35
Plasmonic nanostructures for enhanced light concentration devoted to photovoltaic applications Valeria Marrocco , Marco Grande, Roberto Marani, Giovanna Calò, Vincenzo Petruzzelli, and Antonella D’Orazio Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy Tiziana Stomeo, Massimo De Vittorio and Adriana Passaseo National Nanotechnology Laboratory, CNR-NANOSCIENZE, Via Arnesano 73100 Lecce, Italy E-mail: [email protected] ICTON 2010 – June 27- July 1st, 2010, Munich (Germany)

Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

  • Upload
    others

  • View
    8

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Plasmonic nanostructures for enhanced light concentration devoted to photovoltaic applications

Valeria Marrocco, Marco Grande, Roberto Marani, Giovanna Calò, Vincenzo Petruzzelli, and Antonella D’OrazioDipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari,

Via Re David 200, 70125 Bari, Italy

Tiziana Stomeo, Massimo De Vittorio and Adriana PassaseoNational Nanotechnology Laboratory, CNR-NANOSCIENZE,

Via Arnesano 73100 Lecce, Italy

E-mail: [email protected]

ICTON 2010 – June 27- July 1st, 2010, Munich (Germany)

Page 2: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

OUTLINESOUTLINESPlasmonicPlasmonic forfor improvedimproved light light absorptionabsorption and and trapping: maintrapping: main strategiesstrategiesEffectsEffects of of MNPsMNPs sizesize, , shapeshape and and substratessubstrates on on light light trappingtrappingMetallicMetallic strip strip asas resonatorresonator antennasantennasFDTD forFDTD for the evaluationn of forwardthe evaluationn of forward and and backbackscattering scattering forfor MNPsMNPs on Si on Si thinthin filmsfilmsRoleRole of the finite of the finite thicknessthickness of the of the substratesubstrateNanostructuresNanostructures FabricationFabricationOutlook and work in progressOutlook and work in progress

Page 3: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

StrategyStrategy forfor the the optimizationoptimization of of solarsolar cellcell performanceperformance

Increasing the scattering

Light-trapping AR coating

Nanotecnology

Photonic Crystals

Metal nanoparticles

Metal nanostructures

Nanoantennas

Single layer: wideband havinghigher R (0.5%)

Multilayers: smaller bands and different frequency

ranges; lower R (0.15%)

Page 4: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Plasmonic NPs for light absorption improvement

Carrier diffusion from the region where photocarriersare generated to the p–n junction. Charge carriersgenerated far away (more than the diffusion lengthLd) from the p–n junction are not effectively collected, owing to bulk recombination

AM1.5 solar spectrum, together with a graph that indicatesthe solar energy absorbed in a 2-µm-thick crystalline Si film (assuming single-pass absorption and no reflection)

Scattering Excitation of localized SPs Excitation of localized SPPs

Plasmonic for improved photovoltaic devices, H.A. Atwater and A. Pollman, Natural Materials, Vol. 9, 205-213, (2010)

Page 5: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Scattering and Scattering and absorptionabsorption byby metal metal nanoparticlesnanoparticles

Depend on the size of the particles

Metal particles smaller than the wavelength of light tend to absorb more, hence extinction is dominated by absorption in the metal particles

Increasing size of the particles, extinction is dominated by scattering (suitable for light trapping)

Scattering Cross Section for metal NPs

Page 6: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Scattering and absorption by metal Scattering and absorption by metal nanoparticlesnanoparticles: effects induced by the : effects induced by the

substrate and surrounding environmentsubstrate and surrounding environmentRed-shift in plasmon resonance:

larger size particles deposited on a substrate tend to lose their spherical property and hence look more like ellipsoids (shape changes)

the dielectric function of the surrounding medium increases

Overcoating of the metal particles on a substrate

Red-shift of resonance leads to an increase in scattering cross section at longer wavelengths: possibility to increase the absorption of solar cells because of the indirect band gap of silicon

Plasmonic for improved photovoltaic devices, H.A. Atwater and A. Pollman, Natural Materials, Vol. 9, 205-213, (2010)

Page 7: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Metal Metal NPsNPs and and corrugationcorrugation enhancingenhancing light light absorptionabsorption

Enhanced absorption: reduced thickness requirement of absorber material used in making a cell per generated Watt of electricity.For silicon, enhanced absorption and light trapping makes it possible to design crystalline silicon thin film cells with acceptably good spectral quantum efficiency, even for absorber layers a few micronsin thickness.

