden, beson-ders stabil. Diese Atome gehören zur 8. Hauptgruppe und bilden die Gruppe der Edelgase. Mit Ausnahme des Heliums besitzen alle

Page 29: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

31

Edelgase ein Oktett von acht Außenelektronen. Edelgasatome sind aufgrund ihrer stabilen Edelgaskonfiguration chemisch ausgespro-chen reaktionsträge, d. h. sie nehmen i. a. nicht an chemischen Reak-tionen teil. Diese besondere Stabilität kommt auch in ihren hohen Ionisierungsenergien zum Ausdruck (Abb. 1.15).

Abb. 1.15: Ionisierungsenergie als Funktion der Ordnungszahl

Auf die reaktionsträgen Edelgase Helium (He), Neon (Ne), Krypton (Kr) und Xenon (Xe) folgen unmittelbar die chemisch reaktionsfreu-digen Alkali-Elemente Lithium (Li), Natrium (Na), Kalium (K), Rubidium (Rb) und Caesium (Cs). Sie stehen in der I. Hauptgruppe untereinander und weisen alle ähnliche Eigenschaften auf, beispiels-weise geringe Dichten ρ und niedrige Schmelztemperaturen

(Tab. 1.2). Gleichzeitig besitzen sie die geringsten Ionisierungsener-gien aller Atome des periodischen Systems der Elemente.

Li Na K Rb Cs

Z 3 11 19 37 55

CS

°/ϑ 179,00 97,8 63,5 39,0 28,5

)//( 3cmgρ 0,53 0,97 0,85 1,52 1,88

Tab. 1.2: Eigenschaften der Elemente der I. Hauptgruppe (Alkalimetalle)

Offenbar lassen sich Elektronen leichter aus kaum gefüllten als aus vollständig besetzten Schalen entfernen. Die Elektronen der Atom-hülle müssen in ständiger Bewegung bleiben, damit sie nicht infolge der elektrischen Anziehungskräfte in den Atomkern stürzen. Sie besitzen daher sowohl kinetische als auch potentielle Energie. Die potentielle Energie ist umso größer, je weiter vom Atomkern sich ein Elektron im Mittel aufhält, denn zur Entfernung eines Elektrons vom Atomkern muss Arbeit gegen die Coulombsche Anziehungskraft

Page 30: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

32

verrichtet werden. Um ein Elektron vollständig von einem Atom abzutrennen, ist eine Mindestenergie notwendig, nämlich die Ionisie-rungsenergie. Diese Ionisierungsenergie als Funktion der Ordnungs-zahl spiegelt die Periodizität einer physikalischen Eigenschaft der Elemente wider. Diese Periodizität äußert sich auch in der Systematik der Atomradi-en, die in Abb. 1.16 als Funktion der Ordnungszahl Z dargestellt sind.

Abb. 1.16: Atomradien für Elemente mit Z < 21

In Abbildung 1.16 sind die berechneten Radien der neutralen Atome in Abhängigkeit von der Ordnungszahl Z aufgetragen. Zu ihrer Be-rechnung wurden bei festen und flüssigen Elementen die jeweiligen Dichten bei 20°C zugrunde gelegt. Bei den gasförmigen Elementen wurden die Dichten ihrer flüssigen Phase unterhalb des Siedepunktes verwendet. Für ein Element mit dem Volumen V, der Masse m und

der Stoffmenge AN

Nn = gilt:

V

MN

N

V

Mn

V

m A

⋅=

⋅==ρ (1.35)

100 20 40 60 80

1,5

2

2,5

3

3,5

0

Fr

YbEu

Cs

Rb

K

Na

Ordnungszahl Z

Ato

mra

die

n R

A /

10

-10m

Li

H

Cl

F

BrRu

UAt

Page 31: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.2 Quantentheorie und Bohrsches Atommodell

33

Das Atom-Volumen, das von einem Atom in Anspruch genommen wird sei

3AA R

3

4V

π= .

Da das kugelförmige Atomvolumen nicht den ganzen Raum lücken-los ausfüllt gilt:

AVN

V≠

Mithilfe der Raumerfüllung RE folgt:

AVN

VRE =⋅

ρ⋅

⋅=

AA N

REMV

. Damit erhält man zur Berechnung der Atomradien die Beziehung:

AA

N4

REM3R

⋅ρ⋅π

⋅= (1.36)

Die dichteste Kugelpackung besitzt eine maximale Raumerfüllung

von RE = 0,74. Mit der Atommasse A

A N

Mm = erhält man schließlich

folgende Berechnungsformel für den Atomradius:

3 AA

m56,0R

ρ⋅= (1.37)

Die Alkaliatome, mit denen jeweils die Besetzung einer neuen Elekt-ronenschale beginnt, besitzen in Bezug auf ihre Nachbarelemente die größten Atomradien. Die auf abgeschlossenen inneren Schalen be-findlichen Elektronen sind fest gebunden und bilden einen positiv geladenen Atomrumpf, der quasi von einem äußeren „Leuchtelekt-ron“ als einfach positive Punktladung gesehen wird. Die inneren (Z – 1) Elektronen kompensieren gerade (Z – 1) positive Ladungen der Protonen im Atomkern. Infolge dieser elektrischen Abschirmung ist das Leuchtelektron schwach gebunden und kann sich daher im großen Abstand vom Atomkern bewegen. Innerhalb einer Haupt-gruppe nehmen die Atomradien mit wachsender Ordnungszahl Z zu, da mit jeder neuen Periode jeweils eine neue, weiter außen gelegene Elektronenschale dazukommt. Innerhalb einer Periode dagegen wer-den die Atomradien mit wachsender Ordnungszahl Z kleiner. Ob-wohl die Atome der Elemente einer Periode die gleiche Anzahl von Elektronenschalen besitzen, wächst mit zunehmender Kernladung die Coulombsche Anziehungskraft auf die gleich bleibende Anzahl

Page 32: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

34

von Elektronen in den inneren Schalen. Gleichzeitig nimmt die Ab-schirmwirkung des Atomrumpfes auf die Außenelektronen ab und verkleinert dadurch den Atomradius. Dementsprechend besitzen innerhalb der Elemente einer Periode die Halogenatome Fluor, Chlor, Jod und Brom mit jeweils 7 Außenelektronen die kleinsten Atomradien. Aus energetischen Gründen wird, wenn die p-Unterschale einer Hauptschale gefüllt ist, als nächstes die s-Unterschale der nächst höheren Hauptschale besetzt. Nach dem Auffüllen einer p-Unterschale wird daher eine neue Periode des Periodensystems be-gonnen. Erst bei höheren Ordnungszahlen werden dann die noch freien d- und f-Unterschalen der weiter innen liegenden Hauptscha-len schrittweise besetzt.

1.3 Atomspektren: Strahlungsabsorption und -emission

Atome absorbieren und emittieren Lichtquanten durch elektronische Übergänge in der Atomhülle. Durch Absorption eines Photons der Frequenz f kann ein Atom vom Grundzustand (Energie Eg) in einen angeregten Zustand (Energie Ea) übergehen, wenn die Bedingung hf = Ea – Eg erfüllt ist. Im Allgemeinen gehen angeregte Atome nach einer mittleren Lebensdauer von etwa 10–8 s unter Aussendung elekt-romagnetischer Strahlung in Form von Photonen wieder in den Grundzustand über. Der Grundzustand ist der stabilste Zustand im Atom. Er besitzt die niedrigste Gesamtenergie. Alle anderen Zustän-de werden als angeregte Zustände bezeichnet, da es einer Energiezu-fuhr von außen bedarf, um ein Elektron auf diese Zustände anzuhe-ben. Beträgt der Energieunterschied zwischen den beiden an der Emission beteiligten Zuständen E∆ , dann gilt für die Frequenz f der emittierten Photonen:

h

EE

h

Ef

ga−

=∆

= . (1.38)

Die Lichtquanten der Frequenz f enthalten die kleinste für diese be-stimmte Frequenz erzeugbare und nachweisbare Strahlungsenergie. Sie ist keine kontinuierlich veränderbare Größe, sondern quantisiert. (gequantelt). Beim Übergang eines Elektrons in der Atomhülle von einer „Bahn“ zu einer anderen wird genau ein Photon absorbiert oder emittiert. Unter dem Spektrum einer Strahlungsquelle versteht man eine Dar-stellung, in der die Intensität der emittierten Strahlung als Funktion der Frequenz oder der Wellenlänge aufgetragen ist. Die Spektren von Atomen sind diskrete Linienspektren. Die experimentelle Aufnahme von Spektren wird als Spektralanalyse bezeichnet. Jedes chemische Element ist im gasförmigen Zustand durch sein Spektrum eindeutig charakterisiert. Prinzipiell unterscheidet man zwischen Emissions-

Page 33: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.3 Atomspektren: Strahlungsabsorption und -emission

35

und Absorptionsspektren. Die Spektren werden umso komplizierter, je mehr Atome sich zu Molekülen zusammenlagern oder sich im engen Verband von Flüssigkeiten oder Festkörpern befinden und dementsprechend durch Wechselwirkungskräfte sich gegenseitig beeinflussen. Die Anzahl der Energieniveaus der Elektronen nimmt dadurch in kondensierter Materie stark zu. Erhitzte feste oder flüssi-ge Stoffe (z. B. Metallschmelzen) emittieren im Gegensatz zu den Linienspektren einzelner Atome ein breites kontinuierliches Spekt-rum.

Abb. 1.17: Emissionsspektrum

Untersucht man die Strahlung, die von angeregten Atomen ausgeht, dann registriert man ein Emissionsspektrum in Form von leuchten-den Linien auf dunklem Grund (Abb. 1.17). Es spielt dabei keine Rolle, wie die Atome angeregt wurden. Die Emissionsspektren der Atome wären äußerst linienreich und damit unübersichtlich, wenn alle Übergänge zwischen beliebigen Energieniveaus erlaubt wären. Das emittierte Photon führt aber einen Eigendrehimpuls, nämlich den Spin s = 1 h mit sich, sodass zur Erfül-lung des Drehimpulserhaltungssatzes der Drehimpuls des Atoms sich bei Emission eines Lichtquants um eine Einheit ändern muss. Für alle Atome sind nur die Strahlungsübergänge erlaubt, bei denen zwi-schen angeregten Zustand (

aE , al ) und Endzustand (

eE , el ) die

Auswahlregel 1±=∆=− lll ea (1.39)

erfüllt ist. Die Erhaltungssätze der Physik schränken somit die Viel-falt der denkbaren Vorgänge ein. Es sind nur die Strahlungsübergän-ge in einem Atom erlaubt und damit experimentell beobachtbar, die in Übereinstimmung mit den Erhaltungssätzen stehen.

Page 34: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

36

Wird dagegen eine Substanz S mit kontinuierlichem Licht bestrahlt, das alle Frequenzen eines bestimmten Bereichs enthält, dann regis-triert man im Spektrum der durchgehenden Strahlung fehlende Fre-quenzen, die im Absorptionsspektrum (Abb. 1.18) als dunkle Ab-sorptionslinien vor einem hellen Hintergrund erscheinen.

Meßanordnung: Absorptions-Spektroskopie

Meßergebnis: Absorptionsspektrum

Wellenlänge

Intensität

Lichtquelle

ProbePhotonen-Detektor

Datenauf-zeichnung

Abb. 1.18: Absorptionsspektrum

Beispiel: H-Atom

Das Wasserstoffatom ist das einfachste Atom. Es besitzt nur ein Elektron in seiner Atomhülle. Bei Strahlungsabsorption kann das Elektron aus dem Grundzustand (n = 1) in einen der ange-regten Zustände (n = 2, 3, ...) übergehen. Nur Frequenzen, die diesen Energien entsprechen, werden im Absorptionsspektrum fehlen. Das Absorptionsspektrum von Wasserstoff wurde bereits 1814 von Joseph von Fraunhofer (1787 – 1826) bei der spektra-len Untersuchung des Sonnenlichtes beobachtet. Die von der Sonnenoberfläche ausgesandte elektromagnetische Strahlung wird teilweise von der die Sonne umgebende Wasserstoffat-mosphäre absorbiert. Die absorbierten Frequenzen werden auf der Erde als dunkle Linien, den so genannten Fraunhofer-Linien, im Spektrum der Sonnenstrahlung beobachtet.

Bei der Strahlungsemission werden die emittierten Frequenzen als helle Linien registriert. Alle Übergänge, denen das unterste Energieniveau gemeinsam ist, gehören im Emissionsspektrum zur gleichen Serie. Jede Serie wird durch einen eigenen Namen gekennzeichnet.

Lyman-Serie: unterstes Niveau → n = 1. Balmer-Serie: unterstes Niveau → n = 2.

Page 35: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.3 Atomspektren: Strahlungsabsorption und -emission

37

Paschen-Serie: unterstes Niveau → n = 3. Die im H-Atom möglichen Elektronenübergänge sind in Abb. 1.19 als Pfeile dargestellt. Pfeile die auf derselben Elektronenbahn enden, gehören zu einer Serie von Übergängen. Für den Übergang eines Elektrons im H-Atom aus der m-ten Bahn mit der Gesamtenergie

mE in die n-te Bahn (m > n) mit der Gesam-

tenergie n

E gilt:

)11

(22 nm

REEhfEHnm

−−=−==∆ (1.40)

Für die Balmer-Serie ist n = 2, und man erhält für m = 3 die αH -

Linie, für m = 4 die βH -Linie, für m = 5 die γH -Linie usw.

Page 36: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

38

Balmer-Serie des H-Atoms

n=3

Ha

Ha

Hg

Hg

Hd

Hd

Hb

Hb

n=4

rot

650 600 550 500 450 400 350

blau-grün blau violett

n=5 n=6

λ in mm

Balmer-Serie

Paschen-Serie

Lyman-Serie

Atomkern

1

2

3

4

n

Abb. 1.19: Emissionsspektrum des Wasserstoffatoms

1.4 Laser

Elektronen befinden sich in Atomen stets in Quantenzuständen mit diskreten Energiewerten. Im Folgenden soll vereinfachend ein Atom mit nur zwei Zuständen mit den Energie

1E und

2E betrachtet wer-

den. Befindet sich ein Atom im Grundzustand (A bzw. 1), so kann es durch Absorption eines Photons geeigneter Energie

12fhE ⋅=∆ in

den angeregten Zustand (A* bzw. 2) übergehen (Abb. 1.20).

Page 37: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.4 Laser

39

eE1

E2 (2)

(1)

A*

Nachher

A

Vorher

Photon

∆E = hf1 2 ∆E = hf

1 2

Abb. 1.20: Absorption eines Photons

Nach einer kurzen Zeitspanne, der Lebensdauer ( st 810−≈∆ ) des

Zustandes, kann das angeregte Atom *A spontan, ohne irgendeine äußere Einwirkung durch Emission eines Photons der Energie

1212fhEEE ⋅=−=∆ wieder in den ursprünglichen Grundzustand

übergehen (Abb. 1.21).

e

E1

E2 (2)

(1)

NachherVorher

∆E = hf1 2

A

Photon

∆E = hf1 2

A*

Abb. 1.21: Spontane Emission eines Photons

Befinden sich mehrere Atome im angeregten Zustand (2), so sind die spontanen Emissionen unabhängig voneinander, und die in Form von Photonen dabei abgegebene elektromagnetische Strahlung ist nicht kohärent. Wirkt dagegen auf ein Atom im angeregten Zustand (2) von außen elektromagnetische Strahlung in Form eines Photons der Energie

1212fhEEE ⋅=−=∆ ein, so kann ein erzwungener Übergang in

den Grundzustand (1) erfolgen, wobei ein Photon derselben Energie emittiert wird (Abb. 1.22). Dieser Vorgang, der bereits 1916 von Einstein postuliert wurde, wird induzierte Emission genannt. Dabei sind die durch einen induzierten Elektronenübergang hervorgerufenen sekundären Photonen identisch mit den primären Photonen, die den Emissionsvorgang erzwungen haben.

Page 38: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

40

Vorher

P ho ton

∆E = h f1 2

Nachher

A

P ho ton

∆E = h f1 2

P ho ton

∆E = h f1 2

A*

e

E1

E2 (2)

(1)

∆E = hf1 2

Abb. 1.22: Induzierte Emission eines Photons

Mit anderen Worten: Bei der induzierten Photonenemission entsteht kohärente Strahlung, d. h. beide Photonen stimmen in Energie, Aus-breitungsrichtung und Phasenlage überein. Ihre elektrischen und magnetischen Felder schwingen dann im Takt. Treffen diese auf andere angeregte Atome im Zustand (2), so können auch diese zur induzierten Photonenemission stimuliert werden. Sind ausreichend viele angeregte Atome vorhanden, kann durch diesen Prozess die Anzahl der sekundären Photonen lawinenartig anwachsen. Aller-dings wirkt dieser Lichtverstärkung der gegenläufige Prozess der Photonenabsorption entgegen, denn die Rate der induzierten Emissi-onsprozesse ist der Anzahl der angeregten Atome, die Rate der Ab-sorptionsvorgänge der Anzahl der Atome im Grundzustand proporti-onal. Im Normalfall übertrifft die Anzahl der Atome im Grundzu-stand bei weitem die Anzahl der angeregten Atome, so dass die Ab-sorption der einfallenden Strahlung über die stimulierte Emission dominiert. Lichtverstärkung der einfallenden Strahlung ist daher nur bei Besetzungsinversion möglich, d. h. es befinden sich mehr Atome im angeregten Zustand als im Grundzustand. Die Überführung der Atome oder Moleküle eines Stoffes in einen Zustand mit Beset-zungsinversion ist durch geeignete technische Maßnahmen wie bei-spielsweise optisches Pumpen möglich. Dabei wird dem Stoff von außen Anregungsenergie in Form einer intensiven elektromagneti-schen Strahlung zugeführt. Eine Strahlungsquelle mit einem aktiven Medium aus Atomen / Molekülen mit Besetzungsinversion wird Laser genannt. Es handelt sich dabei um ein Akronym der englischen Bezeichnung Light amplification by stimulated emission of radiation (Lichtverstärkung durch erzwungene Emission von Strahlung). Je nach Art des aktiven Mediums, in dem die Lichtverstärkung er-zeugt wird, unterscheidet ,man Festkörper-, Dioden-, Gas- und Farbstofflaser. Das aktive Medium befindet sich in einem optischen Resonator, der im einfachsten Fall aus einem Paar paralleler Spiegel besteht, die auf einer optischen Achse angeordnet sind. Durch Refle-xion an den Spiegeln durchläuft die primäre Lichtwelle das aktive Medium mit Besetzungsinversion immer wieder. Sie wird dabei durch induzierte Emission kontinuierlich verstärkt, bevor sie durch einen der beiden Spiegel, der halbdurchlässig ausgelegt ist, ausge-

Page 39: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.4 Laser

41

koppelt wird. Der dabei entstehende Laserstrahl stellt einen Photo-nenstrom von hoher Intensität (Energieflussdichte), scharfer Bünde-lung und extrem schmalbandigem Frequenzbereich dar, ist also quasi monochromatisch. Je nach Betriebsart sind kontinuierliche Dauer-strich-Laser und gepulste Laser mit Pulsdauern bis zu s101 12−⋅ zu unterscheiden. Die grundlegende Idee zur technischen Realisierung eines Lasers wurde 1958 von Arthur Schawlow und Charles Townes veröffent-licht. Der erste Laser wurde 1960 von Theodore Maiman entwickelt. Es handelte sich dabei um den Rubin-Laser, einen Festkörperlaser, dessen aktives Medium ein Saphirkristall ist, der aus Aluminiumoxid (Al2O3) besteht und bei dem etwa 0,04 % der Al+++-Ionen durch Cr+++-Ionen substituiert werden. Ein stabförmiger Rubinkristall ist von einer Blitzlampe in Form einer spiralförmigen Gasentladungs-röhre umgeben, welche die optische Pumpleistung zur Erzeugung der Besetzungsinversion liefert. Abb. 1.23 zeigt das vereinfachte Term-schema der Chrom-Atome im Rubinkristall.

