50
Quarkonia in Jets Philip Ilten May 9, 2018 Birmingham Seminar Ilten Quarkonia in Jets 1 / 33

Quarkonia in Jets - University of Birmingham · 2018. 5. 9. · Quarkonia in Jets Philip Ilten May 9, 2018 Birmingham Seminar Ilten Quarkonia in Jets 1 / 33

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Quarkonia in Jets

Philip Ilten

May 9, 2018

Birmingham Seminar

Ilten Quarkonia in Jets 1 / 33

Introduction

QCD at the LHC

g

q̄ q

q q̄

p

η

ρ

φ

ω

n

Λ

p

p

100 GeV 1 GeV14 TeV

energyIlten Quarkonia in Jets 2 / 33

Introduction

QCD at the LHC

g

q̄ q

q q̄

p

η

ρ

φ

ω

n

Λ

p

p100 GeV 1 GeV14 TeV

energy

final stateshowers

hadronisation

Ilten Quarkonia in Jets 2 / 33

Introduction

QCD at the LHC

g

q̄ q

q q̄

p

η

ρ

φ

ω

n

Λ

p

p100 GeV 1 GeV14 TeV

energy

partondistributionfunctions

initial stateshowers

Ilten Quarkonia in Jets 2 / 33

Introduction

Factorising QCD

z = Eg/Eqθ

q

g

γ

e−

e+

g

q

γ

e−

e+

g

q

dσ ≈ σ(2 dcos θ

sin2 θ

)(αs2π

)(N 2c − 12Nc

)(1 + (1− z)2

z

)dz

• factorise into general form given any splitting kernel Pi

dσ ≈ σ∑

i

dθ2

θ2 Pi (z, αs) dz

• diverges when collinear (θ → 0, π) or infrared (z → 0)

Ilten Quarkonia in Jets 3 / 33

Introduction

Sudakovs and Splitting Kernels

∆(Q21 ,Q2) = exp

[−∫ Q2

1

Q2

1q2

∫ 1−Q20/q2

Q20/q2

Pi(z, αs) dz dq2]

1 pick a random number r ∈ [0, 1]2 solve ∆(Q2

1 ,Q2) = r for Q2

3 if Q > Q0 generate emission and repeat from 14 if Q ≤ Q0 terminate shower

g → gg q → qg g → qq

1− zz + z

1− z +z(1−z) 1− zz + z

2 − 2µ z2 + (1− z)2 + µ2

Ilten Quarkonia in Jets 4 / 33

Introduction

Reverse Engineering with Jets

• unfold final state particles to initial hard partons1 collinear safe → collinear emission changes nothing2 infrared safe → soft emission changes nothing3 insensitive to non-perturbative effects4 applicable to both parton and hadron level

• inclusive sequential clustering is algorithm of choice at LHC

dij = min(pkTi , pk

Tj)∆R2

ijR2 , diB = pk

Ti

1 select minimum d2 if dij , combine particle i and j3 if diB, consider particle as jet and remove from clustering4 terminate if no particles otherwise return to 1

Ilten Quarkonia in Jets 5 / 33

Introduction

Flavours of Sequential Clustering

Cambridge/Aachen kt anti-kt

arXiv:1111.6097

k = 0 k = 2 k = −2

• Cambridge/Aachen considers only geometry• kt and anti-kt also consider momentum• anti-kt provides circular jets in R at high-pT

Ilten Quarkonia in Jets 6 / 33

Tagging a Jet

Tagging a Jet

LHCb, JINST 10 (2015) P06013

Ilten Quarkonia in Jets 7 / 33

Tagging a Jet

From Theory to Detector

?

primary vertex

secondary vertex

tag

theory detector

• jet properties depend on initiating parton

c-hadron b-hadronmass 2 GeV 5 GeVlifetime (cτ) 0.1 mm 0.5 mmmultiplicity ≈ 2 ≈ 3

Ilten Quarkonia in Jets 8 / 33

Tagging a Jet

Enter LHCb

VELO

RICH1

TT

magnet

OT

IT

RICH2

HCAL

ECALmuon system5 m

5 m 15 m

SPD/PRS

collisionpoint

1 good momentum and massresolution

2 excellent secondary vertexresolution

Ilten Quarkonia in Jets 9 / 33

Tagging a Jet

Tagging Ingredients

T(SV)/p (jet)

Tp

0 0.2 0.4 0.6 0.8 1

A.U.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18bcudsg

corrected mass [GeV]0 2 4 6 8 10

A.U.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

bcudsg

tracks0 5 10

A.U.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bcudsg

Mcor =√

M 2 + p2 sin2 θ+p sin θ

secondary

vertex

θ

p

Ilten Quarkonia in Jets 10 / 33

Tagging a Jet

A Pinch of Machine Learning

• 10 total observables (3 jet related) input to boosted decision trees• two BDTs: udsg vs. cb and c vs. b• fit 2-dimensional distribution of the two BDTs