Metal nanoparticle array scatterssunlight into guided modes in thinfilm absorbers

Corrugated metallic back contact couples sunlight into surfaceplasmon polariton and photonicmodes at metal absorber interface

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells, V.E. Ferry, L.A. Sweatlock, D. Pacifici, and H.A. Atwater Nano Letters, 8, 4391-4397 (2008)

Page 8: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Finite Finite metallicmetallic stripsstrips: : resonatorresonatorantennasantennas

Thin metallic film supports two distinct types of SPP modes: long range SPP (LR-SPP) and short range SPP (SR-SPP), resulting from the coupling of the SPPssupported by the two individual surfaces.

SR-SPPs LR-SPPs

• poorly confined• low mode indices• provide little field enhancementideally suitanle for the realizationof low loss plasmonic components

• increased mode indices• increased field-confinement forfilms much thinner than the wavelength of light • strong reflections off metal film terminations large local fieldenhancements in wavelengthscalestructures due to constructiveinterference effects

Page 9: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

FabryFabry--PerotPerot resonancesresonances in in metallicmetallicstrip strip havinghaving finite finite widthwidth

Fabry-Perot Resonance in metallic strip in

homogeneous environment

E. S. Barnard, J. S. White, A. Chandran and M. L. Brongersma,“Spectral properties of plasmonic resonatorantennas”, Optics Express, October2008, Vol. 16, No. 21, 16529

Page 10: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Sketch of the analyzed structures and FDTD Scheme

Si Si

period period

Back scattering surface

Incident Field

Forward scattering surface

Page 11: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Physical Phenomena

periodRise of SPP modes

Si

Finite substrate inducesappereance of Fabry-Perot resonant modes

Si

Rise of LSP modes

periodSiO2

SiO2

Page 12: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

FabryFabry--PerotPerot modesmodes in finite Si in finite Si substratessubstratesof of differentdifferent thicknessthickness

Wavelength (µm)0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

Transmittance

Reflectance

Wavelength (µm)0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

Transmittance)

Reflectance

t = 100 nm, N = 2 FP modes t = 300 nm, N = 4 FP modes

Wavelength (µm)0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

Transmittance

Reflectance

Wavelength (µm)0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

Transmittance

Reflectance

t = 500 nm, N = 7 FP modes t = 1000 nm, N = 14 FP modes

Page 13: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

1D case: Transmission Matrix Method 

Ag

Si

SiO2

tSi = 100 nmt Ag = 40 nm

SiO2

Si tSi = 100 nm

Structure with the metal layer Structure without the metal layer

( ) ( )

( ) ( )( ) ( )

2

1

1 11 12 1 21 22

2

11 12 1 21 22

11 12 1 21 22

2t

t t

t t

t t

p pTp m m p p m m p

m m p p m m pR

m m p p m m p

⎧⎪ =

+ + −⎪⎪⎨⎪ + − −

=⎪ + + −⎪⎩

1 11

p cosµ θ=εt t

t

p cosµ θ=ε

0 0

0 0

( ) ( )

( ) ( )

i i i i i iii

i i i i i i i

jcos k d cos sin k d cospM

jp sin k d cos cos k d cos

µ θ µ θ

µ θ µ θ

⎡ ⎤−⎢ ⎥= ⎢ ⎥⎢ ⎥−⎣ ⎦

ε ε

ε ε

Characteristic matrix of each layer

11arcsin sini

i ii

εθ θ

ε−

⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠

11 12

121 22

layersN

ii

m mM M

m m =

⎡ ⎤= =⎢ ⎥⎣ ⎦

Transmission and reflection definitions

Page 14: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Transmission and reflection diagrams

Shift of the substrate Fabry‐Pèrotresonant wavelength

Page 15: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

ForwardForward and Back Scattering and Back Scattering consideringconsidering FF--P P modesmodes in the finite in the finite substratesubstrate

Forward and backward scattering (field enhancement)

met

nomet

TFST

= met

nomet

RBSR

=

FS and BS parametric analysis changing the substrate thickness 

Page 16: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Silver Silver fitfitThe permittivity of silver has been fitted by means of three Drude-Lorentz oscillators:

1 2 3

01 1 02 2 03 3

2 2 2

2 2 2 2 2 2( ) 1 p p p

j j jω ω ω

ε ωω ω ωγ ω ω ωγ ω ω ωγ

− −− − −

= −+ + +

1

2

3

1

2

3

01

02

03

7.0338

3.7

7.9

0.05362.21.05

04.75.6922

p

p

p

γγγ

ωωω

ωωω

=

=

=

===

=

==

Page 17: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Metal nanoparticle with variable diameter D on semi-infinte Si substrate