Energie

Grundzustand

strahlungsloserÜbergang

induzierterÜbergang

Ele

ktro

ne

nan

reg

un

g

(1) (1)

(3) (3)

(2)

Energie

e e

hf1 2

Abb. 1.23: Termschema der Cr-Atome im Rubin-Laser

Unter einem Termschema eines Atoms versteht man die Darstellung der möglichen Energiewerte auf einer vertikalen Energieskala durch horizontale Striche. Die elektronischen Übergänge zwischen den Energiezuständen sind als vertikale Pfeile eingetragen. Durch das intensive Pumplicht der Blitzlampe werden die Elektronen durch Photonenabsorption aus dem Grundzustand (1) in das breite Band (3) der angeregten Zustände gehoben. Dadurch wird der Grundzustand entvölkert. Unter Energieabgabe an den Kristall in Form von Wärme gehen die Elektronen dann bevorzugt strahlungslos in den metastabi-

len Zustand (2) über, dessen Lebensdauer etwa 510 mal größer ist als in Zustand (3). Dort sammeln sie sich an, sodass sich im Zustand (2) nach kurzer Zeit mehr Elektronen befinden als im Grundzustand (1). Damit ist die für die Lasertätigkeit notwendige Besetzungsinver-sion realisiert. Spontane Photonenemission von (2) nach (1) verur-sacht dann die stimulierte Emission. Die beim induzierten Übergang

Page 40: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

42

von (2) nach (1) mit der Energie 12

fhE ⋅=∆ emittierten Photonen

der Laserstrahlung besitzen eine Wellenlänge von nm694=λ . In

Tabelle 1.3 sind einige technisch wichtigen Lasertypen aufgeführt.

Typ Aktives Medium Wellenlänge

Festkörper-Laser YAG-Neodym 1,064 mµ

Dioden-Laser Gallium-Arsenid 780 nm

Gas-Laser

Helium-Neon

Stickstoff ( 2N )

Kohlendioxid ( 2CO )

633 nm

337 nm

m6,10 µ

Tab.: 1.3: Verschiedene Lasertypen

Von den vielfältigen Laser-Anwendungen seien folgende Beispiele genannt: Barcode-Scanner, Audio-CD-Player, CD-ROM- und DVD-Laufwerke, Geräte für die Vermessungstechnik, die Umweltüberwa-chung und die optische Datenübertragung durch Glasfaser-Kabel sowie Vorrichtungen zum Schneiden, Schweißen und Härten von Metallen.

1.5 Röntgenstrahlung

Wilhelm Conrad Röntgen entdeckte 1895 in Würzburg eine durch- dringende elektromagnetische Strahlung im Wellenlängenbereich von 10–9 m bis 10–11 m, die nach ihm benannte Röntgenstrahlung. Diese Strahlung kann in einer Röntgenröhre erzeugt werden. Sie besteht aus einem evakuierten Glaskolben, in dem aus einer Kathode durch Glühemission Elektronen austreten, die durch eine hohe elekt-rische Spannung UA zur Anode hin beschleunigt werden.

+

Kathode

Anode

Glaskolbenevakuiert

Röntgenstrahlung

Cu

H O2

W

Abb. 1.24: Aufbau einer Röntgenröhre

Beim Auftreffen auf die Anode besitzen sie die Energie Ekin = e UA, die bei den zur Abbremsung der Elektronen führenden Stoßprozessen mit den Atomen der Anode teilweise in Röntgenstrahlung umgewan-

Page 41: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.5 Röntgenstrahlung

43

delt wird. Die Röntgenstrahlung entsteht in der Atomhülle. Sie ent-steht aus der Überlagerung eines kontinuierlichen Spektrums, der Röntgenbremsstrahlung, die im kurzwelligen Bereich durch eine minimale Wellenlänge

minλ begrenzt wird, und eines Linienspekt-

rums, das durch das Anodenmaterial bestimmt wird und deshalb charakteristische Röntgenstrahlung (Abb. 1.25) genannt wird. I

min

K

K

Abb. 1.25: Schematisches Spektrum einer Röntgenröhre

1.5.1 Röntgenbremsstrahlung

Die Röntgenbremsstrahlung entsteht bei der Abbremsung von schnell bewegten Elektronen im elektrischen Feld der Atomkerne. Die maximale Röntgenstrahlungsenergie

maxfhE ⋅= entsteht dann,

wenn das Elektron seine gesamte beim Durchlaufen der zwischen Kathode und Anode anliegenden elektrischen Spannung

AU aufge-

nommene kinetische Energie A

Ue ⋅ in einem Stoßprozess abgibt und

diese vollständig in elektromagnetische Strahlungsenergie umge-wandelt wird. Es gilt dann:

AUefh ⋅=⋅

max (1.41)

min

max λc

f = (1.42)

A

Ue

ch

f

c

⋅⋅

==max

minλ . (1.43)

Das kontinuierliche Röntgenbremsspektrum besitzt eine kurzwellige Grenze λmin, die so genannte Grenzwellenlänge. Sie hängt nur von der beschleunigenden Anodenspannung, nicht jedoch vom Anoden-material der Röntgenröhre ab.

Page 42: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

44

1.5.2 Charakteristische Röntgenstrahlung

Das auf die Anode auftreffende Elektron kann beim Stoßprozess ein Elektron aus einer voll besetzten – inneren – Schale schlagen, wenn die beim Stoß übertragene Energie die Bindungsenergie des Hül-lenelektrons überschreitet. Die dabei durch Ionisierung entstehende Lücke in der K- oder L-Schale wird sofort von Elektronen der weiter außen liegenden Schalen aufgefüllt, und zwar unter Emission von elektromagnetischer Strahlung mit für das Anodenmaterial charakte-ristischen Frequenzen bzw. Wellenlängen. Durch den Übergang eines äußeren Hüllenelektrons in die Lücke wird Energie freigesetzt, da die äußeren Elektronen schwächer gebunden sind als die inneren. Die Bindungsenergie der Hüllenelektronen nimmt mit dem Abstand vom Atomkern nach außen hin ab; das charakteristische Spektrum ist daher vom Anodenmaterial abhängig. Seine Linien überlagern sich dem kontinuierlichen Bremsspektrum. Die (K-, L-, M-, ...)Schale, in der sich die Leerstelle befindet, gibt der betreffenden Röntgenlinie den Namen. Die Herkunft des auffüllenden Elektrons wird durch einen griechischen Index ( α β γ, , ,... ) gekennzeichnet.

In Erweiterung der Balmerformel erhält man für wasserstoffähnliche Ionen mit der Kernladung Z, in deren Hülle sich nur ein einziges Elektron befindet:

)11

(22

2

nmZREEhfE

Hnm−−=−==∆ (1.44)

E∆ ist die Photonenenergie, die beim Übergang des Elektrons aus

der m-ten Bahn mit der Gesamtenergie Em in die n-te Bahn (m > n) mit der Gesamtenergie En emittiert wird. Für die diskreten Röntgenenergien

KE der K-Serie gilt:

KLK EEfhE −=⋅=

α (1.45)

KMK EEfhE −=⋅=β

KNK EEfhE −=⋅=γ

M M M M Wie die Bindungsenergien der Elektronen hängen auch die Energien der Röntgenquanten von der Ordnungszahl Z der Atome des Ano-denmaterials ab. Für die Energien der K-Serie (n = 1, m = 2, 3, 4, ... entsprechend den Bezeichnungen α β γ, , ,... ) gilt das Moseley-

sche Gesetz:

)11

()1(2

21,

−−−=−==m

ZREEhfEHmmK

(1.46)

Der mit der Emission der Röntgenstrahlung verbundene Übergang eines Hüllenelektrons in die K-Schale des Atoms setzt einen unbe-

Page 43: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.6 Übungsaufgaben zu Kapitel 1

45

setzten Platz (Zustand) in der K-Schale voraus. Durch Stoßionisation mit hochenergetischen Elektronen oder Photonen wie γ -Quanten

können Elektronen der inneren Schalen aus dem Atomverband frei-gesetzt werden. Das in der Nähe des Atomkerns verbleibende K-Schalenelektron schirmt dann die wirksame Kernladung Z um eine Einheit ab. Diese Abschirmung führt dazu, dass ein äußeres Hül-lenelektron nur der anziehenden Wirkung einer reduzierten Kernla-dung (Z – 1) unterliegt. Mit wachsender Schalennummer (Haupt-quantenzahl) m nimmt die Energie des Hüllenelektrons zu und seine Bindungsenergie ab. Für ∞→m erreicht man den ungebundenen Zustand, der auch als Grenzkontinuum bezeichnet wird. Im zugehö-rigen Röntgenspektrum erscheint die so genannte K-Kante mit der

maximalen Grenzenergie 2)1( −= ZREHK

. Für die Energien der

langwelligsten K-Linie (m = 2), der αK - Strahlung, liefert das Mo-

seleysche Gesetz:

2)1(4

3−== ZRhfE

HKα= 10,2 2)1Z( −⋅ eV (1.47)

Das Moseleysche Gesetz erlaubt aus der Messung der Energie der

αK -Röntgenstrahlung die Bestimmung der Ordnungszahl Z und

ermöglicht damit eine atomphysikalische Elementbestimmung.

1.6 Übungsaufgaben zu Kapitel 1

Aufgabe 1 Das digitale Mobilfunknetz E-Plus benutzt Funkfrequenzen von 1800 MHz. Welche Wellenlänge hätten diese Funksignale, wenn es sich um analoge elektromagnetische Wellen handeln würde? Aufgabe 2 Aus einer Cäsium-Photokathode mit einer Austrittsarbeit von

eVWA

94,1= sollen Photoelektronen freigesetzt werden.

a) Bestimmen Sie die größte Wellenlänge, mit der dies gerade

noch möglich ist. b) Welche kinetische Energie in eV besitzen die Photoelektronen

bei Bestrahlung mit UV-Licht der Wellenlänge λ = 300 nm? Aufgabe 3 Welchen Radius besitzt die 3. Bohrsche Bahn im H-Atom?

Page 44: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

46

Aufgabe 4 Berechnen Sie den Radius der 1. Bohrschen Bahn eines Elektrons im zweifach geladenen Lithium-Ion (Li++), dem zwei Elektronen infolge von Ionisationsprozessen entrissen wurden. Aufgabe 5 a) Wie viele erlaubte Möglichkeiten der Emission von Lichtquanten

besitzt ein H-Atom im angeregten Zustand, wenn sich sein Elekt-ron in der 3. Bohrschen Bahn befindet?

b) Wie viele Lichtquanten mit unterschiedlicher Strahlungsenergie treten dabei auf?

Aufgabe 6 a) Beschriften Sie in dem schematischen Energieterm-Schema

(Abb. 1.22) die besetzten Hauptschalen mit den entsprechenden lateinischen Buchstaben!

b) Geben Sie die detaillierte Elektronenkonfiguration von Natrium an!

H

a)

He

b)

Li

c)

Ne

d)

Na

e)

Abb. 1.26: Energietermschema

Aufgabe 7 Können He-Atome nach entsprechender Anregung charakteristische Röntgenstrahlung emittieren? Begründen Sie Ihre Antwort! Aufgabe 8 Bestimmen Sie die Wellenlänge der Strahlung, die beim Übergang eines ionisierten Wasserstoffatoms (H+) in den Grundzustand durch Einfang eines freien (ruhenden) Elektrons emittiert wird!

Page 45: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.7 Musterlösungen zu Kapitel 1

47

Aufgabe 9 Ein He-Ne-Laser strahlt Photonen mit einer Frequenz von

THzf 474= ab. a) Welche Wellenlänge besitzt diese Strahlung? b) Welche Energie transportieren die Photonen in den Einheiten

Ws und eV? c) Aus wie vielen Photonen besteht ein Rechteckimpuls von 0.1 ms

Dauer bei einer abgegebenen Strahlungsleistung des Lasers von 100 kW?

Aufgabe 10 Der Elektronenstrahl einer Farbfernseh-Bildröhre wird mit einer Anodenspannung von kVU

A26= beschleunigt und trifft dann auf

die Innenseite des Bildschirmes. Geben Sie die kürzest mögliche Wellenlänge der dabei entstehenden Röntgenstrahlung an! Aufgabe 11 Ein kreisförmiger CO2-Laserstrahl mit einem Durchmesser von 2 mm trifft mit einem Rechteckimpuls von 1 ns Dauer und der Ener-gie von 100 kJ auf eine zu bearbeitende Metallprobe. a) Wie viele Photonen treffen pro Laserpuls auf die Probe? b) Wie groß ist die Intensität (flächenbezogene Energiestromdich-

te) des Laserstrahls?

1.7 Musterlösungen zu Kapitel 1

Aufgabe 1 cf =⋅λ

HzMHzf 9108,11800 ⋅==

m1066,1s/1108,1

s/m103

f

c 19

8−⋅=

⋅==λ

Aufgabe 2 a) Die Photonen müssen eine Mindestenergie fhE ⋅= besitzen,

die der Austrittsarbeit WA der Photoelektronen entspricht.

AWfhE =⋅=

λc

f =

Page 46: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

48

λhc

WA

=

JeVJeVeVWA

1919 101,3/10602,194,194,1 −− ⋅=⋅⋅==

Alle Photonen mit einer Wellenlänge

maxλλ < können Elektronen

freisetzen.

nmmJ

smJs

W

hc

A

6411041,6101,3

/10310626,6 719

834

max=⋅=

⋅⋅⋅== −

λ

b)

AAkinWfhWEE −⋅=−=

Für die Photonenenergie E gilt:

eVJm

s

mJs

hchfE 14,410626,6

1000,3

10310626,619

7

834

=⋅=⋅

⋅⋅⋅=== −

λ

Für die kinetische Energie der Photoelektronen folgt: eVeVeVWEE

Akin20,294,114,4 =−=−=

Aufgabe 3 Für die n-te Bohrsche Bahn im H-Atom gilt:

22

20

4)( n

emrnr

en

hπε==

Mit den Konstanten:

Js3410055,1 −⋅=h

kgm 31101,9 −⋅=

Vm

As120

10854,8 −⋅=ε

folgt:

2101053,0 nmrn

⋅⋅= −

Für n = 3 erhält man mr 103

1077,4 −⋅= .

Aufgabe 4 Für die Bohrschen Radien r(n) im Coulombschen Feld eines Kerns der Kernladungszahl Z gilt:

Page 47: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.7 Musterlösungen zu Kapitel 1

49

Z

nmn

Zemrnr

en

2102

2

20 1053,0

4)( ⋅⋅=== −hπε

Für n = 1 und Z = 3 (Lithium) folgt:

mr 101

1018,0 −⋅= .

Aufgabe 5 a) 4 b) 3 Aufgabe 6 a) In dem schematischen Energieterm-Modell sind folgende Haupt-

schalen besetzt: a) K-Schale, b) K-Schale, c) K- und L-Schale, d) K- und L-Schale, e) K-, L- und M-Schale

b) Die Elektronenkonfiguration von Natrium lautet:

1622 3221 spss

Aufgabe 7 Die energiereichste charakteristische Röntgenstrahlung gehört zur K-Serie. Für die Energien der K-Serie gilt das Moseleysche Gesetz:

)11

()1(2

21,

−−−=−=⋅=m

ZREEfhEHmmK

Für ∞→m erscheint im charakteristischen Röntgenspektrum die K-Kante mit der maximalen Grenzenergie

22 )1(6,13)1( −⋅=−= ZeVZREHK

.

Für Helium ist Z = 2, und damit ist eVE

K6,13= . Es handelt sich

hierbei um eine harte UV-, nicht aber um Röntgenstrahlung. Aufgabe 8 Beim Einfang eines freien (ruhenden) Elektrons durch ein ionisiertes H-Atom (H+) wird gerade die Bindungsenergie des Elektrons im H-Atom von 13,6 eV frei. Geht das Elektron direkt in den Grundzu-stand des H-Atoms über, so folgt für die Energie E des emittierten Photons:

Page 48: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1 Atomphysik

50

JeVE 181018,26,13 −⋅== .

