25
1 Boost Converter Design Example M. T. Thompson, 2008 Power Electronics Notes 07C Boost Converter Design Example © Marc Thompson, 2008 Marc T. Thompson, Ph.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (888) 538-3824 Email: [email protected] Web: http://www.thompsonrd.com

Power Elec Notes 07c Boost Converter Design Example

Embed Size (px)

Citation preview

Page 1: Power Elec Notes 07c Boost Converter Design Example

1Boost Converter Design Example M. T. Thompson, 2008

Power Electronics Notes 07CBoost Converter Design Example

© Marc Thompson, 2008

Marc T. Thompson, Ph.D.Thompson Consulting, Inc.

9 Jacob Gates RoadHarvard, MA 01451

Phone: (978) 456-7722 Fax: (888) 538-3824

Email: [email protected]: http://www.thompsonrd.com

Page 2: Power Elec Notes 07c Boost Converter Design Example

2Boost Converter Design Example M. T. Thompson, 2008

Summary• Design a boost converter with the following specifications:

• Input voltage: 12V• Output: 24V @ 1A, 24 Watts• Continuous conduction mode• Inductor and capacitors: selected from following datasheets• Switching frequency 100 kHz• Output voltage ripple < 50 mV-pp

• Evaluate output ripple and estimate efficiency of converter

Page 3: Power Elec Notes 07c Boost Converter Design Example

3Boost Converter Design Example M. T. Thompson, 2008

Step-Up (Boost) DC-DC Converter• Output voltage is higher than the input, without a phase inversion

Page 4: Power Elec Notes 07c Boost Converter Design Example

4Boost Converter Design Example M. T. Thompson, 2008

Boost Converter Waveforms• Continuous current conduction mode

Switch closed:didt

VL

L CC

Switch open:

didt

V vL

L CC o

Inductor Volt-second balance:V DTL

V V D TL

VVD

CC CC o

oCC

( )( )10

1

Page 5: Power Elec Notes 07c Boost Converter Design Example

5Boost Converter Design Example M. T. Thompson, 2008

Boost: Limits of Cont./Discont. Conduction• The output voltage is held constant• For low load current, current conduction becomes discontinuous

Page 6: Power Elec Notes 07c Boost Converter Design Example

6Boost Converter Design Example M. T. Thompson, 2008

Boost Converter: Discont. Conduction• Occurs at light loads

Page 7: Power Elec Notes 07c Boost Converter Design Example

7Boost Converter Design Example M. T. Thompson, 2008

Boost Converter: Effect of Parasitics• The duty-ratio D is generally limited before the parasitic effects become significant

Page 8: Power Elec Notes 07c Boost Converter Design Example

8Boost Converter Design Example M. T. Thompson, 2008

Boost Converter Output Ripple• ESR is assumed to be zero• Assume that all the ripple component of diode current flows through capacitor; DC component flows through resistor

Page 9: Power Elec Notes 07c Boost Converter Design Example

9Boost Converter Design Example M. T. Thompson, 2008

Boost Converter 1st-Cut Design --- Inductor• D = 0.5• What is minimum inductor value to keep this converter in continuous conduction mode ? (I.e. this converter operates at the continuous/discontinuous conduction boundary)

• Average diode current: 0.5Ipk(1-D) = Io = 1A• Ipk = 4A• Lmin =(Vo – Vi)(1-D)T/Δi = (24-12)(0.5)(10-5)/4 = 15 µH

• For the diode, ID,rms = = 2.3A31

pkI

Page 10: Power Elec Notes 07c Boost Converter Design Example

10Boost Converter Design Example M. T. Thompson, 2008

Inductor Datasheet• Use 22 µH (ESR = 0.085 Ohms)• Note that series resonant frequency (SRF) is much higher than operating frequency• Note that IRMS rating of this inductor is 2.7A

Page 11: Power Elec Notes 07c Boost Converter Design Example

11Boost Converter Design Example M. T. Thompson, 2008

Boost Converter Current Waveforms

Page 12: Power Elec Notes 07c Boost Converter Design Example

12Boost Converter Design Example M. T. Thompson, 2008

Boost Converter 1st-Cut Design --- Capacitor• What is minimum capacitor value ?