D

Metal nanoparticle with variable diameter D on 100 nm thick Si/SiO2 substrate

D

Page 18: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Metal nanobrick (s = 40 nm and l =40->140 nm) on semi-infinite substrate

l

s

Metal nanobrick (s = 40 nm and l=40->140 nm) on 100 nm thick Si/SiO2

l

s

Page 19: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Normalized Poynting Vector @440 nmL = 140 nm

L = 100 nm

L = 80 nm

L = 40 nm

Page 20: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Array of metal nanoparticle with period =100 nm semi-infinite Si substrate

Nanobricks withdifferent sides

Nanospheres withdifferent diameters

Page 21: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Array of metal nanoparticle with period =100 nm on 100 nm thick Si on SiO2

Nanobricks withdifferent sides

Nanospheres withdifferent diameters

Page 22: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Normalized Poynting Vector

Si=100 nm, D= 100 nmλ = 410 nm

Si=100 nm, D= 100 nmλ = 679 nm

Plasmon resonance on

Resonant mode off

Plasmon resonance off

Resonant mode on

Page 23: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Array of metal nanoparticle on a semi-infinite Si substrate

Variation of the period

(a) (b)

p= 80 nm p= 100 nm p= 150 nm

(a) (b)

p=80nm p=100 nm p=150 nm

Page 24: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Array of metal nanoparticle on 100 nm thick Si substrateVariation of the period

(a) (b)

(a) (b)

Array of nanobricks withs=40 nm

Array of nanospheres withD=40 nm

Page 25: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

(a) (b)

(a) (b)

ForwardForward and back scattering and back scattering forfor metal metal nanoparticlesnanoparticleson on differentdifferent Si Si substratesubstrate thicknessthickness whenwhen p =150 p =150 nmnm

Array of nanobricks withs=40 nm

Array of nanospheres withD=40 nm

Page 26: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

PoyntingPoynting VectorVector (10(1055*W/m*W/m22))Si = 1000 nm Si = 500 nm

Si = 100 nmSi = 300 nm

Page 27: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

FabricationFabrication of of coupledcoupled nanoantennasnanoantennas

Deposition of bi-layer resist by spin-coating

PMMAPMMA-MA

Page 28: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

FabricationFabrication of of coupledcoupled nanoantennasnanoantennas

Electron Beam Exposure

PMMA-MAPMMA

Page 29: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

FabricationFabrication of of coupledcoupled nanoantennasnanoantennas

The resist is developed in MIBK:IPA giving an undercut

PMMA-MAPMMA

Page 30: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

FabricationFabrication of of coupledcoupled nanoantennasnanoantennasMetal deposition and lift-off

gap

Page 31: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

PlasmonicPlasmonic NanostructuresNanostructuresSEM SEM ImagesImages

Ag

AuAu

Au

Sisubstrate

GaNsubstrate

Page 32: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

Outlook and future work Outlook and future work

The The MNPsMNPs and and SPPsSPPs modify the scattering (forth and back) in modify the scattering (forth and back) in dependence of their size, shape, environment and finite dependence of their size, shape, environment and finite substrate resonant modessubstrate resonant modesWhen metal NPs are When metal NPs are nanobricksnanobricks ((SPPsSPPs), the FP modes in the ), the FP modes in the finite substrates are shifted and the phase is switched of finite substrates are shifted and the phase is switched of ππ..AR AR coatingcoating can can bebe optimizedoptimized toto furtherfurther reduce the back reduce the back scatteringscatteringNSOM NSOM MeasurementsMeasurements (scattering, (scattering, nearnear--fieldfield and and absorptionabsorption) ) are on the way are on the way ……notnot yetyet readyready forfor the the currentcurrent date date

ForFor FabricationFabrication questionsquestions pleaseplease contact: contact: [email protected]@deemail.poliba.it

[email protected]@unisalento.it

Page 33: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration
Page 34: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

NormalizedNormalized PoyintingPoyinting VectorVector forfor nanobricksnanobricks and and nanospheresnanospheres on semion semi--infinite and finite infinite and finite substratessubstrates

p=100 nm

p=100 nm

p=150 nm

p=150 nm

(a) (b)

(c) (d)

p =100 nm

p =100 nm

p =150 nm

p =150 nm

(a) (b)

(c) (d)

Page 35: Plasmonic nanostructures for enhanced light concentration ...dee.poliba.it/npeg/lecture_notes/data/marrocco_icton2010.pdf · Plasmonic nanostructures for enhanced light concentration

AR AR coatingcoating toto decreasedecrease back back scatteringscattering

AR

Thickness

AR thickness = 100 nm