Wegen fhE ⋅= und cf =⋅λ folgt:

nmmJ

smJs

E

ch2,911012,9

1018,2

/10310626,6 818

834

=⋅=⋅

⋅⋅⋅=

⋅= −

λ

Aufgabe 9 a) cf =⋅λ

nmms

sm

f

c63310633,0

/11074,4

/103 614

8

=⋅=⋅

⋅== −λ

b) fhE ⋅=

eVJsJs 96,11014,3/11074,410626,6 191434 =⋅=⋅⋅⋅= −−

c) Die Strahlungsleistung des Lasers ist gegeben durch

tEP ∆∆= / . Dann ist die während der Pulsdauer mst 1,0=∆ abgegebene Photonenenergie JWsmskWtPE 10101,0100 ==⋅=∆⋅=∆ . Nach Aufgabenteil (b) transportiert jedes Photon die Energie

JE 191014,3 −⋅= . Der Rechteckpuls besteht daher aus

1919

1018,31014,3

10⋅=

⋅=

∆=

− J

J

E

EN Photonen.

Aufgabe 10 Die Grenzwellenlänge des kontinuierlichen Röntgenbremsspektrums ergibt sich gemäß

eU

ch

f

c

A ⋅⋅

==max

minλ

mWs

Jm

AsV

smJs 1016

26

193

834

min 10478,0106,41

10878,19

106,11026

/10310626,6 −−

⋅=⋅

⋅=

⋅⋅⋅

⋅⋅⋅=λ

Aufgabe 11 Die Photonen des CO2-Lasers besitzen eine Wellenlänge von

mµλ 6,10= . Sie transportieren jeweils eine Energie

Page 49: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

1.7 Musterlösungen zu Kapitel 1

51

Jhc

hfE 2010875,1 −⋅===λ

.

a) Der Rechteckimpuls besitzt eine Energie kJE 100=∆ . Folglich

treffen pro Laserpuls 2420

3

1033,510875,1

10100⋅=

⋅=

∆=

− J

J

E

EN

Photonen auf die Metallprobe. b) Der Laserpuls besitzt eine Leistung von

TWs

kJ

t

EP 100

10

1009

==∆∆

=−

.

Die Intensität I entspricht der flächenbezogenen Energiestromdichte (Leistung pro Fläche). Die Fläche A des Laserstrahls beträgt A = 3,14 mm2. Damit ergibt sich für die Intensität

21926

12

2

12

/1018,31014,3

10100

14,3

10100mW

m

W

mm

W

A

PI ⋅=

⋅=

⋅==

−.

Page 50: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

52

2 Kernphysik

2.1 Aufbau der Atomkerne

Ein Atomkern ist vollständig charakterisiert, wenn man die Zahl seiner Protonen und Neutronen kennt. Die Nukleonenzahl A = Z + N gibt an, wie viele Nukleonen ein Kern enthält. Sie wird auch als Massenzahl bezeichnet. Die Neutronenzahl N ergibt sich aus der Differenz von Nukleonenzahl A und Protonenzahl Z zu N = A – Z. Die Vorstellung, dass Atomkerne aus Protonen und Neutronen auf-gebaut sind, wurde 1932 von Werner Heisenberg entwickelt, nach-dem im selben Jahr James Chadwick in künstlich ausgelösten Kern-reaktionen ein neues, elektrisch neutrales Elementarteilchen, nämlich das Neutron entdeckte. Als Isotope bezeichnet man die Nuklide, die sich in der Zahl der Neutronen N, nicht aber in der Zahl der Protonen Z voneinander un-terscheiden. Isotope gehören daher stets zum gleichen chemischen Element. Die Nukleonen werden durch die Kernkräfte im Atomkern gebunden.

2.2 Kernkraft und Bindungsenergie

Atomkerne sind aus elektrisch positiv geladenen Protonen und elektrisch neutralen Neutronen aufgebaut. Sie bilden die zusammen-fassend als Nukleonen bezeichneten Kernbausteine. Da zwischen den Protonen aufgrund ihrer gleichnamigen elektrischen Ladung absto-ßende Coulombkräfte wirken, ist der Zusammenhalt stabiler Atom-kerne nur durch die Wirkung anziehender Kräfte möglich, die stärker sind als die elektrische Coulomb-Abstoßung. Zur Erklärung dieses Phänomens musste eine neue Kraft eingeführt werden, die so ge-nannte Kernkraft. Durch eine Vielzahl von experimentellen Unter-suchungen konnten die Eigenschaften dieser Kernkraft ermittelt wer-den. Es handelt sich dabei um eine starke anziehende Kraft, die in gleicher Weise zwischen Proton und Proton (p-p), Proton und Neut-ron (p-n) sowie Neutron und Neutron (n-n) wirkt. Sie ist somit unab-hängig von der elektrischen Ladung der Nukleonen. Inzwischen konnte experimentell nachgewiesen werden, dass die Nukleonen eine innere Struktur besitzen und sich aus subnuklearen Elementarteil-chen, den sog. Quarks zusammensetzen. Als kleinste Bausteine der Materie gelten heute somit die Quarks und die Leptonen (leptos: grch. leicht). Zu den Leptonen zählen die Elementarteilchen, die keine starke Wechselwirkung besitzen und somit die Kernkraft nicht spüren, wie das Elektron und das Neutrino. Die Existenz von jeweils sechs verschiedenen Quarks und sechs Leptonen konnte inzwischen

Page 51: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.2 Kernkraft und Bindungsenergie

53

experimentell gesichert nachgewiesen werden. Die meisten von ihnen dienen zur Erklärung von extrem kurzlebigen Teilchen, die in Hochenergiebeschleunigern erzeugt oder in der kosmischen Strah-lung beobachtet wurden. Für den Aufbau der uns umgebenen “stabilen“ Materie werden nur drei Elementarteilchen benötigt. Neben dem Elektron sind dies das „Up“-Quark mit einer elektrischen Ladung eq

u3/2+= und das

„Down“-Quark mit einer elektrischen Ladung eqd

3/1−= . Die

drittelzahligen Ladungen sind das charakteristische Merkmal der Quarks. Freie Quarks scheinen in der Natur jedoch nicht vorzukom-men. Sie treten nur als Konstituenten von den der starken Wechsel-wirkung unterliegenden Teilchen, den Hadronen (hadros: grch. schwer, stark) auf. So sind sowohl das Proton (p = udu) als auch das Neutron (n = dud) jeweils aus drei Quarks aufgebaut.

u

d

u

Proton

d

u

d

Neutron

dd

Abb. 2.1: Aufbau von Proton und Neutron aus drei Quarks

Zwischen diesen Quarks wirkt eine fundamentale Kraft, die als star-ke Wechselwirkung bezeichnet wird. Die zwischen den Nukleonen eines Atomkerns wirkende Kernkraft wird als Restwechselwirkung der zwischen ihren Quarkkonstituenten wirksamen starken Wech-selwirkung interpretiert. Die Kernkraft kann daher nicht durch ein einfaches Kraftgesetz beschrieben werden. Sie ist weder elektrischer noch magnetischer Natur und kann auch nicht durch die Gravitation erklärt werden. Die Kernkraft stellt somit eine neue Qualität der Ma-terie dar. Träger dieser Eigenschaft sind die Nukleonen. Die wich-tigste Eigenschaft der Kernkraft ist ihre kurze Reichweite. Die Wir-kung der Kernkraft ist auf den Atomkern beschränkt. Für Abstände r > RK, d. h. außerhalb der Atomkerne ist die Kernkraft praktisch nicht mehr nachweisbar, während die elektrostatischen Coulomb-kräfte, die mit 1/r2 abfallen, eine unendlich ausgedehnte Reichweite besitzen. Die Folge hiervon ist, dass sich Protonen in großer Entfer-nung elektrostatisch abstoßen, in kurzer Distanz jedoch anziehen, da die Bindungskraft der Kernkraft erheblich größer ist als die Coulomb-Abstoßung.

Page 52: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

54

Die Dichte K

KK V

m=ρ aller Atomkerne ist näherungsweise konstant.

Hierbei ist K

m ist die Masse, 3

3

4KK

RVπ

= das Volumen und K

R

der Radius des Atomkerns. Die Größe

Kρ wird auch als die Dichte der Kernmaterie bezeich-

net. Ist 300 3

4rV

π= das Volumen eines Nukleons, so folgt für das

Volumen VK eines Atomkerns mit A Nukleonen

AVVK 0

=

oder

ArRVKK

30

3

3

4

3

4 ππ== (2.1)

Damit erhält man für den Kernradius RK die Beziehung

3/10

ArRK

= . (2.2)

Für die Radiuskonstante r0 erhält man aus Streuexperimenten den Wert

fmmr 5,1105,1 150

=⋅= − . (2.3)

Während der Atomradius eine Größe von etwa 1010−≈A

R m auf-

weist, liegt die Größe des Atomkerns nur bei etwa 1510−≈K

R m.

Damit ist das Atomvolumen etwa 1015-mal größer als das Kernvolu-men. Wenn die Nukleonenmasse

upnmmm == gleich der Atommassen-

konstante u

m gesetzt wird, ergibt sich die Kernmasse K

m eines

Atomkerns mit A Nukleonen zu uK

mAm ⋅= .

Mit 271066,1 −⋅=U

m kg erhält man dann für die Dichte der Kernma-

terie:

3

17

30

101

3

4 m

kg

Ar

mA

V

mu

K

KK

⋅≈⋅

⋅==

πρ . (2.4)

Diese riesige Dichte ist sicherlich nur möglich, wenn die Nukleonen im Atomkern durch extrem starke Kräfte zusammengehalten werden, nämlich die Kernkräfte.

Page 53: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.2 Kernkraft und Bindungsenergie

55

Die Packungsdichte der Nukleonen in den Atomkernen ist unabhän-gig von der Größe der Atomkerne. Auch die mittlere Bindungsener-gie pro Nukleon ist für alle Kerne (mit Ausnahme der ganz leichten) nahezu gleich. Diese experimentellen Befunde können nur so inter-pretiert werden, dass die Kernkraft nur eine geringe Reichweite hat. Jedes Nukleon im Atomkern erfährt nur eine Kraftwirkung von den unmittelbaren Nachbarn. Die von dem betrachteten Nukleon weiter entfernt befindlichen Nukleonen haben keinen Einfluss. Diese Ei-genschaft der Kernkraft konnte auch durch Nukleon–Nukleon–Streu-experimente erhärtet werden. Wegen ihrer Kleinheit bleiben die Atomkerne der direkten Anschauung verborgen. Daran ändern auch instrumentelle Hilfsmittel nichts. Informationen aus dem subatoma-ren Bereich können nur in großen Beschleunigeranlagen gewonnen werden, in denen Elementarteilchen auf große Energien beschleunigt werden, um dann als Sonden in die Atome geschossen zu werden. Aus den Reaktionen dieser Sonden mit den Atomkernen lassen sich Rückschlüsse auf den Aufbau der Atomkerne und die Struktur der Kernkraft ableiten. Bereits 1909 experimentierten Ernest Rutherford, Ernest Marsden und Hans Geiger mit der kurz zuvor entdeckten α-Strahlung radio- aktiver Substanzen. Die α-Strahlung besteht aus schnell bewegten Atomkernen des Elements Helium, die beim α-Zerfall schwerer radioaktiver Atome ausgesandt werden können. Beim Beschuss von dünnen Goldfolien, so genannter Targets (engl. Zielscheiben), wur-den gelegentlich große Ablenkwinkel der α-Teilchen beobachtet. 1911 beschrieb Rutherford im Philosophical Magazine diese Streuexperimente und gab eine Deutung der beobachteten Streuung der α-Teilchen, die die empirische Grundlage des Rutherfordschen Atommodells legte.

Blei-Kolimator Zinksulfid-Schirm

Goldfolieradioaktive Quelle

α-Teilchen

Abb. 2.2: Rutherfordsches Streuexperiment

Entgegen den Erwartungen von Dalton, nach denen die Atome als harte, undurchdringliche Kugeln aufgefasst wurden, durchdringen

Page 54: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

56

die meisten α-Teilchen ohne jegliche Ablenkung die Goldfolie. Die-ser Sachverhalt ist schematisch in Abb. 2.3 stark vergrößert darge-stellt.

Abb. 2.3: Interpretation der Streuexperimente von Rutherford

Die Atome besitzen offensichtlich eine innere Struktur. In ihrem Zentrum ist ein elektrisch positiv geladener Atomkern lokalisiert, dessen Größe aus der Analyse der Streudaten extrahiert werden kann. Dieser ist von einer ausgedehnten Atomhülle, der Elektronenhülle, umgeben, die überwiegend aus leerem Raum besteht. Die gestreuten α-Teilchen treffen bei diesem Experiment auf einen Zinksulfid-Schirm und rufen dort Szintillationen (lat. szintillare = flimmern, blitzen) genannte Lichtblitze hervor. Detektoren, die zum Nachweis von auftreffenden ionisierenden Teilchen optisch wahr-nehmbare Lichtblitze registrieren werden Szintillationszähler oder kurz Szintillatoren genannt. Derartige Streuexperimente sind für die Atom-, Kern- und Elemen-tarteilchenphysik von fundamentaler Bedeutung. Aus der Treffer-wahrscheinlichkeit und der Winkelverteilung der gestreuten Teilchen gewinnt man Informationen über Größe und Struktur der beschosse-nen Streuzentren des Targetmaterials. Werden beispielsweise die Atome eines Wasserstoffgases als Zielscheibe dem Beschuss von in elektrischen Feldern von Beschleunigeranlagen auf große Bewe-gungsenergie gebrachten Protonen ausgesetzt, so kann aus solchen Proton-Proton-Streuexperimenten die Reichweite der Kernkraft zwi-schen den Nukleonen indirekt gemessen werden. Sie beträgt etwa

15105,1 −⋅ m. Für größere Abstände fällt die Kernkraft auf Null ab. Für kleinere Abstände ist sie zunächst stark anziehend, um dann bei sehr kleinen Abständen unterhalb des Nukleonenradius stark absto-ßend zu werden. Diese Abstoßung bei kleinsten Abständen wird als Hard-Core-Repulsion bezeichnet. Wäre die Kernkraft auch für kleinste Abstände nur anziehend, würden die Atomkerne keine

Page 55: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.2 Kernkraft und Bindungsenergie

57

messbare Ausdehnung aufweisen und auf den Radius Null mit un-endlicher Dichte der Kernmaterie schrumpfen. Die Kernphysik stellt sich demnach als eine Art Nukleonenchemie dar. Aus einem Baukasten von freien Neutronen und Protonen kön-nen die Atomkerne zusammengesetzt oder synthetisiert werden. Da-bei wird als Folge der stark anziehenden Kernkraft die Bindungs-energie EB frei. Bei der Kernsynthese aus einem Nukleonengas wird die Bindungsenergie in Form elektromagnetischer Strahlung abgege-ben. Wegen der Größe der Kernkraft ist auch die Bindungsenergie sehr groß. Aufgrund einer von A. Einstein 1905 gefundenen Bezie-hung, die die Äquivalenz von Energie E und Masse m beschreibt, gilt:

2mcE = . (2.5) Energie und Masse sind einander proportional. Die Proportionali-tätskonstante ist das Quadrat der Lichtgeschwindigkeit c. Diese für die gesamte Kernphysik fundamentale Beziehung folgt theoretisch aus der von Einstein formulierten speziellen Relativitätstheorie. Dort konnte gezeigt werden, dass die Masse m eines Objektes von seiner Geschwindigkeit v abhängig ist. Quantitativ gilt für diese Geschwin-digkeitsabhängigkeit die Beziehung

2

2

0

1c

v

mm

= . (2.6)

m0 ist dabei die Ruhemasse. Diese Beziehung ist für subatomare Teilchen von besonderer Bedeutung. In Abbildung 2.4 ist die expe-rimentell ermittelte Abhängigkeit der Elektronenmasse me von der Geschwindigkeit gezeigt.

00 0,25 0,5 0,75 1,0

1,0

2,0

3,0

m/me

v/c

Abb. 2.4: Abhängigkeit der Elektronenmasse m von der Geschwin-digkeit v

Page 56: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

58

Für makroskopische Körper ist wegen v << c stets m = m0. In der klassischen Mechanik wird ausschließlich mit diesem nichtrelativis-tischen Grenzfall gerechnet. Bei Beschränkung auf lineare Bewe-gungen erhält man mit Hilfe des 2. Newtonschen Axioms unter Be-rücksichtigung der Geschwindigkeitsabhängigkeit der Masse

{ ]}

23

2

2

0

22/3

2

2

02/1

2

2

0

2

2

0

1

d

d

d

d)

2()1(

2

1[)1(

1d

d

d

d

⋅=

−−−+−=

⋅=⋅=

−−

c

v

t

vm

F

t

v

c

v

c

vvm

c

vmF

c

v

vm

tvm

tF

Bewegt sich ein Körper im Zeitintervall zwischen t1 und t2 vom Ort s1 nach s2 und verändert dabei infolge der Krafteinwirkung F seine Geschwindigkeit von v1 aus v2, so ändert sich die Gesamtenergie des Körpers um E∆ , und es gilt:

∫∫∫−

=⋅

=⋅=∆ v

c

v

vmtv

c

v

t

vm

sFEt

t

s

sd

)1(

d

)1(

d

d

d2/3

2

20

2/32

2

02

1

2

1

2212

2

21

20

2

22

20 )(

11

cmcmm

c

v

cm

c

v

cmE ⋅∆=⋅−=

=∆

Ist speziell v1 = 0 und v2 = v, so folgt für die relativistische kinetische Energie E∆ eines Teilchens mit der Ruhemasse m0

20

2 cmmcE −=∆ .

Durch eine geeignete Wahl des Energie-Nullpunktes kann dem ru-

henden Körper eine Ruheenergie 200

cmE ⋅= zugewiesen werden.

Die relativistische Gesamtenergie EEE ∆+=0

ergibt sich dann zu

220

)( mccmmE =∆+= . (2.7)

Vergleicht man die Masse eines bestimmten Atomkerns XAZ

, in dem

A = N + Z Nukleonen im gebundenen Zustand vorliegen, mit der

Page 57: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.2 Kernkraft und Bindungsenergie

59

Masse von Z freien Protonen und N freien Neutronen, dann stellt man eine Massendifferenz m∆ fest:

mXmNmZm AZnp

∆=−+ )()( (2.8)

Die Größe m∆ gibt an, um wie viel sich die Masse eines Kerns von der Summe der Massen seiner Nukleonen unterscheidet. m∆ wird Massendefekt genannt. Die bei der Verbindung von A Nukleonen zu

einem Atomkern XAZ

freiwerdende Bindungsenergie EB ist dem

auftretenden Massendefekt m∆ proportional, und es gilt:

2mcEB

∆= . (2.9)

Die Präzisionsbestimmung der Kernmassen mit Hilfe von hochauflö-senden Massenspektrometern ermöglicht es, eine Systematik der Kernbindungsenergien zu erstellen. In Abbildung 2.5 ist die mittlere Bindungsenergie pro Nukleon A/E

B als Funktion der Massenzahl

A dargestellt.

