19
Plasma Wakefield Energy Doubler for Cornell’s ERL Mike Downer Department of Physics University of Texas at Austin Workshop on "Scientific Potential of High Repetition-Rate, Ultra-short Pulse ERL X-Ray Source" Cornell University June 14, 2006 σ z Goal: σ z ~ λ p as short as possible; σ r σ r << σ z

Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Plasma Wakefield Energy Doubler for Cornell’s ERL

Mike DownerDepartment of Physics

University of Texas at Austin

Workshop on"Scientific Potential of High Repetition-Rate, Ultra-short Pulse ERL X-Ray Source"

Cornell UniversityJune 14, 2006

σz

Goal: σz ~ λp as short as possible;

σr

σr << σz

Page 2: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

3.2 km

Ebreakdown ~ 107V/m30 GeV ⇒ 3 km (SLAC)

Conventional RF acceleration: limited by material breakdown

Plasma acceleration:unlimited by material breakdown

Eaccel ~ 1011 V/m30 Gev ⇒ 0.3 m

1 mm

≤ 1 GeVelectrons

laser pulseor electron bunch

plasma wavene

ne0

z

picture courtesy D. Umstadter

Page 3: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

100

1000

40 50 60 708090100 200 300Energy (MeV)

∞200100082605_#94

Quasi-monoenergetic (Emax=160 MeV*)...

±15 MeV

laser

e- beam

gas

B

phosphor screen

Q ~ 1 nC

15 mm Pbphosphor

screen

E > 70 MeV e-

... & highly collimated(σ⊥ = 0.1 π mm-mrad)beam can be produced

convertible to 10 fsx-ray pulse

~10 fs bunch duration

*Faure et al., Mangles et al, Nature (2004)recent results: Emax = 300 MeV (Michigan)

1 GeV (UC-Berkeley)

Page 4: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Emerging small-scale applications of LASER-plasma accelerators (0.1 - 1 GeV)

Chemistry& Nutrition

Radiolysis;

Electrons &Protons fromLaser-PlasmaAccelerators

Fs-time resolved x-ray & electron

diffraction

Flash γ-ray radiographyof stressed materials

NuclearMedicine

Proton Cancer therapy; 11C production for PET

NuclearEngineering

Rare, short-lived isotopes; Transmutation of nuclear

waste MaterialsScience

StructuralBiology & Chemistry

Food sterilization

(U. Pittsburgh)

HIGH ENERGYPHYSICS

or energy doublerplasma “afterburner”,

Particle-beam-driven plasma accelerators

fill a unique niche

Page 5: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Positron beam

Electron beam

Electron gun200-MeV injector

Positron source

Positron return line

Particledetector

50-GeVpositrons

50-GeVelectrons

Plasma Plasma lens

20 meters

3 kilometers

Main linearaccelerator

PLASMA AFTERBURNERS

Demonstrated to date (E-157,162,164, 164x):• 27 GeV electron, 1 GeV positron

energy gain in 0.1 m plasma• > 2-fold improved focus

Chandrasekhar Joshi, Scientific American (Feb 2006)

Goal: double beam energy of conventional collider

SLAC / UCLA / USC collaboration

“Plasma Afterburner”: Booster for conventional accelerators Lee, Katsouleas et al., “Energy doubler for a linear collider,” Phys. Rev. ST-AB 5, 011001 (2002)

Page 6: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

The largest accelerating gradients are realized in the densestplasmas, using the shortest drive bunches

(eE)linear = 240 MeV

mN

4 ×1010⎛ ⎝ ⎜

⎞ ⎠ ⎟

0.6σ z [mm]

⎝ ⎜

⎠ ⎟

2

For optimized kpσ z ≡ 2 :

3D PIC simulations show the dependence predicted by linear theory (nb < n0)persists into nonlinear regime (nb > n0)

σ z−2

Lee, Katsouleas et al., Phys. Rev. ST-AB 5, 011001 (2002)

bunch length

σz

kp-1

N = 4 × 1010

E-157(20 ps)

E-164X(~70 fs)

Cornell ERL(20 - 50 fs)

