7
N-Ch P-Ch V DSS 20V -20V R DS(on) 0.1250.20I D 3.0A -2.5A IRF7106 HEXFET ® Power MOSFET PD - 9.1098B Advanced Process Technology Ultra Low On-Resistance Dual N and P Channel Mosfet Surface Mount Available in Tape & Reel Dynamic dv/dt Rating Fast Switching Description Fourth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra-red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application. D1 N-CHANNEL MOSFET P-CHANNEL MOSFET D1 D2 D2 G1 S2 G2 S1 Top View 8 1 2 3 4 5 6 7 PRELIMINARY Absolute Maximum Ratings Parameter Units Max. N-Channel P-Channel I D @ T C = 25°C Continuous Drain Current, V GS @ 10V 3.0 -2.5 I D @ T C = 70°C Continuous Drain Current, V GS @ 10V 2.5 -2.0 A I DM Pulsed Drain Current 10 -10 P D @T C = 25°C Power Dissipation 2.0 Linear Derating Factor 0.016 V GS Gate-to-Source Voltage ± 20 V dv/dt Peak Diode Recovery dv/dt 3.0 -3.0 V/ns T J, T STG Junction and Storage Temperature Range -55 to + 150 °C W W/°C SO-8 Thermal Resistance Parameter Min. Typ. Max. Units R θJA Junction-to-Ambient (PCB Mount)** –––– –––– 62.5 °C/W ** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Revision 3 69

PRELIMINARY IRF7106 Power MOSFET · IRF7106 HEXFET® Power MOSFET PD - 9.1098B Advanced Process Technology Ultra Low On-Resistance Dual N and P Channel Mosfet Surface Mount Available

Embed Size (px)

Citation preview

N-Ch P-Ch

VDSS 20V -20V

RDS(on) 0.125Ω 0.20Ω

ID 3.0A -2.5A

IRF7106HEXFET® Power MOSFET

PD - 9.1098B

Advanced Process TechnologyUltra Low On-ResistanceDual N and P Channel MosfetSurface MountAvailable in Tape & ReelDynamic dv/dt RatingFast Switching

DescriptionFourth Generation HEXFETs from International Rectifier utilize advancedprocessing techniques to achieve the lowest possible on-resistance per siliconarea. This benefit, combined with the fast switching speed and ruggedized devicedesign for which HEXFET Power MOSFETs are well known, provides the designerwith an extremely efficient device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhancedthermal characteristics and multiple-die capability making it ideal in a variety ofpower applications. With these improvements, multiple devices can be used in anapplication with dramatically reduced board space. The package is designed forvapor phase, infra-red, or wave soldering techniques. Power dissipation of greaterthan 0.8W is possible in a typical PCB mount application.

D1N-CHANNEL MOSFET

P-CHANNEL MOSFET

D1

D2

D2

G1

S2

G2

S1

Top View

81

2

3

4 5

6

7

PRELIMINARY

Absolute Maximum Ratings

Parameter UnitsMax.

N-Channel P-ChannelID @ TC = 25°C Continuous Drain Current, V GS @ 10V 3.0 -2.5ID @ TC = 70°C Continuous Drain Current, V GS @ 10V 2.5 -2.0 AIDM Pulsed Drain Current 10 -10PD @TC = 25°C Power Dissipation 2.0

Linear Derating Factor 0.016VGS Gate-to-Source Voltage ± 20 Vdv/dt Peak Diode Recovery dv/dt 3.0 -3.0 V/nsTJ, TSTG Junction and Storage Temperature Range -55 to + 150 °C

W

W/°C

SO-8

Thermal ResistanceParameter Min. Typ. Max. Units

RθJA Junction-to-Ambient (PCB Mount)** –––– –––– 62.5 °C/W

** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Revision 3

69

70

IRF7106

Parameter Min. Typ. Max. Units ConditionsN-Ch 20 — — VGS = 0V, ID = 250µAP-Ch -20 — — VGS = 0V, ID = -250µAN-Ch — 0.037 — Reference to 25°C, I D = 1mAP-Ch — -0.022 — Reference to 25°C, I D = -1mA