7

6

5

4

3

2

8

9

1

0 40 80 120 160 200 240

Ni-60Pb-208

U-238

O-16C-12

He-4

(Be-8)

Be-9

Li-6

He-3

H-2

H-1

Nukleonenzahl

E / A

i n M

eV

A

10

B

Abb. 2.5: Bindungsenergie EB/A pro Nukleon in Abhängigkeit von der Nukleonenzahl A

Die wichtigsten Ergebnisse lassen sich aus der Darstellung direkt ablesen: 1. Die mittlere Bindungsenergie pro Nukleon EB/A ist bei allen

Kernen gleich. Sie beträgt etwa 8 MeV.

Page 58: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

60

2. Die größte Bindungsenergie weisen die Kerne im Massenbereich zwischen A = 60 und A = 70 auf.

3. Die Bindungsenergie nimmt nach kleineren Massenzahlen A

schnell und nach größerem A hin langsam ab Die oben genannten experimentellen Befunde können bei Vernach-lässigung von Feinheiten modellmäßig verstanden werden. Im Inne-ren eines Atomkerns erstreckt sich die Kernkraftwechselwirkung jedes Nukleons wegen ihrer kurzen Reichweite nur auf die unmittel-baren Nachbarn. Das Verhalten der Nukleonen im Atomkern ent-spricht daher den Molekülen eines Flüssigkeitstropfens, die von der kurzreichweitigen van-der-Waals-Kraft zusammen gehalten werden. Soll ein Molekül verdampft werden, so muss gegen diese Anzie-hungskraft Arbeit geleistet werden, die von der Größe des Tropfens unabhängig ist, solange Effekte der Oberflächenspannung vernach-lässigt werden. Diese Verdampfungs- oder Kondensationswärme pro Molekül entspricht die mittlere Bindungsenergie pro Nukleon im Atomkern. Ein Atomkern verhält sich demnach analog zu einem Flüssigkeitstropfen. Zur theoretischen Beschreibung der Bindungsenergie der Atomkerne liefert dieses Tröpfchenmodell somit:

AaEVB

⋅≈ .

Die Bindungsenergie wächst mit der Anzahl der Nukleonen. Sie ist daher dem Kernvolumen proportional. Die empirisch zu ermittelnde Konstante aV charakterisiert die Größe der Kernkraft. Bei kleinen Flüssigkeitstropfen liegen viele Teilchen in der Oberflächenschicht und sind somit nicht allseitig von Nachbarn umgeben. Sie sind daher schwächer gebunden, ihre Bindungsenergie ist kleiner. Dieser Effekt entspricht dem Einfluss der Oberflächenspannung auf die Verdamp-fungs- oder Kondensationswärme. Sie wird durch die gegen die Oberflächenspannung zu verrichtende Oberflächenarbeit verringert. Die Oberflächenenergie

FE ist der Kernoberfläche

FO proportio-

nal.

24KF

RO π=

Mit 3/10

ArRK

= folgt: 3/2AOEFF

∝∝

Die abzuziehende Oberflächenenergie liefert einen verbesserten Wert für die Bindungsenergie der Atomkerne:

3/2AaAaEFVB

⋅−⋅≈

Die noch unbestimmte Konstante aF berücksichtigt hierbei die Stärke des Oberflächeneffektes. Als weitere Korrektur muss schließlich die

Page 59: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.2 Kernkraft und Bindungsenergie

61

Coulomb-Abstoßung der Protonen berücksichtigt werden. Nach dem Coulombschen Gesetz wächst das elektrostatische Abstoßungspoten-tial für eine Ladung proportional zur Gegenladung und umgekehrt proportional zum Abstand r. Eine detaillierte Rechnung liefert für die der Bindungsenergie entgegenstehende Coulomb-Energie

CE :

3/1222

AZR

eZE

KC

⋅∝∝

3/12 AZaE

CC⋅⋅=

Sie muss aufgebracht werden, um ein freies Nukleonengas aus A Nukleonen und Z Protonen zu einem Atomkern mit dem Kernradius

KR zu kondensieren. Die Konstante

Ca ist durch die Coulomb-

Wechselwirkung bestimmt. Damit erhält man für die Bindungsener-gie der Atomkerne:

3/123/2 AZaAaAaECFVB

⋅⋅−⋅−⋅≈ (2.10)

Diese auf dem Tröpfchenmodell des Atomkerns basierende Formel wurde 1935 von Carl Friedrich von Weizäcker und Hans Bethe auf-gestellt und ist in der kernphysikalischen Literatur als Bethe-Weizäcker-Formel bekannt. Sie kann noch durch Berücksichtigung zusätzlicher Terme zur Beschreibung von experimentellen Feinheiten erweitert werden. Durch eine Präzisionsbestimmung der Kernmassen lässt sich der Masseneffekt und damit die Kernbindungsenergie ge-nau messen. Die Bethe-Weizäcker-Formel stellt eine semiempirische Formel dar. Die in ihr enthaltenen Konstanten

Va ,

Fa und

Ca wer-

den durch Anpassung der Bethe-Weizäcker-Formel an die experi-mentell bestimmten Bindungsenergien ermittelt. Wird die Bindungsenergie

BE durch die Nukleonenzahl A eines

Kerns geteilt, so erhält man die mittlere Bindungsenergie eines Kerns pro Nukleon ( AE

B/ ). Durch die quadratische Abhängigkeit

der Bindungsenergie pro Nukleon von der Kernladungszahl Z nimmt das Coulomb-Glied oberhalb von 70≈A mit steigendem Z und A stärker zu als das Oberflächenglied abnimmt. Für schwere Kerne A > 70 überwiegt daher der Einfluss der Coulomb-Energie, und die Bin-dungsenergie pro Nukleon nimmt infolgedessen mit wachsendem A ab. Mit abnehmender Bindungsenergie werden die Atomkerne insta-bil, sodass bislang keine Atome mit Z > 118 beobachtet worden sind. Aber auch für leichtere Atomkerne sind nicht alle Nukleonenkonfi-gurationen in natürlich vorkommenden Atomkernen realisiert. Das Verhältnis von Neutronen zu Protonen (N/Z) liegt in stabilen leichten Kernen etwa bei 1.

Beispiele: Ca,Mg,O,C,He 4020

2412

168

126

42

Page 60: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

62

Dieses Verhältnis nimmt bei den schwersten Kernen bis zu Werten von N Z/ ,6≈ 1 zu. Schwere Atomkerne sind somit neutronenreicher. Die elektrisch neutralen Neutronen verdünnen dabei die elektrische Ladungsverteilung im Atomkern und mindern dadurch die durch die Protonen hervorgerufene elektrische Abstoßung. Der schwerste stabile Atomkern, der in der Natur vorkommt, gehört zu dem Reine-

lement Bismut Bi20983

. Sein Verhältnis von Neutronen- zu Protonen-

zahl hat den Wert N/Z = 126/83 = 1,5. Noch schwerere in der Natur

vorkommende Atomkerne sind instabil (z. B. U23892

mit dem Wert

N/Z = 146/92 = 1,59). Sie wandeln sich spontan durch radio-aktiven Zerfall unter Emission von Teilchen- und Photonenstrahlung in stabile Nuklide um.

2.3 Radioaktivität

Gegen Ende des 19. Jahrhunderts untersuchte Henri Becquerel Kris-talle, die nach vorheriger Beleuchtung Licht aussandten. Diese Er-scheinung wird Lumineszenz und Phosphoreszenz genannt. Die Phosphoreszenz wird auch als Nachleuchten bezeichnet. Eines Tages entdeckte er, dass uranhaltige Erze eine unbelichtete Fotoplatte, die mit schwarzem Papier vollständig umwickelt war, geschwärzt hatten. Es war bekannt, das diese Schwärzung auf einer Fotoplatte beispiels-weise ein Maß für die Intensität einer Röntgen- oder UV-Strahlung ist. Diese Beobachtung war die Geburtsstunde für die Entdeckung der Radioaktivität. 1898 konnten Pierre und Marie Curie (1867 – 1934) aus dem Mineral Pechblende (U3O8) aus dem tschechischen Uranbergwerk Joachimsthal zwei neue Elemente chemisch abtren-nen. Sie nannten diese Radium (das Strahlende) und Polonium (nach dem Heimatland von Marie Curie, nämlich Polen). In einer Vielzahl von weiteren Versuchen konnten bis 1900 drei verschiedene Strah-lungskomponenten in der „Uranstrahlung“ nachgewiesen werden. Sie wurden mit kleinen griechischen Buchstaben als α-, β- und γ-Strahlung bezeichnet und lassen sich durch ihr unterschiedliches Ablenkungsverhalten in einem magnetischen Feld charakterisieren (Abb. 2.6). Unter Radioaktivität (lat. radiare: strahlen) versteht man die Eigen-schaft bestimmter radioaktiver Atome, der sog. Radionuklide, sich spontan, d. h. ohne Einwirkung von außen unter Energieabgabe in Form von ionisierender Strahlung in andere Atomkerne umwandeln. Diese Kernumwandlung wird radioaktiver Zerfall genannt. Die radioaktiven Atomkerne gehen dabei in einen energetisch stabileren Zustand über. Unter ionisierender Strahlung versteht man eine energiereiche Photonen- oder Teilchenstrahlung, die beim radioakti-ven Zerfall emittiert wird und die beim Durchgang durch Materie direkt oder indirekt die Bildung von Ionen bewirkt. Ursprung dieser Strahlung ist der Atomkern. Sie wird deshalb auch Kernstrahlung

Page 61: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.3 Radioaktivität

63

genannt. Die Radioaktivität ist daher eine Eigenschaft der Atomker-ne. (Ionisierend wirkt aber auch die in der Elektronenhülle eines Atoms infolge äußerer Anregung entstehende elektromagnetische UV- und Röntgenstrahlung).

N

S

Magnetjoch

Magnetjoch

Radium Kollimator

Pb-Behälter Leuchtschirm

Magnetfeld

β

α

γ

Abb.2.6: Beim radioaktiven Zerfall auftretende Strahlungsarten

Beim radioaktiven Zerfall natürlicher Radionuklide können drei ver-schiedene Strahlenarten auftreten: α-, β- und γ-Strahlen. Da der Mensch für keine dieser Strahlenarten ein Sinnesorgan besitzt, sind für ihren Nachweis technische Messgeräte erforderlich. Die α- und β-Strahlung ist eine Teilchenstrahlung, bei deren Freisetzung wan-delt sich ein radioaktiver Atomkern eines Elements in einen Atom-kern eines anderen Elements um. Beim Alphazerfall wird aus dem Kern des radioaktiven Mutternuk-

lids MAZ

ein α-Teilchen genannter He42

-Kern ausgestoßen. Dabei

wird eine Energie von 1 – 10 MeV frei, die als kinetische Energie des emittierten α-Teilchens in Erscheinung tritt. Der Mutterkern M wandelt sich dabei in einen Tochterkern T eines neuen Elements um. Der α-Zerfall wird durch den 1. Verschiebungssatz von Rutherford und Soddy beschrieben: Beim α-Zerfall nimmt die Nukleonenzahl A um 4 und die Kernladungszahl Z um 2 Einheiten ab.

α+→ −− TM A

ZAZ

42

. (2.11)

Beispiel:

MeV18,4HeThU 42

23490

23892

++→

Page 62: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

64

Beim Betazerfall wandelt sich im Atomkern ein Neutron in ein Pro-ton und ein Elektron um.

eepn ν++→ (2.12)

Dabei entsteht ein weiteres neutrales Elementarteilchen, das sog. Elektronenantineutrino

eν , das jedoch mit Materie kaum in Wech-

selwirkung tritt und daher hier vernachlässigt werden kann. Das aus-gesandte Elektron wurde ursprünglich als β−Teilchen bezeichnet. Es verlässt den Atomkern, während das Proton zurückbleibt. Dieser Sachverhalt wird durch den 2. Verschiebungssatz von Rutherford und Soddy beschrieben: Beim β−Zerfall bleibt die Nukleonenzahl A kon-stant, die Kernladungszahl Z nimmt um eine Einheit zu.

e

AZ

AZ

eTM ν++→ +1 (2.13)

Beispiel:

eV35HeH 32

31

+++→e

e ν

Freie Neutronen sind instabile Teilchen und zerfallen nach Gl. 2.12 mit einer Halbwertszeit von etwa 10 min. Im Gegensatz dazu sind freie Protonen und Elektronen stabil. Bislang wurde noch kein Zer-fall von freien Protonen beobachtet. Nach neuesten Messungen ist ihre Halbwertszeit größer als 1033Jahre. Der Gammazerfall ist eine Begleiterscheinung fast aller radioakti-ven α− und β−Zerfälle. Die Nukleonen im Atomkern können wie die Elektronen in der Atomhülle in Bezug auf den Grundzustand ange-regte Zustände annehmen. Aus solchen angeregten Kernniveaus mit Energien unterhalb der Teilchenemissionsschwelle sind nur Gamma-zerfälle möglich. Die dabei auftretende γ−Strahlung besteht aus hochenergetischen elektromagnetischen Quanten, die keine Ruhe-masse besitzen. Die γ−Strahlung besitzt keinen korpuskularen Cha-rakter, sie ist keine Teilchenstrahlung. Die durch Kernumwandlung entstandenen Tochterkerne *T können überschüssige Anregungs-energie durch die Emission einer energiereichen Photonenstrahlung, der so genannten γ−Quanten, abgeben. Sie gehen dabei ohne Ker-numwandlung unter Abgabe von Energie in Form der γ−Strahlung in ihren stabilen Grundzustand T über.

γ+→ TT AZ

AZ

* (2.14)

Page 63: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.3 Radioaktivität

65

2.3.1 Das radioaktive Zerfallsgesetz

Der radioaktive Zerfall von Atomkernen ist ein statistischer Prozess. Die Zahl der Kerne einer radioaktiven Substanz nimmt dabei expo-nentiell ab:

teNtN λ−=0

)( . (2.15)

λ ist eine stoffspezifische Zerfallskonstante des betreffenden Nuk-lids, N0 ist die Anzahl der zum Anfangszeitpunkt t = 0 vorhandenen radioaktiven Atome. Die Halbwertszeit T1/2 ist die Zeitspanne, in der die Anzahl der radioaktiven Atome durch Zerfall auf die Hälfte des Ausgangswertes abnimmt. Es gilt:

λ

2ln

21 =T (2.16)

00

N /20

N0

Anzahl

1 2 3t

T1 /2

Abb. 2.7: Radioaktiver Zerfall und Halbwertszeit

Unter der Aktivität eines Radionuklids versteht man die Anzahl dN der spontanen Zerfälle im Zeitintervall dt.

tt eAeNtNt

NtA ⋅−⋅− ⋅=⋅⋅=⋅=−= λλλλ

00)(

d

d)( (2.17)

Mit Hilfe der Aktivität kann die Halbwertszeit als dasjenige Zeitin-tervall interpretiert werden, in dem die Aktivität eines Radionuklids durch radioaktiven Zerfall auf die Hälfte abfällt. Die Zerfallskonstante λ stellt statistisch gesehen die Wahrscheinlich-keit dar, dass ein radioaktiver Kern in einem beliebigen Zeitintervall dt zerfällt. Bei einem Ensemble von N radioaktiven Kernen addieren sich die Einzelwahrscheinlichkeiten für den Zerfall im Zeitintervall dt. Die Anzahl dN der zu erwartenden Zerfälle ist dann gegeben durch:

Page 64: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

66

tNN dd ⋅⋅−= λ

Das Minuszeichen berücksichtigt die Tatsache, dass durch die An-zahl dN der Zerfälle die Zahl N der verbliebenen radioaktiven Kerne abnimmt. Die Aktivität A einer radioaktiven Substanz wird daher als Anzahl ∆N der in einem Zeitintervall auftretenden Kernumwandlungspro-zesse eines Radionuklids dividiert durch die Länge t∆ des Zeitinter-valls definiert.

t

NA

∆∆

= (2.18)

Die Aktivität stellt somit eine Zerfallsrate dar, die auch mit N& be-zeichnet wird. Jeder radioaktive Zerfallsprozess infolge der Emission eines α− oder β− Teilchens führt zu einer solchen Kernumwandlung. Die SI-Einheit für die Aktivität ist das Becquerel (Bq). Der Name der Einheit für die Aktivität leitet sich von Antoine Henri Becquerel (1852 – 1908), dem Entdecker der Radioaktivität, ab.

Bq1s

1][ ==A (2.19)

Die Aktivität von 1 Bq entspricht einen radioaktiven Zerfallsprozess pro Sekunde (1 Bq = 1 s–1). Die früher gebräuchliche und bis Ende 1984 amtlich noch zugelasse-ne Einheit der Aktivität war das Curie mit dem Einheitenzeichen Ci.

Bq107,3Ci1 10⋅=

Die Aktivität von 1g Radium (A = 226) beträgt ungefähr 1 Ci. Ge-naue Messungen ergeben eine Aktivität von 0,989 Ci. Beispiele: a) Radium(A = 226) zerfällt unter α−Emission in Radon

(A = 222). α+−→− 222Rn226Ra

Werden von einem Radiumpräparat pro Minute 600 α−Teilchen emittiert, so folgt für die Aktivität des Präparates:

Bq10s1/Zerfälle10min1/Zerfälle600 ===A

Page 65: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.3 Radioaktivität

67

b) Iridium (A = 192) zerfällt unter β−Emission in Platin (A = 192).