Page 7: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

For optimized bunch length best PWFA is realizedin the nonlinear “blowout” regime: nb >> n0 AND kpσr < 1

kpσ z = 2,

Rosenzweig et al., Phys. Rev. A 44, R6189 (1991)Hemker et al., Phys. Rev. ST-AB 3, 061301 (2000)

Wz [GeV/m]

0.0

drive bunch

drivebunch

kpr

kpξ

∂Wz /∂r = 0

0.5

1.0

• linear focusing force,

∂Wr /∂z = 0

independent of z

⇒ drive pulse & trailing accelerating bunch propagate stably, w/ low emittance growth

acceleratingbunch

• uniform accelerating field profileDesirable properties:

Page 8: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Cornell ERL can pick up where SLAC left offExpt. τbunch

[fs]σz

[µm]σr

[µm]noptimum

[1018 cm-3]Ez

max

[GeV/cm]Lplasma

[cm]∆E

[GeV]

SLACE-157

2000 600 ~50 0.00016 0.0024 100 0.24SLACE-164X 70 20 ~20 0.14 0.5 3-30 1-15Cornell

Short-Pulse

50 15 < 5 0.25 1.0 1-5 1-5CornellUltra-Short

Pulse20 6 < 2 1.56 5 ~1 5

• E-157: long bunch, σr/σz << 1, low density, low gradient

• E-164X: short bunch, σr/σz ≈ 1, medium density, high gradient

• Cornell: ultrashort bunch, σr/σz << 1, high density, ultrahigh gradient

THEORY SPARSE ⇒ EXPERIMENTS NEEDED

Page 9: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

First Generation Experiment: to perfect plasma wakes, we must SEE them

• Generate wakefields in dense plasma (~ 1018 cm-3) using ultrashort, low emittance ERL bunches

• Measure wake structure by Frequency Domain Holography,using ~ mJ probe laser pulses synchronized w/ photocathode laser

• Compare FDH measurements with (PIC) simulations

Page 10: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Copper RF acceleratorcavities must be

precision-engineered

Simulations show widely vary-ing plasma wake structures...

...AND we can’t even see them!

Driving Pulse

Electron density

Sinusoidal

~50 µm

Distorted sinusoid

Spherical “bubble”

Electron densityDriving Pulse

Distorted sinusoid

Page 11: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Wakefield ne = n0 + δne(t) IonizationFront

ChirpedReferencePulse (400nm)

ChirpedProbePulse (400nm)

Ultra-intense Pump Pulse, 1Joule, 30 fs, 800nmor Electron Bunch, 1 nC, 20-50 fs

Single-Shot “Frequency Domain Holography”

Chirped Probe is temporally long and records effect of multiple oscillations simultaneously, meaning technique is single-shot

Fixed Delay, Δt

CC

D

grating

imagingoptics

mirror

imaging spectrometer

Null HOLOGRAM

Signal HOLOGRAM

Wavelength [nm]

50

-50

0

50

-50

0

dist

ance

[μm

]

390 400 410405395

NicholasMatlis

Ph.D.’06

Page 12: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

RECONSTRUCTION

“Reading” the Hologram

Εprobe(ω) = |Ε(ω)| e-iφ(ω)

(Full Electric Field Reconstruction)

BASIC SCHEME

1. Reconstruct spectral E-field of probe pulse from holographic spectrum

Hologram

388 390 392 394 396 398 400 402 404 406 408 410

Eprobe(t) = |E(t)| e-iδφ(t)

2. Fourier Transform to the time-domain to recover temporal phase

Εprobe(ω)FFT

Read

δφ(t)

3. Calculate electron density from extracted temporal phase

δne(t)index

Wakefield

TIME DOMAIN

Page 13: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

r (µm)-500

500t (fs)

He2+

He+

• Ipump= 1016 W/cm2

• single shot measurement

Holographic snapshot of an ionization frontLeBlanc, Matlis, MD, Optics Letters 25, 764 (2000)

Page 14: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

0 -200 -400200400600

0

50

100

-50

-100

Time [fs]

Rad

ial D

ista

nce

[μm

]

a)

Wake Oscillations

Ionization Front

Pump propagation

ne = 0.95 x 1018 cm-3

0 -200 -400200400600

0

50

100

-50

-100

Time [fs]

Rad

ial D

ista

nce

[μm

]

b)ne = 0.95 x 1018 cm-3

He2+ He+

PIC simulation (11 TW pump)