CfD

RVV

sw

oppo

FVRfDVC

pposw

o 100)05.0)(24(10

)5.0)(24(5min

Page 13: Power Elec Notes 07c Boost Converter Design Example

13Boost Converter Design Example M. T. Thompson, 2008

Capacitor Datasheet• Use 3 47 µF caps in parallel (35V, ESR = 0.9 Ohms)

Page 14: Power Elec Notes 07c Boost Converter Design Example

14Boost Converter Design Example M. T. Thompson, 2008

MOSFET Datasheet• This device is over-sized, but let’s use it anyway

Page 15: Power Elec Notes 07c Boost Converter Design Example

15Boost Converter Design Example M. T. Thompson, 2008

1st Cut Design

Page 16: Power Elec Notes 07c Boost Converter Design Example

16Boost Converter Design Example M. T. Thompson, 2008

Simulation Result --- Inductor Current• Note that inductor ripple is about 3A peak to peak

Page 17: Power Elec Notes 07c Boost Converter Design Example

17Boost Converter Design Example M. T. Thompson, 2008

Simulation Result --- Output Ripple• Why is output voltage ripple so large ?

Page 18: Power Elec Notes 07c Boost Converter Design Example

18Boost Converter Design Example M. T. Thompson, 2008

Simulation Result --- Analysis• The culprit is capacitor ESR. Ripple current is 3A pp, divided into 3 capacitors. Ripple voltage = ripple current x ESR• This is a problem with the boost converter --- large output ripple current makes sizing capacitor difficult

Ripple 1 V pp

Page 19: Power Elec Notes 07c Boost Converter Design Example

19Boost Converter Design Example M. T. Thompson, 2008

Mitigating Strategies• Parallel up more capacitors, or find capacitors with even lower ESR• Alternative strategy: use lower ESR caps with a post-filter

Page 20: Power Elec Notes 07c Boost Converter Design Example

20Boost Converter Design Example M. T. Thompson, 2008

2nd Cut Design• Lower ESR capacitors and an LC post filter added

Lower ESR caps

Page 21: Power Elec Notes 07c Boost Converter Design Example

21Boost Converter Design Example M. T. Thompson, 2008

2nd Cut Design --- Simulation Results

Ripple 20 mV pp

Page 22: Power Elec Notes 07c Boost Converter Design Example

22Boost Converter Design Example M. T. Thompson, 2008

2nd Cut Design --- Efficiency Estimate• Losses due to:

• Inductor loss• Switch conduction loss• Switch switching loss• Diode loss• Capacitor ESR loss• Gate drive loss

Page 23: Power Elec Notes 07c Boost Converter Design Example

23Boost Converter Design Example M. T. Thompson, 2008

2nd Cut Design --- Efficiency EstimateBoost converter lecture exampleMTT 10-9-03fsw 1.00E+05L 2.20E-05Vi 12Vo 24Rinductor 0.085D 0.5Rsw 0.0825IL,avg 2IL,max 3.36E+00IL,min 6.36E-01tsw 1.50E-07IL,rms 2.15E+00Isw,RMS 1.52E+00Vd 0.8 Diode voltageIo 1 Output currentQg 1.00E-07

LOSSES CALCULATIONPdiode 0.80Pinductor 0.39Pswitch, conduction 0.19Pswitch, switching 0.61Gate drive loss 0.12Capacitor ESR loss 0.12

Total losses 2.23Output power 24Efficiency 91.5%

Page 24: Power Elec Notes 07c Boost Converter Design Example

24Boost Converter Design Example M. T. Thompson, 2008

2nd Cut Design --- Evaluation • FATAL DESIGN FLAW• Note that ISAT rating of this inductor is 2.6A• Peak current in inductor is 3.4A• Therefore, this design will blow up

Page 25: Power Elec Notes 07c Boost Converter Design Example

25Boost Converter Design Example M. T. Thompson, 2008

3rd Cut Design --- Replace Inductor• Using next-size up Coilcraft inductor, Isat rating of 22 µH inductor is 7.0A, RMS rating is 3.5A, so this should be OK• Inductor loss will be lower due to lower DC resistance• This comes at the cost of a more expensive inductor, and more PC board space needed