−+−→− β192Pt192Ir

Werden von einem Iridiumpräparat pro Stunde 3,6 Millionen Elektronen emittiert, so folgt für die Aktivität des Präparates

Bq1000s3600/Zerfälle106,3h1/Zerfälle106,3 66 =⋅=⋅=A

Unter der spezifischen Aktivität a einer radioaktiven Substanz ver-steht man den Quotienten aus ihrer Aktivität A und ihrer Masse m:

m

Aa = (2.20)

kg

Bq][ =a (2.21)

2.3.2 Radioaktive Umwandlungsreihen

Die beim radioaktiven Zerfall von schweren Atomkernen entstehen-den Tochterkerne sind meist wieder radioaktiv und zerfallen eben-falls mit nuklidspezifischen Halbwertszeiten. Auf diese Weise ent-stehen radioaktive Umwandlungsreihen, die schließlich bei einem stabilen Element enden. Es sind vier solcher Umwandlungsreihen bekannt. Drei Umwandlungsreihen gehen von natürlich vorkommen-den radioaktiven Ausgangskernen aus: Uran-Radium-Reihe, Uran-Aktinium-Reihe und Thorium-Reihe. Die vierte Reihe beginnt mit dem künstlich hergestellten Element Neptunium.

Name der Reihe Ausgangskern Stabiler Endkern Halbwertszeit

Uran-Radium U23892

Pb20682

a105,4 9⋅

Uran-Aktinium U23592

Pb20782

a107,0 9⋅

Thorium Th23290

Pb20882

a1014 9⋅

Neptunium Np23793

Bi20983

a101,2 6⋅

Tabelle 2.1: Radioaktive Umwandlungsreihen

Entsprechend den Verschiebungssätzen von Rutherford und Soddy lassen sich die Umwandlungsreihen in einer Nuklidkarte in Form eines N-Z-Diagramms graphisch darstellen. Jedes Nuklid ist in dieser Darstellung eindeutig durch seine Neutronen- und Protonenzahl cha-

Page 66: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

68

rakterisiert. Damit ist auch die Massenzahl A = N + Z eines jeden Nuklids festgelegt. In der Nuklidkarte ist die Neutronenzahl N als Ordinate und die Ordnungszahl Z als Abszisse aufgetragen. Die β-Zerfälle sind durch kurze nach rechts gerichtete Pfeile markiert. Die α-Zerfälle sind durch nach links gerichtete längere Pfeile darge-stellt. Einige Nuklide besitzen zwei alternative Zerfallswege. Sie können sich entweder durch α-Zerfall oder durch β-Zerfall umwan-deln. Dadurch entstehen mehrere Verzweigungsmöglichkeiten ent-lang der Zerfallsreihe. Die folgende Abbildung zeigt dies am Bei-spiel der Uran-Radium-Reihe.

α-Zerfall

U-235

Th-231Pa-231

Ac-227Th227

Fr-223

At-219

Bi-215

Pb-211

Ti-207

Ra223

Rn-219

Po-215At215

Bi-211Po-211

Pb-207

β–

-Zerfall

75

125

130

135

140

N

80 85 90 95 Z

Abb. 2.8: Natürliche radioaktive Umwandlungsreihe

2.4 Kernreaktionen

Kernreaktionen sind Umwandlungen von Atomkernen, die durch Wechselwirkung mit Elementarteilchen oder anderen Atomkernen ausgelöst werden. Voraussetzung für eine Kernreaktion ist es, dass ein Elementarteilchen dicht an einen Atomkern gelangt. Dazu wer-den in der Regel ruhende Zielkerne, die man auch als Targetkerne bezeichnet, mit Geschossteilchen bombardiert. Positiv geladene Geschossteilchen wie Protonen oder α-Teilchen benötigen dazu eine beträchtliche kinetische Energie; sie müssen nämlich zunächst die abstoßende Coulombkraft überwinden, um in den Wirkungsbereich der kurzreichweitigen Kernkraft zu gelangen. Dazu kann die Energie des radioaktiven Zerfalls ausgenutzt werden (Beispiel: α-Teilchen), oder die Geschossteilchen müssen in komplizierten Anlagen, den sog. Teilchenbeschleunigern, auf hohe kinetische Energien gebracht

Page 67: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.4 Kernreaktionen

69

werden. In symbolischer Schreibweise wird eine Kernreaktion durch die folgende Reaktionsgleichung dargestellt: yYXx +→+ (2.22)

In der Kernphysik hat sich dafür die Schreibweise X(x,y)Y (2.23) eingebürgert. Dabei stellt X den mit dem Targetkern identischen Eingangskern dar, x beschreibt das einlaufende Geschossteilchen, Y repräsentiert den bei der Kernreaktion entstehenden Folgekern und y stellt das auslaufende Teilchen dar. Bei allen Kernreaktionen ändern sich bestimmte physikalische Grö-ßen wie Gesamtimpuls, Gesamtenergie, Gesamtladung und Nukle-onenzahl aller beteiligten Teilchen nicht. Sie bleiben vielmehr erhal-ten. Für diese Größen gelten somit Erhaltungssätze. Der Erhaltungs-satz für die Nukleonenzahl besagt beispielsweise:

Die Summe der Nukleonenzahlen von Targetkern X und Geschossteilchen x vor der Kernreaktion ist gleich der Summe der Nukleonenzahlen von Folgekern Y und aus-laufenden Teilchen y nach der Kernreaktion.

1932 hatte Chadwick beim Beschuss einer Beryllium-Folie mit α-Teilchen Neutronen in folgender Kernreaktion entdeckt:

nCBeHe 10

126

94

42

+→+ (2.24)

Der Erhaltungssatz für die Nukleonenzahl lautet: 4 + 9 = 12 +1. Auch heute werden noch Radium-Beryllium-Gemische als Neutro-

nenquellen verwendet. Die kosmogenen Radionuklide H31

(Tritium)

und C146

(Radiokohlenstoff) werden durch Kernreaktionen zwischen

der kosmischen Strahlung und den Gasatomen der Erdatmosphäre ständig neu gebildet. Die kosmische Strahlung besteht hauptsächlich aus hochenergetischen Protonen. Bei ihrer Abbremsung in den obers-ten Schichten der Atmosphäre entstehen als sekundäre Reaktions-produkte Neutronen. Diese bilden in Kernreaktionen mit dem Stick-stoff der Luft die kosmogenen Radionuklide:

HCNn 31

126

147

10

+→+ (2.25)

HCNn 11

146

147

10

+→+ . (2.26)

Page 68: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

70

Auch der Ausgangskern der Neptunium-Reihe, nämlich das Nuklid

Np23793

entsteht beispielsweise aus U23592

durch Neutronenbeschuss.

Die kernphysikalische Reaktionsgleichung dieser (n, γ)-Reaktion lautet:

γ+→+ UUn 23692

23592

10

(2.27)

γ+→+ UUn 23792

23692

10

(2.28)

Durch β-Zerfall erhält man:

−+→ eNpU 23793

23792

(2.29)

Zum Neutronennachweis wird die folgende Kernreaktion ausgenutzt:

HeLiBn 42

73

105

10

+→+ (2.30)

In der experimentellen Messtechnik wird dazu dem Zählgas beispielsweise eines Geiger-Müller-Zählrohres gasförmiges Bortrifluorid (BF3) zugesetzt. Auch das Transuran Plutonium Pu-239 verdankt sein Vorkommen einer (n,γ)-Reaktion:

γ+→+ UUn 23992

23892

10

(2.31)

Das radioaktive Isotop U23992

ist ein Betastrahler, das sich durch zwei

sukzessive β-Zerfälle in Plutonium umwandelt.

−=

+ → eNpU 23993min5,23

23992

21T (2.32)

−=

+ → ePuNp 2399435,2

23993

21 dT (2.33)

Neutronen können als ungeladene Teilchen die Atome praktisch ungehindert durchdringen. Sie erfahren auch keine Coulombsche Abstoßungskraft durch die Atomkerne, wohl aber die anziehende Kernkraft. Sie werden infolgedessen im Atomkern absorbiert und eingelagert, wobei ihre Bindungsenergie in Form von γ-Strahlung abgegeben wird. Ein solcher Neutroneneinfang wird als (n,α)-Reaktion bezeichnet. Neutroneneinfang-Reaktionen sind für den Aufbau von schweren Elementen aus leichten Elementen in Form der so genannten Elementsynthese in den Sternen von Bedeutung. Als Beispiel sei dazu die folgende Reaktion betrachtet:

Page 69: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.5 Kernspaltung und Kernfusion

71

γ+→+ PPn 3215

3115

10

(2.34)

Das radioaktive Phosphor-32 wandelt sich in das stabile Schwefel-32 um:

−+→ eSP 3216

3215

(2.35)

Aus dem leichteren Nuklid Phosphor-31 ist ein Nuklid des schwere-ren Elements Schwefel entstanden. Entsteht durch Neutroneneinfang ein radioaktives Isotop des Ausgangsnuklids, so kann dessen ionisie-rende Strahlung zum eindeutigen Nachweis des Ausgangsnuklids verwendet werden. Das dabei eingesetzte Verfahren wird Neutro-nenaktivierungsanalyse genannt. Die Neutronenaktivierungsanalyse ist eine Methode zur qualitativen und quantitativen Bestimmung von Elementen in festen, flüssigen und gasförmigen Substanzproben. Von besonderer Bedeutung ist dabei, dass der Nachweis unabhängig vom chemischen Zustand ist, in dem sich das gesuchte Element befindet. Die Methode wird insbe-sondere im Bereich der Spurenanalyse von Elementen eingesetzt. Sie beruht auf der genauen Kenntnis der Kernreaktionen, die durch Neutronen ausgelöst werden. Auf einer neutroneninduzierten Kern-reaktion beruht auch die im nächsten Abschnitt beschriebene Kern-spaltung.

2.5 Kernspaltung und Kernfusion

1939 entdeckte Otto Hahn (1879 – 1968) zusammen mit seinen Mitarbeitern Fritz Straßmann (1902 – 1980) und Lise Meitner (1878 – 1968), dass sich bei der Bestrahlung von Uran mit Neutro-nen leichtere Elemente aus der Mitte des Periodensystems bilden. Dieses Ergebnis kennzeichnet die Entdeckung eines neuen Typs von Kernreaktionen, den Kernspaltungsreaktionen. Bei der Kernspal-tung wird unter Neutronenbeschuss ein schwerer Kern in zwei leich-tere Kerne zerlegt, die als Spaltprodukte bezeichnet werden. Die Kernspaltung wird dabei durch das Auftreten von 2 bis 3 freien Neutronen, den sog. Spaltneutronen, begleitet. Während in leichten Atomkernen das Verhältnis von Neutronen zu Protonen ungefähr gleich ist (N/Z ≈ 1), sind schwere Kerne reich an Neutronen. Bei der Kernspaltung treten somit überzählige Neutronen auf. In der folgenden Reaktionsgleichung sind zwei mögliche Beispiele für die Spaltung von Uran-235 angegeben:

n2SrXeUUn 10

9538

13954

*23692

23592

10

++→→+ (2.36)

Page 70: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

72

n3KrBaUUn 10

9336

14056

*23692

23592

10

++→→+ (2.37)

Die Kernspaltungsreaktion läuft über einen angeregten Zwischenkern

*23692

U , der auch als Compoundkern bezeichnet wird. Sie kann im

Rahmen des in Abschnitt 2.2 dargestellten Tröpfchenmodells inter-pretiert werden. Gemäß Abb. 2.4 beträgt die mittlere Bindungsener-gie pro Nukleon für Uran-235 etwa 7,5 MeV.

Abb. 2.9: Kernspaltung von Uran

Die bei der Kernspaltung entstehenden Spaltprodukte wie beispiels-weise Barium-140 oder Krypton-93 haben eine größere Bindungs-energie pro Nukleon, nämlich etwa 8,4 MeV. Pro Uran-235-Nukleon werden daher bei der Spaltung etwa 0,9 MeV an Bindungsenergie frei. Im statistischen Mittel über viele Spaltungsprozesse von Uran-235 werden entsprechend pro gespaltenem Uran-235 ca. 200 MeV und 2,5 Neutronen frei. Bei der Kernspaltung wird somit pro Ele-mentarprozess eine Energie freigesetzt, welche die bei exothermen chemischen Reaktionen abgegebene Energie um den Faktor 106 übertrifft. Diese Energie tritt als kinetische Energie der Spaltproduk-te auf. Die Spaltprodukte sind immer noch neutronenreich und daher radioaktiv. Sie verwandeln sich infolge von β−Zerfall durch Elektro-nenemission in stabile Kerne um. Die Kernspaltung setzt, wie in Abb. 2.9 gezeigt, eine Deformation des zu spaltenden Kerns voraus. Dazu muss eine Deformationsenergie aufgebracht werden, die als Aktivierungsenergie bezeichnet wird. Diese Aktivierungsenergie wird dem Urankern durch die kinetische Energie des Neutrons und durch die frei werdende Bindungsenergie des Neutrons bei seiner Anlagerung zugeführt. Diese Aktivierungsenergie stellt eine Art Spaltbarriere dar; sie hat für Uran-235 eine Größe von 6,1 MeV. Andererseits ergibt eine genaue Analyse, dass bei der Anlagerung eines Neutrons an den Uran-235-Kern eine Bindungsenergie von 6,5 MeV frei wird. Durch diese Anlagerungsenergie kann daher die Uran-235-Spaltung aktiviert werden, ohne dass es dazu einer zusätzlichen kinetischen Energie des Neutrons bedarf. Um dagegen einen Uran-238-Kern zu spalten, müsste das Neutron zusätzlich noch eine kinetische Energie von 2,2 MeV besitzen, denn seine Anlage-rungsenergie beträgt nur 4,8 MeV. Uran-235 kann somit durch lang-same Neutronen gespalten werden; diese werden als thermisch be-zeichnet. Genauere Untersuchungen zeigen, dass die Wahrschein-lichkeit

fσ für eine neutroneninduzierte Spaltung von Uran-235 mit

Page 71: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.5 Kernspaltung und Kernfusion

73

zunehmender kinetischer Neutronenenergie En abnimmt. Dabei gilt die Proportionalität

n

1

Ef∝σ . (2.38)

Die Spaltwahrscheinlichkeit f

σ ist für thermische Neutronen be-

sonders groß. Die bei der Kernspaltung frei werdenden Neutronen können neue Spaltprozesse hervorrufen. Dadurch wird eine Ketten-reaktion möglich. Die Neutronenbilanz wird durch einen Neutronen-Vermehrungsfaktor k beschrieben, d. h. durch das Verhältnis der Anzahl der Neutronen in einer gegebenen Generation zu ihrer An-zahl in der vorangegangenen Generation. Als notwendige Bedingung für das Auftreten einer Kettenreaktion gilt: 1≥k . Für k = 1 kann eine stationäre Kettenreaktion aufrechterhalten werden. In diesem Fall muss im Mittel von den bei der Uran-235-Spaltung frei werdenden 2,5 Neutronen genau eines wieder zur Spaltung führen. Die Uran-235-Masse einer solchen Anordnung mit k = 1 heißt kritische Masse. Ist dagegen die Masse des Spaltmaterials zu klein, so entweichen im Mittel mehr als 1,5 Neutronen von den pro Spaltprozess freigesetzten 2,5 Neutronen. Die Kettenreaktion kann dann nicht aufrechterhalten werden und kommt zum Erliegen. Technische Anlagen, in denen durch gesteuerte Kettenreaktionen Energie durch Kernspaltung bereitgestellt wird, heißen Kernreakto-ren. Technisch sind zwei Reaktortypen gebräuchlich: Siedewasser-reaktor und Druckwasserreaktor. Der Siedewasserreaktor arbeitet im Prinzip wie ein Tauchsieder. Infolge der bei der Kernspaltung freige-setzten Kernenergie, erhitzen sich die Brennstäbe. Das vorbeiströ-mende Wasser erwärmt sich, beginnt zu sieden und geht dabei teil-weise in den Dampfzustand über. Die Dampftemperatur beträgt da-bei etwa 290° C, der Druck des Dampfes ungefähr 70 bar.