— — 0.125 VGS = 10V, ID = 1.0A — — 0.25 VGS = 4.5V, ID = 0.50A — — 0.20 VGS = -10V, ID = -1.0A — — 0.35 VGS = -4.5V, ID = -0.50A

N-Ch 1.0 — — VDS = VGS, ID = 250µAP-Ch -1.0 — — VDS = VGS, ID = -250µAN-Ch — 4.4 — VDS = 15V, ID = 3.0A P-Ch — 3.0 — VDS = -15V, ID = -3.0AN-Ch — — 2.0 VDS = 16V, VGS = 0VP-Ch — — -2.0 VDS = -16V, VGS = 0VN-Ch — — 25 VDS = 16V, VGS = 0V, TJ = 125°CP-Ch — — -25 VDS = -16V, VGS = 0V, TJ = 125°C

IGSS Gate-to-Source Forward Leakage N-P –– — ±100 nA VGS = ± 20VN-Ch — 9.1 25P-Ch — 11 25N-Ch — 1.2 —P-Ch — 1.6 —N-Ch — 2.5 —P-Ch — 3.5 —N-Ch — 5.0 15P-Ch — 10 40N-Ch — 10 20P-Ch — 15 40N-Ch — 29 50P-Ch — 41 90N-Ch — 22 50P-Ch — 39 60

LD Internal Drain Inductace N-P — 4.0 — Between lead tipLS Internal Source Inductance N-P — 6.0 — and center of die contact

N-Ch — 300 —P-Ch — 280 —N-Ch — 260 —P-Ch — 250 —N-Ch — 62 —P-Ch — 86 —

Parameter Min. Typ. Max. Units ConditionsN-Ch — — 1.7P-Ch — — -1.6N-Ch — — 10P-Ch — — -10N-Ch — 0.90 1.2 TJ = 25°C, IS = 1.6A, VGS = 0V P-Ch — -0.90 -1.6 TJ = 25°C, IS = -1.3A, VGS = 0V N-Ch — 69 100P-Ch — 69 100N-Ch — 58 120P-Ch — 91 180

ton Forward Turn-On Time N-P

V(BR)DSS Drain-to-Source Breakdown Voltage

∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient

RDS(ON) Static Drain-to-Source On-Resistance

VGS(th) Gate Threshold Voltage

gfs Forward Transconductance

IDSS Drain-to-Source Leakage Current

Qg Total Gate Charge

Qgs Gate-to-Source Charge

Qgd Gate-to-Drain ("Miller") Charge

td(on) Turn-On Delay Time

tr Rise Time

td(off) Turn-Off Delay Time

tf Fall Time

Ciss Imput Capacitance

Coss Output Capacitance

Crss Reverse Transfer Capacitance

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

Source-Drain Ratings and Characteristics

V

V/°C

Ω

V

S

µA

nC

ns

nH

pF

N-ChannelID = 2.3A, VDS = 10V, VGS = 10V

P-ChannelID = -2.3A, VDS = -10V, VGS = -10V

N-ChannelVDD = 20V, ID = 1.0A, RG = 6.0Ω,RD = 20Ω

P-ChannelVDD = -20V, ID = -1.0A, RG = 6.0Ω,RD = 20Ω

N-ChannelVGS = 0V, VDS = 15V, ƒ = 1.0MHz

P-ChannelVGS = 0V, VDS = -15V, ƒ = 1.0MHz

N-Ch

P-Ch

IS Continuous Source Current (Body Diode)

ISM Pulsed Source Current (Body Diode)

VSD Diode Forward Voltage

trr Reverse Recovery Time

Qrr Reverse Recovery Charge

A

V

ns

nC

N-ChannelTJ = 25°C, IF = 1.25A, di/dt = 100A/µsP-ChannelTJ = 25°C, IF = -1.25A, di/dt = 100A/µs

Intrinsic turn-on time is neglegible (turn-on is dominated by L S+LD)

N-Channel ISD ≤ 2.3A, di/dt ≤ 100A/µs, V DD ≤ V(BR)DSS, TJ ≤ 150°CP-Channel ISD ≤ -2.3A, di/dt ≤ 50A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C

Pulse width ≤ 300µs; duty cycle ≤ 2%.

Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 23 )

Notes:

71

IRF7106

Fig 1. Typical Output Characteristics,TJ = 25oC

Fig 2. Typical Output Characteristics,TJ = 150oC

0.1

1

10

100

0.01 0.1 1 10 100

I ,

Dra

in-t

o-S

ourc

e C

urre

nt (A

)D

V , Drain-to-Source Voltage (V)DS

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V

20µs PULSE WIDTH T = 150°C

A

4.5V

J0.1

1

10

100

0.01 0.1 1 10 100

I ,

Dra

in-to

-Sou

rce

Cur

rent

(A

)D

V , Drain-to-Source Voltage (V)DS

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V

20µs PULSE WIDTH T = 25°C

A

4.5V

J

0

4

8

12

16

20

0 2 4 6 8 10 12 14

Q , Total Gate Charge (nC)G

V

, G

ate-

to-S

ourc

e V

olta

ge (V

)G

S

A

I = 2.3A V = 10V

D DS

FOR TEST CIRCUIT SEE FIGURE 11

0

200

400

600

800

1 10 100

C, C

apac

itanc

e (p

F)

DSV , Drain-to-Source Voltage (V)

A

V = 0V, f = 1MHzC = C + C , C SHORTEDC = CC = C + C

GSiss gs gd dsrss gdoss ds gd

C iss

C oss

C rss

Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage

10

100

4 5 6 7 8 9 10

T = 25°C

T = 150°C

J

J

GSV , Gate-to-Source Voltage (V)

DI ,

Dra

in-t

o-S

ourc

e C

urre

nt (

A)

A

V = 15V 20µs PULSE WIDTH

DS

0.0

0.5

1.0

1.5

2.0

-60 -40 -20 0 20 40 60 80 100 120 140 160

JT , Junction Temperature (°C)

R

, D

rain

-to-

Sou

rce

On

Res

ista

nce

DS

(on)

(Nor

mal

ized

)

V = 10V GSA

I = 3.0AD

Fig 4. Normalized On-ResistanceVs. Temperature

Fig 3. Typical Transfer Characteristics

N-Channel

72

IRF7106

0.1

1

10

100

0.4 0.6 0.8 1.0 1.2 1.4

T = 25°C

T = 150°C

J

J

V = 0V GS

V , Source-to-Drain Voltage (V)

I

, Rev

erse

Dra

in C

urre

nt (A

)

SD

SD

A 0.1

1

10

100

0.1 1 10 100V , Drain-to-Source Voltage (V)DS

I ,

Dra

in C

urre

nt (

A)

OPERATION IN THIS AREA LIMITED BY R

D

DS(on)

T = 25°C T = 150°C Single Pulse

1ms

10ms

100ms

A

AJ

Fig 7. Typical Source-Drain DiodeForward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs.Ambient Temperature

0.0

0.5

1.0

1.5

2.0

2.5

3.0

25 50 75 100 125 150

I , D

rain

Cur

rent

(Am

ps)

D

A

T , Ambient Temperature (°C)A

N-Channel

Fig 11a. Gate Charge Test Circuit Fig 11b. Basic Gate Charge Waveform

Fig 10b. Switching Time Waveforms

Fig 10a. Switching Time Test Circuit

73

IRF7106

0.1

1

10

100

0.1 1 10 100

D

DS

A

-I

, Dra

in-t

o-S

ourc

e C

urre

nt (A

)

-V , Drain-to-Source Voltage (V)