0 -200 -400200400600

0

50

100

-50

-100

Time [fs]

Rad

ial D

ista

nce

[μm

]

c)ne = 5.9 x 1018 cm-3

6e184e182e180e18

80

100

120

60

40

Electron Density [cm-3]

Pla

sma

Per

iod

[fs]

140d)

Holographic snapshots of laser wakefieldsP ~10 TW, I ~ 1018 W/cm2

Ezmax ~ 3x1010 V/m

Page 15: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

0

60

120

-60

-120

Time [fs]

Rad

ial D

ista

nce

[μm

]

a)

200 0 -200400600800

ne = 2.17 x 1018 cm-3

Strong wakes have curved wavefrontsP ~30 TW, I ~ 3 x 1018 W/cm2

0

60

120

-60

-120

Time [fs]

Rad

ial D

ista

nce

[μm

] a)

200 0 -200400600800

ne = 2.17 x 1018 cm-3

n e[1

018cm

-3]

0

1.0

2.0

3.0

4.0

0

60

120

-60

-120

Rad

ial D

ista

nce

[μm

] b)

200 0 -200400600800

PIC simulation (40 TW pump)

Time [fs]

γ ≈ 1

ωp = [nee2/ε0γ me ]1/2

γ ≈ 1.5

a)

background plasma subtracted

Importance of wavefront curvature:

• collimates e- beam• threshold of wave-breaking

& electron injection• Ez

max ≈ 1.5 x 1011 V/m

N. H. Matlis et al., submitted to Nature Physics (2006)

Page 16: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

PWF-accelerated beam properties to measure• energy • transverse emittance • bunch length• energy spread • bunch charge

Plasma wake physics to observe by FDH

• PWF microstructure vs. drive parameters (σz/σr, N) in the high density blowout regime, where theory is sparse and simulations problematic.

• Effect of beam loading & drive bunch depletion on wake structure

• Onset of wave breaking & electron injection from background plasma

• Onset of hosing instability...

Characterize x-rays emitted by...

• Betatron oscillations in ion column• Thomson scatter by counter-propagating intense laser pulse

• Re-injection into ERL undulators[e.g. 107 photons @ 6.4 keV in .01o cone]1

1 SLAC E-157 2 T Phuoc, PRL 90, 075002 (2003), laser wakefield

[108 photons@ 1keV]2

Page 17: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Summary• Plasma wakefield boosters can potentially add flexibility

to the Cornell ERL at low cost- optional increased energy- auxiliary ultrashort hard x-ray source

• R&D using visualization methods such as FrequencyDomain Holography, is needed to perfect them

• They may also provide low-cost upgrades for HEP accelerators

Page 18: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Characteristic SLAC E-164X Cornell ERL Importance

τbunch ~70 fs 20-50 fsresonantly drive WF in dense (ne > 1017 cm-3) plasma ⇒ high accelerating gradient (Ez > 100 GeV/m)

transverse emittance

60 ×15mm-mrad

5 mm-mrad tight focusσr < λp ~ 10 µm

bunch charge ~ 5 nC ~ 1 nC nbunch > ne

repetition rate 10 Hz ~ MHz

• high S/N in physics experiments• high average current from plasma WF

accelerator

“blowout” regime:• stable propagation• low emittance growth• optimum Ez

The Cornell ERL is well qualified for 2nd generationplasma afterburner accelerator experiments

• basic physics• accelerator development

Page 19: Plasma Wakefield Energy Doubler for Cornell’s ERL...Electron beam Electron gun 200-MeV injector Positron source Positron return line Particle detector 50-GeV positrons electrons

Counter-propagating Thomson scatter:tunable, fs X-ray pulses on a table-top

CounterCounter--propagating Thomson scatter:propagating Thomson scatter:tunable, tunable, fsfs XX--ray pulses on a tableray pulses on a table--toptop

Undulatorsynchrotron

e- beam(GeV)

X-ray beam:λ= λund/2γ2

cm

Counter-propagatingLaser LWFA

e- beam(~tens MeV)

μm

X-ray beam:λ= λL/4γ2

Banerjee et al., Phys. Plasmas (2002)Ta Phuoc et al., PRL 90, 075002 (2003)