Kühlwasser

GeneratorTurbineDampf

Wasser

Sekundärkreislauf

Wärmetauscherund

Dampferzeuger

290°C

320°C

Primärkreislauf

Reaktordruckgefäß

Wasser

Brennelemente

Steuerstäbe

Antriebe fürSteuerstäbe

Kondensator

G

2

1

Abb. 2.10: Druckwasserreaktor in schematischer Darstellung

Der Druckwasserreaktor (Abb.2.10) besteht aus zwei geschlossenen Kreisläufen: Primär- und Sekundärkreislauf. Im Primärkreislauf

Page 72: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

74

herrscht ein großer Druck von etwa 150 bar. Dadurch erhöht sich die Siedetemperatur des Wassers beträchtlich, sodass es selbst bei Temperaturen von etwa 320° C im flüssigen Zustand bleibt. Das hoch erhitzte Wasser durchfließt dann einen Wärmetauscher, in dem Wasser verdampft wird. Der Wärmetauscher gehört zum Sekundär-kreislauf und stellt zugleich auch einen Dampferzeuger dar. Der Hochdruck-Wasserdampf (T ≈ 270 °C, p ≈ 50 bar) durchströmt dann eine direkt angeschlossene Turbine. Dabei entspannt er sich und kühlt ab. Im Kondensator wird der Dampf dann mit Hilfe von Spei-sewasser weiter abgekühlt und verflüssigt. Die erste gesteuerte Kettenreaktion wurde 1942 von Enrico Fermi in einer reaktorähnlichen Anordnung an der Universität von Chicago verwirklicht. Wesentliche Elemente eines modernen Kernreaktors zur Nutzung der Kernenergie sind: Brennstäbe, Moderator, Steuer-stäbe und Wärmeträgermedium. Als Kernbrennstoffe werden die spaltbaren Nuklide Uran-235 oder Plutonium-239 in keramischer Form als UO2 oder PuO2 verwendet. Als Steuerstäbe werden neutro-nenabsorbierende Substanzen wie die Metalle Bor (B) und Cadmium (Cd) eingesetzt. Werden die Steuerstäbe in den Reaktorkern gefah-ren, so geht der Neutronenvermehrungsfaktor k gegen Null, und die Kettenreaktion bricht ab. Die Spaltneutronen haben im Mittel eine kinetische Energie von 2 MeV. Die kritische Masse des Reaktors kann reduziert werden, wenn man vorwiegend nur möglichst lang-same Neutronen zur Spaltungsreaktion bringt. Die Neutronen werden dazu durch Stöße mit einer Substanz abgebremst oder moderiert. Als Moderator wird Wasser eingesetzt, welches gleichzeitig als Kühlmit-tel dient. Durch die Abbremsung der Spaltprodukte erhitzen sich die Brennstäbe. Durch Wärmeübertragung geben sie diese Energie an das durch den Reaktorkern strömende Wasser ab. Ein Kernkraftwerk unterscheidet sich von einem kohlebefeuerten konventionellen Kraftwerk hauptsächlich durch die Art der Wärmeerzeugung. Neben der Kernspaltung kann auch durch die Fusionsreaktion leich-ter Atomkerne Energie gewonnen werden. Die Kernfusion genannte Verschmelzung von leichten Atomkernen stellt die Energiequelle der Sterne dar. Unsere Sonne ist somit ein großer thermonuklearer Fusi-onsreaktor, bei dem Wasserstoff zu Helium verschmolzen wird. Der wichtigste Reaktionspfad bei der Energiegewinnung der Sonne ist der Wasserstoff-Zyklus, auch als Proton-Proton-Zyklus bezeichnet. Er wird durch die folgenden Reaktionsgleichungen beschrieben:

MeV42,0eHpp e01

21

11

11 +ν++→+ + (2.39a)

MeV49,5HeHp 32

21

11 +γ+→+ (2.39b)

MeV12,9p2HeHeHe 11

42

32

32 ++→+ (2.39c)

In dieser Schreibweise wird durch das Symbol e01+ das so genannte

Antiteilchen des Elektrons gekennzeichnet. Es wird Positron genannt

Page 73: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.5 Kernspaltung und Kernfusion

75

und stellt ein elektrisch positiv geladenes Elektron dar. Das Positron ist – wie das Elektron – ein leichtes Elementarteilchen; beide gehö-ren zur Klasse der Leptonen und besitzen die Nukleonenzahl Null. Die zur Fusion notwendige kinetische Energie erlangen die Protonen

( p11

) aufgrund ihrer Wärmebewegung infolge der hohen Sonnen-

Temperatur. Die für die Sonnenenergieproduktion wesentliche Fusi-onsreaktion (2.39a), der Proton-Proton-Zyklus, wird auch in der

Form eedpp ν++→+ + angegeben. Diese Reaktion basiert auf der

schwachen Wechselwirkung, bei der ein Proton in ein Neutron umgewandelt wird und zusammen mit dem anderen Proton einen schweren Wasserstoffkern bildet. Die Fusionsreaktion (2.39a) ver-läuft über den quantenmechanischen Tunneleffekt und besitzt daher eine geringe Reaktionsrate. eν ist dabei ein elektrisch neutrales Ele-

mentarteilchen mit äußerst geringer Masse, welches Neutrino ge-nannt wird. Mit d wird der Atomkern des schweren Wasserstoffiso-tops Deuterium abgekürzt, für den der kernphysikalische Name Deu-teron eingeführt wurde. Mit der Entdeckung der Kernspaltung begann ein neues Zeitalter. Es ist gekennzeichnet durch die Entwicklung von Kernwaffen und einen nuklearen Rüstungswettlauf, der die zweite Hälfte des 20. Jahrhun-derts geprägt hat. Der Eintritt in das Atomzeitalter wurde der Weltöf-fentlichkeit erst am 06. August 1945 bewusst, als ein Atombomben-abwurf über der japanischen Stadt Hiroshima unmittelbar 70000 Menschen tötete. Nach 5 Jahren wurden insgesamt 200000 Opfer registriert.

Abb. 2.11: Atombombenangriff auf Hiroshima: „Als wär die Sonne vom Himmel gefallen“

Page 74: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

76

Die erste künstliche Kernfusionsreaktion wurde 1953 bei der Explo-sion einer Wasserstoffbombe realisiert, die als Sprengstoff ein Ge-misch aus Deuterium und Tritium enthielt. Eine Fusionsreaktion ist nur möglich, wenn sich die beiden Atomkerne sehr dicht annähern. Erst bei Abständen r ≈ RK wirkt die anziehende Kernkraft. Für diese Annäherung ist eine kinetische Energie notwendig, die ausreicht, um die elektrische Coulomb-Abstoßung zu überwinden (Abb. 2.12). Die Abbildung zeigt die potentielle Wechselwirkungsenergie E als Funk-tion des Teilchenabstandes r zwischen den beiden Atomkernen. Der Tritiumatomkern ist dabei als ein Potentialtopf dargestellt, der von einem abstoßenden Coulomb-Wall der Höhe EC umgeben ist.

Coulomb-Potential

Ek i n

EC

EB

tKernpotential

r

E

RK 0

A

d

RK

Abb. 2.12: Potentialtopf-Modell der Atomkerne

Untersuchungen zur kontrollierten Kernfusion werden seit vielen Jahren durchgeführt. Für die Überwindung der Coulomb-Abstoßung sind kinetische Energien zwischen 104 und 105 eV erforderlich. Dies entspricht Temperaturen von 108 bis 109 K. Dazu werden in Fusions-reaktoren geeignete Brennstoffe bei extrem hohen Temperaturen in starken Magnetfeldern komprimiert. Bei diesen hohen Temperaturen haben die Atome alle ihre Elektronen abgegeben und liegen im voll-ständig ionisierten Zustand vor. Dieser Zustand wird als Plasmazu-stand bezeichnet. Das extrem heiße Fusionsplasma darf nicht in Kontakt mit den materiellen Wänden des Fusionsreaktors kommen. Dies wird durch den so genannten magnetischen Einschluss mit Hilfe starker Magnetfelder erreicht. Die Magnetfelder üben dabei auf die bewegten elektrisch geladenen Teilchen des Plasmas eine Kraft aus. Die beiden wichtigsten thermonuklearen Reaktionen mit den dabei frei gesetzten Energien werden in den folgenden Reaktionsgleichun-gen zusammenfassend dargestellt: MeV2,3nHedd 1

032

21

21

+++→+ γ (2.40)

Page 75: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.5 Kernspaltung und Kernfusion

77

MeV6,17nHedt 10

42

21

31

+++→+ γ (2.41)

Der Atomkern des schweren Wasserstoffs ( H21

) wird Deuteron (d)

und der des überschweren Wasserstoffs ( H31

) wird Triton (t)

genannt. Der Tritiumkern (t) entsteht dabei in einer exothermen Reaktion, z. B. aus dem Lithium durch die Kernreaktion:

MeV67,4tHe*LinLi 31

42

73

10

63 +γ++→→+ (2.42a)

In den Reaktionen (2.40) und (2.41) entstehen energiereiche freie Neutronen n, die durch Neutronenaktivierung zur radioaktiven Kon-taminierung der Reaktormaterialien beitragen können. Neuerdings werden daher auch neutronenfreie Kernfusionsreaktionen diskutiert:

MeV7,8He3Be][HB 42

*125

11

114 +→→+ (2.42b)

Die kernphysikalische Realisierung von kontrollierten Fusionsreakti-onen konnte inzwischen durch den Nachweis von bei diesen Reakti-onen entstehenden Neutronen experimentell belegt werden. Die der-zeitigen Fusionsreaktoren haben allerdings noch eine negative Ener-giebilanz. Sie geben sehr viel weniger Energie ab, als ihnen von au-ßen zur Aufrechterhaltung der Kernverschmelzung zugeführt werden muss. Die technische Machbarkeit der Energiegewinnung durch Kernfusion soll durch den Bau eines Internationalen Thermonuklea-ren Experimental-Reaktors (ITER) im südfranzösischen Cadarache demonstriert werden. Es handelt sich dabei um ein Fusionskraftwerk mit magnetischem Einschluss des Brennstoffplasmas in einer als Tokamak bezeichneten toroidalen Konfiguration. Die Idee des ITER-Projektes geht auf das Jahr 1985 zurück. Die Kostenschätzung aus dem Jahr 2000 ging von 5 Mrd. € aus und der Reaktor sollte 2018 voll einsatzbereit sein. Inzwischen (Stand: 2015) werden Kosten von 16 Mrd. € genannt und mit der Inbetriebnahme wird frühestens 2025 gerechnet. Ein alternatives Fusionsreaktorkonzept wird vom Max- Planck-Institut für Plasmaphysik in Greifswald realisiert. Es handelt sich um einen Stellarator, der als Wendelstein 7-X bezeichnet wird und sich zurzeit in der Testphase befindet. Ziel ist es, für einige Minuten eine Plasmatemperatur von 100 Millionen Grad Celsius zu erreichen. Durch die Kernverschmelzung schwerer Atomkerne können Elemen-te jenseits des Urans künstlich hergestellt werden. Sie werden Tran-surane genannt. Dabei werden schwere Ionen wie beispielsweise Zirkoniumionen in Teilchenbeschleunigern mit Hilfe elektrischer Felder auf hohe kinetische Energien beschleunigt und auf dünne Bleifolien (Pb-Targets) geschossen. 1974 wurde mit Hilfe solcher Fusionsreaktionen das Element Rutherfordium (Z = 106) erzeugt. 1996 konnte bei der Gesellschaft für Schwerionenforschung (GSI) in

Page 76: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

78

Darmstadt das Element Copernicium (Z = 112 (Cn)) nachgewiesen werden, welches 2009 von der IUPAC offiziell als entdeckt aner-kannt wurde. Die ebenfalls dort synthetisierten Elemente Z = 108 (Hs) und Z = 110 (Ds) wurden deshalb durch die International Uni-on für Pure and Applied Chemistry (IUPAC) Hassium (nach dem Bundesland Hessen) und Darmstadtium genannt. Als sicher erzeugt und durch ihre Zerfallsketten nachgewiesen gelten zurzeit die Ele-mente mit Z = 114 (Flerovium (Fl)) und Z = 116 (Livermorium (Lv)) sowie die bislang noch namenlosen Elemente Z = 133 (Nihonium (Nh)), Z = 115 (Moscovium (Mc)), Z = 117 (Tennessine (Ts)) und Z = 118 (Oganesson (Og)), die schließlich Ende 2016 von der IUPAC offiziell als entdeckt anerkannt und benannt wurden. Es handelt sich dabei um radioaktive Isotope mit kurzer Halbwertszeit (T1/2 ≈ 1 ms), die in der Natur nicht vorkommen. Für Kernphysiker stellt sich zur-zeit die wichtige Frage: Gibt es eine Insel der Stabilität, dass heißt einen Bereich auf der Nuklidkarte, in dem langlebige oder gar stabile superschwere Elemente existieren können?

2.6 Wechselwirkung ionisierender Strahlung mit Materie

Die wichtigsten Wechselwirkungsprozesse von α- und β-Teilchen mit Materie sind elastische Stöße, bei denen kinetische Energie auf die atomaren Stoßpartner übertragen wird und unelastische Stöße, die zur Anregung und Ionisation der Atome des durchstrahlten Me-diums führen. Dabei werden Elektronen auf höhere Bahnen gehoben oder vollständig vom Atom getrennt. Die α- oder β-Teilchen geben dabei Energie ab und werden abgebremst. Sie besitzen in Materie nur eine begrenzte Reichweite, die umso größer ist, je größer die Teilchenenergie und je kleiner die Dichte des Absorbermaterials ist. Im Gegensatz zu elektrisch geladenen Teilchen ist Gammastrahlung nur indirekt ionisierend. Durch Photoeffekt und Comptonstreuung wird die elektromagnetische Energie der γ-Quanten auf die an diesen Wechselwirkungsprozessen beteiligten Hüllenelektronen übertragen, wodurch die Atome ionisiert werden. Die dadurch freigesetzten energiereichen Elektronen werden ihrerseits durch elastische und unelastische Stoßprozesse im Absorbermaterial abgebremst. Analog zur Röntgenstrahlung weist die Gammastrahlung eine große Durch-dringungsfähigkeit auf. Sie besitzt im Gegensatz zu geladenen Teil-chen keine definierte Reichweite. Ihre Abschwächung erfolgt expo-nentiell gemäß dem Absorptionsgesetz. Durch die Wechselwirkungsprozesse Fotoeffekt, Comptoneffekt und Paarbildung (Abb. 2.12) werden energiereiche Photonen (Röntgenstrahlung oder Gammastrahlung) beim Durchgang durch Materie abgeschwächt.

Page 77: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.6 Wechselwirkung ionisierender Strahlung mit Materie

79

a) Fotoeffekt: Absorption eines Photons und Ionisierung des Atoms in einer inneren Schale (hier: K-Schale).

b) Comptoneffekt: Elastischer Stoß eines Photons mit der Frequenz

f mit einem lose gebundenen äußeren Elektron. Ein Teil der Pho-tonenenergie wird dabei auf das Elektron übertragen. Unter Ver-nachlässigung der Bindungsenergie des Elektrons ergibt sich für den Energieübertrag fhfhE ′⋅−⋅=∆ . Die Restenergie ver-bleibt beim Photon, das sich unter Richtungsänderung (Streu-ung) mit reduzierter Frequenz f ′ < f weiterbewegt.

c) Paarbildung: Photonen mit Energie von mehr als 1,022 MeV

können im Coulombfeld eines Atomkerns materialisieren. Dabei entsteht ein Elektron-Positron-Paar. Man nennt diesen Prozess Paarbildung. Das Positron ist ein elektrisch positiv geladenes Elektron mit identischer Masse me. Es stellt das Antiteilchen zum Elektron dar. Zur Bildung des Elektron-Positron-Paares muss das Photon mindestens eine der Ruhemasse der beiden erzeugten Teilchen äquivalente Energie E besitzen:

MeV022,1keV511keV51122 =+=+≥ cmcmEee

. (2.43)

KL

M

N

KL

M

N

hf’

hf

hf

Atomkernhf

e+

Paarbildung

Compton-Effekt

Fotoeffekt

e–

e–

e–

Abb.2.13: Wechselwirkungsprozesse von γ-Quanten mit Atomen

Page 78: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

80

Die Gammastrahlung entsteht im Gegensatz zur Röntgenstrahlung im Atomkern. Sie ist eine elektromagnetische Kernstrahlung. Trifft energiereiche Photonenstrahlung wie Gammastrahlung oder Rönt-genstrahlung auf Materie, dann findet aufgrund der oben genannten Wechselwirkungsprozesse eine Abschwächung der Photonen-Strahlungsintensität statt. Die Wahrscheinlichkeit, mit der einer der genannten Wechselwirkungsprozesse auftritt, wird als Wirkungs-querschnitt σ bezeichnet. Der Wirkungsquerschnitt stellt anschaulich ein Maß für die Trefferfläche dar, die ein Atom einem einfallenden Photon der Gammastrahlung entgegenstellt. In Abbildung 2.13 sind die Wirkungsquerschnitte für die Wechselwirkungen von Photonen mit Blei als Funktion der Photonenenergie Eγ dargestellt. Der gesamte Wechselwirkungsquerschnitt σtotal ergibt sich als Sum-me der Wirkungsquerschnitte für den Fotoeffekt σFoto, die Compton-Streuung σCompton und die Paarbildung σPaar:

PaarComptonFotototalσσσσ ++= (2.44)

0

10

20

30

σ

σt o t a l

σp a a r

σC o m p t o n

σF o t o

1 2 5 10 E /MeVγ

Abb. 2.14: Wirkungsquerschnitte für Photonenwechselwirkung mit Pb-Atomen

Beim Durchgang durch Materie führen diese atomaren Wechselwir-kungsprozesse zu einer Abschwächung der Photonen-Strahlungs- intensität. Abbildung 2.15 zeigt diese Abschwächung, die beim Auftreffen einer Strahlungsintensität I0 auf eine Materieschicht der Dicke x auf-tritt.

Page 79: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.6 Wechselwirkung ionisierender Strahlung mit Materie

81

I0

I

X

Abb. 2.15: Schwächung einer Strahlungsintensität beim Durchgang durch Materie

In einer dünnen Schicht der Dicke x∆ ist die Abnahme der Strah-lungsintensität I∆− proportional zur vorhandenen Intensität I und zur Schichtdicke x∆ . Es gilt: xII ∆⋅⋅=∆− µ (2.45)

Dabei ist µ eine materialspezifische Konstante, die die Abschwä-chungseigenschaften der Materieschicht beschreibt. Fällt eine Rönt-gen- oder Gammastrahlung mit einer Intensität I0 auf Materie, dann beträgt die Intensität I nach Durchlaufen einer Strecke der Dicke x noch

xeIxI µ−=0

)( . (2.46)

Die stoffspezifische Konstante µ heißt linearer Schwächungskoef-fizient. Er hat die Einheit cm–1. Die Halbwertsdicke d1/2 kennzeich-net die Schichtdicke einer Substanz, in der sich die Intensität der elektromagnetischen Strahlung um 50 %, d. h. um die Hälfte des Ausgangswertes reduziert. Es gilt:

µµ693,02ln

21 ==d . (2.47)

Der lineare Schwächungskoeffizient µ hängt stark von der Frequenz und damit von der Photonenenergie fhE ⋅= der Röntgen- bzw. Gammastrahlung ab. Ionisierende Strahlung kann durch Absorption in Materie abge-schirmt werden. Die freiwerdende radioaktive Zerfallsenergie führt dabei letztlich zu einer Erwärmung des Materials. Beispiel:

0,1 g Radium, das sich in einem mit 10 g Wasser gefüllten, thermisch isolierten Dewar-Gefäß befindet, bewirkt eine Er-wärmung des Wassers von 1°C pro Stunde.