VGS TOP - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTTOM - 4.5V

-4.5V

20µs PULSE WIDTH T = 25°CJ 0.1

1

10

100

0.1 1 10 100

D

DS

20µs PULSE WIDTH T = 150°C

A

-I ,

Dra

in-t

o-S

ourc

e C

urre

nt (A

)

-V , Drain-to-Source Voltage (V)

VGS TOP - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTTOM - 4.5V

-4.5V

J

Fig 12. Typical Output Characteristics,TJ = 25oC

Fig 13. Typical Output Characteristics,TJ = 150oC

1

10

100

4 6 8 10

T = 25°C

T = 150°C

J

J

GS

D

A

-I

, Dra

in-to

-Sou

rce

Cur

rent

(A

)

-V , Gate-to-Source Voltage (V)

V = -15V 20µs PULSE WIDTH

DS

0.0

0.5

1.0

1.5

2.0

-60 -40 -20 0 20 40 60 80 100 120 140 160

JT , Junction Temperature (°C)

R

, D

rain

-to-S

ourc

e O

n R

esis

tanc

eD

S(o

n)(N

orm

aliz

ed)

A V = -10V GS

I = -2.5AD

Fig 15. Normalized On-ResistanceVs. Temperature

Fig 14. Typical Transfer Characteristics

Fig 16. Typical Capacitance Vs.Drain-to-Source Voltage

0

200

400

600

800

1 10 100

C, C

apac

itanc

e (p

F)

A

DS-V , Drain-to-Source Voltage (V)

V = 0V, f = 1MHzC = C + C , C SHORTEDC = CC = C + C

GSiss gs gd dsrss gdoss ds gd

C iss

C oss

C rss

Fig 17. Typical Gate Charge Vs.Gate-to-Source Voltage

0

4

8

12

16

20

0 4 8 12 16 20

G

GS

A

-V

, G

ate-

to-S

ourc

e V

olta

ge (V

)

Q , Total Gate Charge (nC)

I = -2.3A V = -10V

D DS

FOR TEST CIRCUIT SEE FIGURE 22

P-Channel

74

IRF7106

0.1

1

10

0.0 1.0 2.0 3.0

T = 25°C

T = 150°C

J

J

V = 0V GS

SD

SD

A

-I

, R

ever

se D

rain

Cur

rent

(A)

-V , Source-to-Drain Voltage (V)

0.1

1

10

100

0.1 1 10 100

OPERATION IN THIS AREA LIMITED BY RDS(on)

T = 25°C T = 150°C Single Pulse

A

-I ,

Dra

in C

urre

nt (

A)

-V , Drain-to-Source Voltage (V)DS

D

AJ

1ms

10ms

100ms

Fig 19. Maximum Safe Operating AreaFig 18. Typical Source-Drain DiodeForward Voltage

Fig 21a. Switching Time Test Circuit

Fig 21b. Switching Time Waveforms

Fig 22b. Basic Gate Charge WaveformFig 22a. Gate Charge Test Circuit

P-Channel

0.0

0.5

1.0

1.5

2.0

2.5

25 50 75 100 125 150A

-I ,

Dra

in C

urre

nt (

Am

ps)

D

AT , Ambient Temperature (°C)

Fig 20. Maximum Drain Current Vs.Ambient Temperature

75

IRF7106N-P Channel

Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

0.1

1

10

100

0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000

t , Rectangular Pulse Duration (sec)1

D = 0.50

0.01

0.02

0.05

0.10

0.20

SINGLE PULSE(THERMAL RESPONSE)

A

Ther

mal

Res

pons

e (Z

)th

JA

P

t 2

1t

DM

N otes: 1 . D uty fac tor D = t / t

2 . Pea k T = P x Z + T

1 2

J D M th JA A

Refer to the Appendix Section for the following:

Appendix A: Figure 24, Peak Diode Recovery dv/dt Test Circuit — See page 329.

Appendix B: Package Outline Mechanical Drawing — See page 332.

Appendix C: Part Marking Information — See page 332.

Appendix D: Tape and Reel Information — See page 336.