Page 80: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

82

2.7 Nachweismethoden für ionisierende Strahlung

Die aus dem Atomkern stammende ionisierende Strahlung wird mit Kernstrahlungsdetektoren nachgewiesen und gemessen. Die ionisierende Strahlung wird unterschieden in: – direkt ionisierende Strahlung (α-,β -Strahlung), – indirekt ionisierende Strahlung (γ -Strahlung, n-Strahlung) Während die direkt ionisierende Strahlung aus elektrisch geladenen Teilchen besteht, setzt sich die indirekt ionisierende Strahlung aus elektrisch neutralen Teilchen zusammen. Zum experimentellen Nachweis von α-,β - und γ -Strahlen wird ihre ionisierende Wirkung in Strahlungsdetektoren (lat. detectum: nachgewiesen) ausgenutzt. Szintillationsdetektoren beruhen auf der Erzeugung eines Lichtsignals durch Lichtemission infolge von Stoß-anregung beim Durchgang ionisierender Strahlung durch geeignete Absorbersubstanzen (Beispiel: NaJ-Kristalle). In Ionisationsdetek-toren befindet sich die Absorbersubstanz im elektrischen Feld eines Plattenkondensators. Beim Durchgang von geladenen Teilchen durch Materie übertragen die Teilchen durch Stoßprozesse Energie auf die Hüllenelektronen und ionisieren dabei die Atome des durchstrahlten Mediums. Es entstehen dabei Ionenpaare aus Elektronen und elektrisch positiv geladenen Atomrümpfen, deren Bewegung im elektrischen Feld ein messbares Stromsignal hervorruft. Wird das nachzuweisende Teilchen vollständig im Zählervolumen gestoppt, so ist die Anzahl der durch Ionisationsprozesse hervorgerufenen Elekt-ronen der Energie des einfallenden Teilchens direkt proportional. Die Teilchendetektoren erlauben somit prinzipiell eine Energiebestim-mung der nachzuweisenden Strahlung. Beispiel: Geiger-Müller-Zählrohr

Das Geiger-Müller-Zählrohr stellt ein einfaches Beispiel der Realisierung eines Kernstrahlungsdetektors dar. Im Jahre 1928 hat der 1882 in Neustadt an der Weinstraße geborene Physiker Hans Geiger zusammen mit seinem damaligen Doktoranden Walter Müller ein so genanntes Auslösezählrohr entwickelt, das heute Geiger-Müller-Zählrohr genannt wird.

Page 81: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.7 Nachweismethoden für ionisierende Strahlung

83

MetallgehäuseEintrittsfenster Zählrohrdraht

Zähler

Gas

UB

C2198

R (10 Ohm)7

V

γ

Abb. 2.16: Aufbau eines Geiger-Müller-Zählrohres

Ein Geiger-Müller-Zählrohr ist ein Ionsiationszähler. Es arbeitet nach dem Prinzip der Gasverstärkung und besteht aus einem dünn-wandigen Rohr als Kathode, das mit dem negativen Pol einer Span-nungsquelle verbunden ist. In der Mitte entlang der Rohrachse befin-det sich ein dünner Zähldraht. Er ist mit dem positiven Pol der Span-nungsquelle verbunden und bildet die Anode. Als Füllgas wird das Edelgas Argon bei Unterdruck verwendet. Mit anderen Worten: Das Geiger-Müller-Zählrohr besteht aus einem gasgefüllten Zylinderkon-densator. Beim Geiger-Müller-Zähler ruft jede Ionisation eine Gasentladung hervor, die unabhängig von der Energie des nachzuweisenden Teil-chens ist. Wird durch ionisierende Strahlung, z. B. durch ß-Teilchen, eine elektrische Entladung ausgelöst, fließt ein kurzzeitiger Strom (Stromstoß), der an einem Arbeitswiderstand R zu einem Span-nungsabfall führt und somit eine Änderung U∆ der Spannung des Zählrohrdrahtes hervorruft. Diese kurzzeitige Änderung, die man als Spannungsimpuls bezeichnet, wird über einen Koppelkondensator C zur weiteren elektrischen Verarbeitung an einen Verstärker mit nach-folgendem Zähler übertragen. Die in der Gasfüllung des Zählrohres durch das einfallende ionisierende Teilchen primär gebildeten Elekt-ronen nehmen im elektrischen Feld zwischen Zähldraht und Zähl-rohrwand Energie auf und tragen selbst durch Stoßionisation zur Ladungsvervielfachung durch Elektronen-Lawinenbildung bei. Sie verstärken dadurch das elektrische Messsignal.

Page 82: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

84

Elektron

Sekundär-Elektronen

Gasionen

Elektronenlawine

Anodendraht

Abb. 2.17: Illustration der Ladungsvervielfachung

Die Gasverstärkung hat dabei den Faktor 108, d. h. aus einem primär gebildeten Elektron entsteht eine Elektronenlawine von 108 Elektro-nen, die den Zähldraht erreichen. Wichtig für ein GM-Zählrohr ist die Zählrohrcharakteristik n = f(U). n ist die produzierte Ionenzahl als Funktion der angelegten Zählrohr-spannung U. Normalerweise wird das GM-Zählrohr bei U ≈ 1000 V betrieben. Man muss allerdings Vorkehrungen treffen, damit die erzeugten Ladungslawinen nicht zu einer Dauerentladung im Zähl-rohr führen. Dem Zählrohrgas wird dazu ein Löschgas (z. B. Alko-holdampf) zugegeben. Der Arbeitswiderstand R begrenzt die Strom-stärke und verhindert die selbständige Entladung (Dauerentladung), die das GM-Zählrohr unbrauchbar machen würde. Der technische Vorteil des GM-Zählers ist seine einfache Konstruk-tion und Robustheit. Er wird daher für militärische Strahlenschutz-zwecke und im Zivilschutz eingesetzt. Ferner ist das Zählrohr un-empfindlich gegenüber Spannungsschwankungen. Es besitzt jedoch auch zwei gravierende Nachteile: 1. Das GM-Zählrohr liefert keine Information darüber, welcher Art

(α- β- oder γ-Teilchen) die ionisierende Strahlung ist, welche die Messimpulse auslösen. Daher ist eine Teilchenidentifizierung unmöglich.

2. Es kann keine Aussage über die Energie der nachzuweisenden

Teilchen gemacht werden. Daher ist eine Energiebestimmung der Strahlung unmöglich.

Das Geiger-Müller-Zählrohr ist daher für Strahlendosismessungen ungeeignet, denn der Zähler erzeugt unabhängig von der Teilchen-

Page 83: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.8 Strahlenschutz

85

energie immer die gleichen Signale. Durch die großen Elektronen- lawinen, die durch die Stoßionisationen hervorgerufen werden, benö-tigt das Zählrohr nach dem Durchgang eines nachzuweisenden Teil-chens sehr lange (etwa 1 ms), bis er wieder einsatzbereit ist. Wäh-rend dieser so genannten Totzeit kann es daher nicht messen und eignet sich somit nicht zum Nachweis hoher Zählraten (R > 1000). Unter der Zählrate R versteht man dabei die Anzahl dN der im Zeit-raum dt nachgewiesenen Teilchen.

Nt

NR &==

d

d (2.48)

Bei einer Zählrate von R = 100 s–1 werden 100 Teilchen in 1 s nach-gewiesen. Für den Nachweis von γ-Strahlung ist die Ansprechwahr-scheinlichkeit des Zählrohres kleiner als 1, d. h. nicht jedes einfal-lende γ-Teilchen erzeugt ein Signal. Vielmehr gehen die meisten γ-Teilchen ungehindert durch das Zählrohr hindurch, ohne registriert zu werden.

2.8 Strahlenschutz

Im Strahlenschutz ist die Angabe der Aktivität einer radioaktiven Substanz nicht ausreichend. Zur quantitativen Beschreibung der Strahlenwirkung einer ionisierenden Strahlung wurde daher die Energiedosis D eingeführt, die im Rahmen von Strahlenschutz- messungen von grundsätzlicher Bedeutung ist. Anders als in der Toxikologie üblich, versteht man unter dem Begriff Dosis nicht die aufgenommene Menge einer radioaktiven Substanz. Sie ist vielmehr ein quantitatives Maß für die Strahlenbelastung, die in Form von äußerer Bestrahlung auch ohne Aufnahme radioaktiver Stoffe in den Körper auftritt. Unter der Energiedosis D versteht man den Quotienten aus der auf das Material übertragenen Strahlenenergie dED und der Masse dm des Absorbers. Dabei ist dED die gesamte Energie, die auf das Mate-rial in einem Volumenelement dV übertragen wird, und Vm dd ⋅= ρ ist die Masse des Materials mit der Dichte ρ in diesem Volumenele-ment. Bei allen Angaben der Energiedosis muss das Bezugsmaterial – wie z. B. Luft, Wasser oder Aluminium – angegeben werden.

m

ED D

d

d= (2.49)

( )GyGray1kg

J1][ ==D (2.50)

Der Einheitenname der Energiedosis geht auf den englischen Natur-forscher Louis Harold Gray (1905 – 1965) zurück, den Begründer

Page 84: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

86

der Radiobiologie. Bei der Definition der Einheit der Energiedosis kommt es nicht auf die Energie der einfallenden ionisierenden Strah-lung an, sondern nur auf den Anteil der Energie, der auf die Materie durch Absorption übertragen wird. Denn nur dieser Anteil kann in dem absorbierenden Medium eine chemische oder biologische Wir-kung hervorrufen. Unter der Energiedosisleistung D& versteht man den Differential- quotienten der Energiedosis nach der Zeit:

t

DD

d

d=& . (2.51)

Für die SI-Einheit der Energiedosisleistung erhält man:

s

Gy1

kg

W1

skg

J1][ ==

⋅=D& . (2.52)

Dosimeter sind Strahlungsmessgeräte, die die an einem bestimmten Ort auftreffende Strahlung über einen festgelegten Zeitraum auf-summieren. Notwendige Voraussetzung für die Wirkung einer ionisierenden Strahlung ist die Übertragung von Energie auf Materie. Das Ausmaß der Wirkung hängt daneben noch von der Art der Energieübertra-gung ab. Sie wird durch die so genannte Ionisationsdichte bestimmt, d. h. die Anzahl der Ionisierungsprozesse bezogen auf die im Absor-ber zurückgelegte Wegstrecke des ionisierenden Teilchens. Da die verschiedenen Strahlungsarten bei gleicher Energiedosis D unterschiedliche biologische Wirkungen verursachen, wurde der Begriff der Äquivalentdosis H eingeführt. DqH ⋅= (2.53)

Der Proportionalitätsfaktor q ist ein dimensionsloser Bewertungsfak-tor, der die unterschiedliche Ionisationsdichte der verschiedenen Strahlungsarten berücksichtigt und damit der unterschiedlichen Ge-fährlichkeit einzelner Strahlenarten Rechnung trägt. Er gibt an, um wie viel die biologische Wirkung einer Strahlung größer ist als die von Gamma- oder Röntgenstrahlung, für die unabhängig von der Photonenenergie q = 1 festgesetzt wird. Für Betastrahlen ist für alle Energien q = 1. Für Neutronenstrahlen ist der Bewertungsfaktor energieabhängig und es gilt: q = 5 für Neutronenenergien unterhalb 10 keV. Für Neutronenenergien zwischen 10 keV und 100 keV ist q = 10 und für Energien oberhalb 100 keV bis zu 2 MeV ist q = 20. Für Alphastrahlen ist für alle Teilchenenergien q = 20. Diese Bewer-tungsfaktoren werden auch als Qualitätsfaktoren bezeichnet und wurden durch die internationale Strahlenschutzkommission (ICRP: International Commission on Radiation Protection) festgelegt. In der

Page 85: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.8 Strahlenschutz

87

novellierten Fassung der deutschen Strahlenschutzverordnung vom 20. Juli 2001 (Fundstelle: BGBl I 2001, 1714) werden die Bewer-tungsfaktoren als Strahlungs-Wichtungsfaktoren Rw bezeichnet

und sind dort in Anlage VI Teil C tabelliert. Für die SI-Einheit der Äquivalentdosis gilt:

( )SievertSv1kg

J]][[][ === DqH . (2.54)

Durch den Einheitennamen der Äquivalentdosis H wird der schwedi-sche Strahlenphysiker Rolf Maximilian Sievert (1896 – 1966) für seine Verdienste in der Strahlenschutzforschung gewürdigt. Als Ein-heit für die Äquivalentdosis könnte ebenfalls das Gray benutzt wer-den. Da es sich aber um eine mit einem dimensionslosen Bewer-tungsfaktor q gewichtete Energiedosis handelt, wurde um Verwechs-lungen auszuschließen ein eigener SI-Einheitenname eingeführt. Das Symbol H für die Äquivalentdosis leitet sich von dem englischen Begriff hazard (Gefahr, Wagnis) ab. Für Strahlenschutzzwecke kön-nen gleiche Äquivalentdosen

iiiDqH ⋅= verschiedener Strahlenar-

ten i im Hinblick auf ihre biologische Wirksamkeit gleich bewertet werden. Die Äquivalentdosis ist jedoch wegen ihrer Abhängigkeit von dem Bewertungsfaktor q der direkten Messung nicht zugänglich. Sie muss vielmehr aus der Energiedosis berechnet werden und setzt die Kenntnis der Strahlenart und der Strahlenenergie voraus. Unter der Ortsdosis versteht man die an einem bestimmten Ort ge-messene Äquivalentdosis für Weichteilgewebe. Das Weichteilgewe-be wird dabei als homogenes Material mit genau definierter Zusam-mensetzung angesehen. Die Ganzkörperdosis ist der Mittelwert der über Kopf, Rumpf, Oberarme und Oberschenkel gemessenen Äqui-valentdosis, wobei eine homogene Bestrahlung des ganzen Körpers angenommen wird. Ionisierende Strahlung kann genetische (gr. genos: Nachkomme) und somatische (gr. soma: Körper) Strahlenschäden verursachen. Unter genetischen Schäden versteht man die ausschließlich an der Nach-kommenschaft beobachteten Erbschäden, die infolge einer Strahlen-belastung der Keimdrüsen der Eltern hervorgerufen wurde. Ursache dafür sind strahleninduzierte Veränderungen an der Desoxyribonuk-leinsäure (DNS), wo die Erbinformation gespeichert ist. Sie führen zu Erbgutveränderungen, die Mutationen genannt werden. Somati-sche Strahlenschäden betreffen dagegen nur den Körper des der Strahlung direkt ausgesetzten Individuums. Man unterscheidet somatische Früh- und Spätschäden. Die somati-schen Frühschäden reichen von einer vorübergehenden Hautrötung bis zur Schwächung der Schutz- und Abwehrfunktionen des Körpers (Strahlenkrankheit). Unter den somatischen Spätschäden versteht man die durch Bestrahlung des Körpers mit einer Zeitverzögerung von bis zu 20 Jahren verursachten Krebserkrankungen.

Page 86: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

88

Die verschiedenen Körperzellen zeigen eine unterschiedliche Strah-lungsempfindlichkeit, die bei gleichem Zelltyp auch noch alters- abhängig ist. Kinder sind strahlungsempfindlicher als Erwachsene. Auch die zeitliche Verteilung der Strahlendosis ist für die biologi-sche Wirkung von Bedeutung. Eine über einen längeren Zeitraum durch mehrere kleine Strahlendosen hervorgerufene Strahlenbelas-tung hat geringere biologische Strahlenwirkungen als eine einmalige kurzzeitige Bestrahlung gleicher Gesamtdosis. Auf die Einwirkung von Strahlung reagiert das Immunsystem des Körpers mit Abwehr-mechanismen. Das Immunsystem wird unterstützt durch ein Repara-tursystem, das Molekül- und Zellschäden reparieren kann. Die strah-lungsinduzierte Mutation ist daher nicht gleichbedeutend mit einem somatischen oder genetischen Schaden.

Ionisierende Strahlung

Physikalische Effektedurch Strahlungsabsorption

Molekulare Veränderungen

Zelluläre Veränderungen

Körperzellen Keimzellen

SomatischeFrühschäden

SomatischeSpätschäden

Nichtstochastische Schäden

Strahlenkrebs(Leukämie und

maligneTumore)

GenetischeSchäden

(Nachkommen)

Stochastische Schäden

Abb. 2.18: Wirkungen ionisierender Strahlung

Als letale Dosis bezeichnet man die Äquivalentdosis einer ionisie-renden Strahlung, die bei kurzzeitiger Ganzkörperbestrahlung aus-reicht, um den Tod des bestrahlten Individuums herbeizuführen. Die mittlere Letaldosis (LD50) ist dabei die Dosis, die bei der Hälfte der Individuen, die ähnlich bestrahlt wurden zum Tode führt. Sie liegt beim Menschen bei 4 Sv. Dies entspricht einer Energiedosis einer γ−Strahlung von 4 Gy. Zur einheitlichen Bewertung von gleichförmiger und ungleichförmi-ger Strahlenexposition des Körpers wurde für Strahlenschutzzwecke das Konzept der effektiven Äquivalentdosis eingeführt. Wird der

Page 87: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.8 Strahlenschutz

89

menschliche Körper einer ionisierenden Strahlung ausgesetzt, so kann aus der Strahlenbelastung einzelner Körperteile und Organe die einem Gesamtrisiko entsprechende Gesamtstrahlenbelastung errech-net werden. Dazu werden die in den einzelnen Körperregionen und Organen vorhandenen Äquivalentdosen Hi mit dimensionslosen Ge-webe-Wichtungsfaktoren i,Tw multipliziert und aufsummiert.

Diese Wichtungsfaktoren i,Tw berücksichtigen die unterschiedliche

biologische Strahlenempfindlichkeit des jeweiligen Organs oder Körperteils. Der Summenwert wird als effektive Äquivalentdosis

effH bezeichnet.

∑=

⋅=n

1iii,Teff HwH (2.55)

Addiert werden hierbei entgegen dem Augenschein nicht Äquiva-lentdosen verschiedener Organe, sondern Risikobeiträge der Organe, die die Dimension einer Äquivalentdosis besitzen. Denn das der Be-strahlung ausgesetzte Individuum ist in seiner gesundheitlichen In-tegrität immer nur durch das Gesamtrisiko gefährdet. Die Einheit der effektiven Äquivalentdosis ist, wie die für die Äquivalentdosis, das Sievert (Sv). Die Wichtungsfaktoren sind normiert, und es gilt:

1wn

1ii,T =∑

=

(2.56)

Die Wichtungsfaktoren i,Tw zur Berechnung der effektiven Äquiva-

lentdosis effH sind in der Strahlenschutzverordnung in der novellier-

ten Fassung von 2001 tabelliert. Die effektive Äquivalentdosis stellt somit einen einheitlichen Vergleichsmaßstab zur Risikobeurteilung von Strahlenbelastungen verschiedener Organe dar.

Organ bzw. Gewebe Wichtungsfaktor Tw

Keimdrüsen 0,20

Knochenmark 0,12

Lunge 0,12

Dickdarm 0,12

Brust 0,12

Schilddrüse 0,05

Knochenoberfläche 0,01

Haut 0,01

alle anderen Organe 0,25

Summe: 1,00

Tabelle 2.2: Auswahl von Gewebe-Wichtungsfaktoren Tw zur Be-

rechnung der effektiven Äquivalentdosis

Page 88: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

90

Beispiel:

Erhalten bei einer Ganzkörperbestrahlung von außen alle Körperteile die gleiche Äquivalentdosis Hi = konst., so ist die effektive Äquivalentdosis Heff identisch mit dieser Äqui- valentdosis Hi:

ii

n

1ii,Ti

n

1iii,Teff H1HwHHwH =⋅=⋅=⋅= ∑∑

==

Wird jedoch durch die Aufnahme von radioaktiven Iod-131 durch die Schilddrüse ausschließlich dieses Organ mit einer Äquivalentdosis von Hi = 2 mSv belastet, so beträgt die effektive Äquivalentdosis

.mSv1,0mSv205,0HwH

ii,Teff=⋅=⋅=

Dieses Ergebnis lässt sich wie folgt interpretieren: Das Krebsrisiko infolge einer Bestrahlung der Schilddrüse mit Hi = 2 mSv ist dem Krebsrisiko einer Ganzkörperbestrahlung mit einer Äquivalentdosis von H = 0,1 mSv äquivalent. Aufgrund des derzeitigen Kenntnisstandes werden biologische Strah-lenwirkungen in nichtstochastische und stochastische Wirkungen unterteilt. Strahlenwirkungen, deren Eintreten nicht von der Wahr-scheinlichkeit abhängig ist, heißen nichtstochastisch. Die Ausprä-gung nichtstochastischer Wirkungen ist an einen Schwellenwert ge-bunden und setzt somit eine Mindestdosis voraus. Der verursachte Strahlenschaden wird umso schwerwiegender, je höher die Dosis war. Strahlungsinduzierte Hautverbrennungen oder die Linsentrü-bung im Auge stellen Beispiele für nichtstochastische Wirkungen dar.

Page 89: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.8 Strahlenschutz

91

D/GyD

S

S

0

W

100%

0 D/GyDs

s

s

Abb. 2.19: Nichtstochastische Strahlenwirkungen

Strahlenwirkungen, bei denen kein Schwellenwert nachgewiesen ist, heißen stochastisch. Bei stochastischen Schäden wächst mit zu-nehmender Dosis die Eintrittshäufigkeit und nicht das Ausmaß des Strahlenschadens. Die Strahlenwirkung ist dann unabhängig von der Höhe der verursachenden Dosis. Mit wachsender Dosis steigt jedoch die Wahrscheinlichkeit für das Auftreten des Strahlen-schadens an. Die wichtigste stochastische Strahlenwirkung ist die Krebsentstehung. Strahleninduzierte Tumore stellen somatische Schäden dar. Sie können unter Umständen erst nach einer jahrzehnte-langen Latenzzeit auftreten. Aber auch genetische Schäden sind stochastischer Natur. Die Abschätzung des Strahlenrisikos basiert auf Untersuchungen der Krebshäufigkeit an den Überlebenden der Atombombenabwürfe über den japanischen Städten Hiroshima und Nagasaki vom 6. und 9. August 1945.

Page 90: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

92

D/Gy

S

S

0

W

0 D/Gy

W0

0

Abb. 2.20: Stochastische Strahlenwirkungen

Die realistische Abschätzung des Risikos der Krebsentstehung durch stochastische Strahlenwirkung bei niedriger Dosis stellt das Haupt-problem des Strahlenschutzes dar. Die Beurteilung der Wirkung von geringen Strahlendosen ist schwierig, da die Quantifizierung von Risiken erheblichen Unsicherheiten unterliegt. Die experimentell gesicherten Erkenntnisse basieren auf Untersuchungen mit hohen Strahlendosen, die in den Bereich niedriger Dosen extrapoliert wer-den müssen. Neben einer Vielzahl von chemisch kanzerogenen Sub-stanzen, denen alle Menschen mehr oder weniger stark ausgesetzt sind, gibt es auch ein spontanes Auftreten von Karzinomen. Die Sterblichkeit infolge von Krebserkrankungen liegt in Deutschland bei etwa 22%. Für eine mögliche Risikoerhöhung durch ionisierende Niedrigstrahlung gibt es keine statistisch gesicherten Daten. Aus Sicherheitsgründen geht man im Strahlenschutz aber davon aus, dass eine Schwellendosis, unterhalb derer mit Sicherheit ein Strahlen-schaden auszuschließen ist, nicht existiert. Aufgrund der auf der Erde immer vorhandenen kosmischen und terrestrischen Strahlung sind jedoch alle Menschen stets einer natürlichen Strahlenbelastung aus-gesetzt. Der Umgang mit radioaktiven Stoffen wird in Deutschland durch das Atomgesetz und die Verordnung über den Schutz vor Schäden durch ionisierende Strahlung, kurz Strahlenschutzverordnung (StrlSchV) genannt, geregelt. Die Verordnung findet Anwendung für radioaktive Stoffe mit einer Teilchen- oder Photonengrenzenergie von mindes-tens 5 keV. Für Elektronenstrahlung ist die Strahlenschutzverord-nung anzuwenden, wenn die Elektronenenergie 3 MeV überschreitet. Unter Umgang versteht man dabei die Verwendung, Beförderung

Page 91: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.8 Strahlenschutz

93

und Lagerung von radioaktiven Stoffen. Je nach Aktivität der radio-aktiven Stoffe ist der Umgang genehmigungsfrei oder genehmi-gungsbedürftig. Für den genehmigungsfreien Umgang mit radioakti-ven Stoffen sind in Anlage IV der StrlSchV Freigrenzen einzelner Radionuklide aufgeführt. Diese Freigrenze liegt beispielsweise für Cs-137 bei einer Aktivität von A = Bq101 4⋅ . Für den Umgang mit radioaktiven Stoffen legt die Strahlenschutzverordnung Grenzwerte für die Strahlenexposition fest, die nicht überschritten werden dürfen. Der Grenzwert für die jährliche effektive Äquivalentdosis beträgt zurzeit (Stand: 2004) für beruflich strahlenexponierte Personen 20 mSv/a. In der Vorläuferversion der StrlSchV in der Fassung von 1989 war dieser Grenzwert bei 50 mSv/a festgelegt. Im Rahmen der Neuregelung der StrlSchV erfolgte auch eine Absenkung der Dosis-grenzwerte für die Bevölkerung. Zum Schutz der Bevölkerung vor Strahlenexpositionen aus zielgerichteter Nutzung radioaktiver Stoffe und ionisierender Strahlung wurde der Grenzwert von bisher 1,5 mSv auf 1 mSv im Kalenderjahr abgesenkt. Ausgedehnt wurde der Strahlenschutz auch auf Strahlenexpositionen durch natürliche Strahlungsquellen. Für Expositionen aus natürlichen Strahlungs-quellen wurde ein Grenzwert für die effektive Dosis von 20 mSv im Kalenderjahr vorgeschrieben. Einbezogen wurde dabei auch aus-drücklich das Flugpersonal hinsichtlich der Belastung durch kosmi-sche Strahlung. Die Flugzeugbetreiber wurden zur Ermittlung der Strahlenexposition ihres fliegenden Personals verpflichtet, sobald die effektive Dosis im Kalenderjahr 1 mSv überschreiten kann. Der Grenzwert für fliegendes Personal für die effektive Dosis durch kosmische Strahlung beträgt 20 mSv pro Kalenderjahr. Zum Vergleich: Die mittlere natürliche Strahlenexposition aus allen natürlichen Strahlenquellen führt in Deutschland zu einer jährlichen effektiven Äquivalentdosis von 2,4 mSv/a mit einer lokalen Schwan-kungsbreite zwischen 1,5 und 4 mSv/a. Zur natürlichen Strahlenex-position trägt die externe Strahlenexposition zu einem Viertel bei. Sie wird verursacht durch die kosmische Strahlung (Höhenstrahlung) und die terrestrische Strahlung infolge der natürlichen Radionuklide von Kalium-40 und den Nukliden der Uran- und Thorium-Reihe, die sich im Erdboden befinden. Zu drei Viertel trägt die interne Strah-lenexposition zur natürlichen Strahlenbelastung bei. Sie wird durch inkorporierte Radionuklide hervorgerufen, die mit der Nahrung auf-genommen oder - die wie das radioaktive Edelgasnuklid Radon-222 - mit der Luft inhaliert werden. Der Mittelwert der Radonkonzentrati-on in Häusern und Wohnungen liegt bei etwa 50 Bq pro Kubikmeter Luft. Im Freien beträgt in Deutschland die Radonkonzentration etwa 15 Bq/m³. Gleichzeitig gilt für die effektive Berufslebensdosis von beruflich strahlenexponierten Personen ein Grenzwert von 400 mSv. Die Summe sämtlicher jährlichen effektiven Äquivalentdosen darf wäh-rend eines Berufslebens maximal 400 mSv betragen. Dabei gilt je-doch das Prinzip der Dosisminimierung unterhalb der Grenzwerte.

Page 92: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

94

Dieses Minimierungsgebot wird „ALARA“-Prinzip (as low as reasonably achievable) genannt und fließt in Form der Strahlen-schutzgrundsätze in § 28 Abs. 1 der Verordnung ein. Demnach ist beim Umgang mit radioaktiven Stoffen jede unnötige Strahlenexpo-sition von Personen zu vermeiden. Der Zerfall natürlicher Radionuklide verursacht in der Strahlungs-messtechnik auch bei Abwesenheit von künstlichen Strahlungsquel-len eine immer vorhandene Untergrundrate von ionisierenden Ereig-nissen, die als Nulleffekt bezeichnet wird. Literaturhinweis: Martin Volkmer, Radioaktivität und Strahlen-schutz, Informationskreis KernEnergie, Berlin

2.9 Übungsaufgaben zu Kapitel 2

Aufgabe 1

C-14 ( aT 57302/1

= ) und K-40 ( )1028,1 92/1

aT ⋅= sind zwei natür-

liche und Sr-90 )64,28(2/1

aT = sowie Cs-137 )17,30(2/1

aT = sind

zwei künstliche Betastrahler. Geben Sie für diese radioaktiven Stoffe jeweils die Zerfallsgleichung nach dem 2. Verschiebungssatz von Rutherford und Soddy an! Aufgabe 2 Gegeben seien 108 Radiumatome. Sie wandeln sich durch radioakti-ven α−Zerfall mit einer Halbwertszeit von T1/2 = 1600 a in Radona-tome um. Wie viele Zerfallsprozesse finden dabei innerhalb eines Tages statt? Aufgabe 3

In welches Nuklid wandelt sich U23892

nach einem α−Zerfall und

zwei weiteren β−Zerfällen um? Geben Sie eine formelmäßige Be-schreibung der Zerfallskette an. Aufgabe 4 Ein γ−Strahl mit einer Energie von 1 MeV trifft mit einer Intensität I0auf eine zur Abschirmung eingesetzte Stahlplatte mit 30 mm Stärke ( 1cm47,0 −=µ ). a) Wie groß ist das Intensitätsverhältnis 0I/I hinter der

Abschirmung?

Page 93: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.10 Musterlösungen zu Kapitel 2

95

b) Wie viel Prozent der auftreffenden Intensität werden abgeschirmt?

Aufgabe 5 In einem unfallsicheren Transportbehälter für radioaktive Präparate

befinden sich 0,6 mol des Plutoniumisotops Pu23994

. Seine Halb-

wertszeit beträgt a1044,2 42/1

⋅=T . Wie groß ist

a) die Masse des radioaktiven Stoffes, b) die Aktivität des radioaktiven Stoffes ?

2.10 Musterlösungen zu Kapitel 2

Aufgabe 1

eeNC ν++→ 147

146

eeCaK ν++→ 4020

4019

eeYSr ν++→ 9039

9038

eeBaCs ν++→ 13756

13755

Aufgabe 2 Für die Anzahl der zerfallenen Radiumatome N∆ gilt: )(

0tNNN −=∆

8

010=N ist die Anzahl der zum Anfangszeitpunkt vorhandenen

radioaktiven Atome. Nach der Zerfallszeit t = 1 d sind noch N(t) Radiumatome vorhanden.

teNNN λ−−=∆00

λ ist die Zerfallskonstante.

2/1

2ln

T=λ

119)1( 2/1

2ln

0=−=∆

− tT

eNN

Innerhalb eines Tages finden 119 Zerfallsprozesse statt.

Page 94: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2 Kernphysik

96

Für kleine Exponenten x kann die Exponentialfunktion approximiert werden. Es gilt folgende Näherungsformel:

xe x −≈− 1

tT

x2/1

2ln=

xNxNeNN x000

))1(1()1( =−−≈−=∆ −

Folglich gilt:

tT

NN2/1

0

2ln≈∆

119≈∆N Aufgabe 3

UPaThU 23492

23491

23490

23892

ββα→→→

Aufgabe 4

Das Schwächungsgesetz lautet: xeII µ−⋅=0

a) Für das Intensitätsverhältnis

0/ II hinter der Abschirmung gilt:

xeII µ−=0

/

Mit 147,0 −= cmµ und x = 30 mm = 3,0 cm folgt:

244,0/ 41,10

== −eII

b) 24,4 % der auftreffenden Intensität treten durch die Abschir-

mung hindurch, folglich werden 75,6 % abgeschirmt. Aufgabe 5 a) 1 Mol Pu-239 besitzt eine in Gramm gemessene Masse, die der

relativen Atommasse Ar entspricht. Es ist: Ar(Pu-239) = 239.

Page 95: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

2.10 Musterlösungen zu Kapitel 2

97

Mit n = 0,6 mol folgt: g4,143mol6,0g/mol239 =⋅=m .

b) Für die Aktivität A gilt: NA ⋅= λ λ ist die Zerfallskonstante.

sT

/11092ln 13

2/1

−⋅==λ

1 Mol enthält 231002,6 ⋅=A

N Pu-Atome. A

N ist die Avogadro-

Konstante. Für n = 0,6 mol folgt:

23123 106,3mol1002,6mol6,0 ⋅=⋅⋅=⋅= −A

NnN Pu-Atome.

Für die Aktivität ergibt sich:

GBq324Bq1024,3106,3s109 1123113 =⋅=⋅⋅⋅=⋅= −−NA λ

Page 96: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

Anhang 1: Physikalische Konstanten

98

Anhang 1: Physikalische Konstanten

Lichtgeschwindigkeit m/s299792458=c Planck-Konstante sJ106260755,6 34−⋅=h Drehimpulsquantum sJ1005457266,1 34−⋅=h Elementarladung sA1060217733,1 19−⋅=e

Elektronen-Ruhemasse kg101093897,9 31−⋅=e

m

Protonen-Ruhemasse kg106726231,1 27−⋅=p

m

Neutronen-Ruhemasse kg106749286,1 27−⋅=n

m

Elektrische Feldkonstante mV

sA108541878,8 12

0−⋅=ε

Rydberg-Energie eV605698,13=

HR

Gravitationskonstante 21311 skgm10674,6 −−−⋅=G

Avogadro-Konstante 123 mol100221367,6 −⋅=A

N

Boltzmann-Konstante 123 KJ10380658,1 −−⋅=k

Page 97: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

Anhang 2: Formelzeichen

99

Anhang 2: Formelzeichen

Symbol Benennung Einheit

a spezifische Aktivität Bq/kg

A Aktivität Bq

A Auflösungsvermögen 1

A Nukleonenzahl 1

c Lichtgeschwindigkeit m/s

d1/2 Halbwertsdicke cm

D Energiedosis Gy

D& Energiedosisleistung Gy/s

E Energie J oder eV

EB Bindungsenergie J oder eV

EC Coulomb-Energie J oder eV

Ekin kinetische Energie J oder eV

Eγ γ−Strahlungsenergie J oder eV

EF Oberflächenenergie J oder eV

f Frequenz Hz

fG Grenzfrequenz Hz

H Planck-Konstante J s

H Äquivalentdosis Sv

Heff effektive Äquivalentdosis Sv

I Intensität W/m2

I elektrische Stromstärke A

k Vermehrungsfaktor 1

l Drehimpulsquantenzahl 1

L Drehimpuls J s

m Masse kg

me Elektronenmasse kg

mn Neutronenmasse kg

0m Ruhemasse kg

mp Protonenmasse kg

mu Atommassenkonstante kg

lm magnetische Quantenzahl 1

Page 98: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

Anhang 2: Formelzeichen

100

Symbol Benennung Einheit

ms magnetische Spinquantenzahl 1

M molare Masse kg/mol

n Stoffmenge mol

ms magnetische Spinquantenzahl 1

n Hauptquantenzahl 1

N Neutronenzahl 1

N Teilchenzahl 1

N& Zählrate 1/s

OF Kernoberfläche m2

p Impuls kg m/s

q Qualitätsfaktor 1

r Abstand m

R, r Radius m

R Zählrate 1/s

RA Atomradius m

RH Rydberg-Konstante eV

RK Kernradius m

s Spinquantenzahl 1

T Periodendauer s

T1/2 Halbwertszeit s

U elektrische Spannung V

V Volumen m3

VA Atomvolumen m3

Vm molares Volumen m3/mol

wi Wichtungsfaktor 1

W Arbeit J oder eV

WA Austrittsarbeit J oder eV

Z Kernladungszahl 1

∆E Energieunschärfe J oder eV

∆p Impulsunschärfe kg m/s

∆x Ortsunschärfe m

∆m Massendefekt kg

ε Energie eV oder J

λ Wellenlänge m

λ Zerfallskonstante 1/s

Page 99: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

Anhang 2: Formelzeichen

101

Symbol Benennung Einheit

λ min Grenzwellenlänge M

ρ Dichte kg/m3

ρ K Dichte der Kernmaterie kg/m3

σf Spaltwahrscheinlichkeit b

σFoto Wirkungsquerschnitt b

σCompton Wirkungsquerschnitt b

σPaar Wirkungsquerschnitt b

Page 100: Physik und Umwelt – Lerneinheit 4 Einführung in … Atombau und das Periodensystem der Elemente ..... 28 1.3 Atomspektren: Strahlungsabsorption und -emission ..... 34 1.4 Laser

Anhang 3: Periodensystem der Elemente (IUPAC)

102

Anhang 3: Periodensystem der Elemente (IUPAC)