)udsg|bcBDT(-1 -0.5 0 0.5 1

)c|bB

DT

(

-1

-0.5

0

0.5

1

LHCb simulation

-jetsudsg

)udsg|bcBDT(-1 -0.5 0 0.5 1

)c|bB

DT

(

-1

-0.5

0

0.5

1

LHCb simulation

-jetsc

)udsg|bcBDT(-1 -0.5 0 0.5 1

)c|bB

DT

(

-1

-0.5

0

0.5

1

LHCb simulation

-jetsb

Ilten Quarkonia in Jets 11 / 33

Tagging a Jet

Tag and Probe

)c|bBDT(-1 -0.5 0 0.5 1

N(je

ts)

0

2000

4000

6000 LHCbdatabcudsg

0

200

400

600

800

1000

)udsg|bcBDT(-1 -0.5 0 0.5 1

)c|bBD

T(

-1

-0.5

0

0.5

1LHCb data

+jetD

)udsg|bcBDT(-1 -0.5 0 0.5 1

N(je

ts)

0

2000

4000

6000

8000 LHCbdatabcudsg

SV probe?

exclusive tag

Ilten Quarkonia in Jets 12 / 33

Tagging a Jet

Some Cool Measurements

µ

µ

cg

c

Z

p

extrinsic c

intrinsic c

simulation

• W + jets: LHCb, Phys. Rev. D 92 (2015)• top production: LHCb, Phys. Rev. Lett. 115 (2015)• IC: Boettcher, Ilten and Williams, Phys. Rev. D 93 (2016)

Ilten Quarkonia in Jets 13 / 33

J/ψ in a Jet

J/ψ in a Jet

LHCb, Phys. Rev. Lett. 118 (2017)

Ilten Quarkonia in Jets 14 / 33

J/ψ in a Jet

The Polarization Puzzle

]c) [GeV/ψJ/(T

p0 5 10

)]c [

nb/(

GeV

/T

p/dσd

10

210

310

410

<4.5y, 2.0< ψJ/LHCb prompt <4.5yNRQCD, 2.0<

JHEP 10 (2015)

) [GeV/c]ψ(J/Tp

0 5 10 15

polarization

-1-0.8-0.6-0.4-0.20

0.20.40.60.81

NLO NRQCD(1)NLO CS

2.5 < y < 4.0

= 7 TeVsLHCb

EPJC 73 (2013)

J/ψ (1)

gg

g

c

J/ψ (8)

gg

g

c

colour singletlow pT

longitudinal pol.

colour octethigh pT

transverse pol.

Ilten Quarkonia in Jets 15 / 33

J/ψ in a Jet

A Tale of Two Pictures

1 NRQCD hard process, octet states showered with QCD splittings2 shower with NRQCD splittings, match with hard process

cc

hard production shower production

arXiv:1603.06981 • build J/ψ → µµ candidates• build jets with J/ψ input• select jets with J/ψs• z ≡ pT(J/ψ)/pT(jet)

Ilten Quarkonia in Jets 16 / 33

J/ψ in a Jet

LHCb Trigger

• real-time calibration and full event reconstruction in Run 2• full detector readout in Run 3

detector

hardware

software disk

Run�2Run�3

5�TB/s O(10)�GB/s

0.7�GB/s

50�GB/s1�TB/s

Ilten Quarkonia in Jets 17 / 33

J/ψ in a Jet

Dimuon Trigger

310 410 510

210

310

410

510

610

710

m(µµ) [ MeV ]

Can

did

ates

/σ[m

(µµ)]

/2

LHCb√s = 13 TeV

µ+µ−

µ±µ±

prompt-like sample

pT(µ) > 1 GeV, p(µ) > 20 GeV

• fully reconstructed event written to disk, including particle flow• jets can be fully reconstructed, sans hadronic calorimetry

Ilten Quarkonia in Jets 18 / 33

J/ψ in a Jet

Prompt and Displaced

J/ψ (1)

cJ/ψ (1)c

b→ J/ψ (1)

• determine J/ψ signal yield with mass fits• separate prompt (direct) from displaced (b → J/ψ) yields with

pseudo-lifetime fits, τ̃ ≡ (xz − xz(PV))m/pz

) [GeV]−µ+µ(m3 3.05 3.1 3.15 3.2

Can

dida

tes

/ 5 M

eV

0

5000

10000

LHCb = 13 TeVs

(jet) < 30 GeVT

p20 <

) < 0.5ψ/J(z0.4 <

Data

Total Fit

ψ/J

Background

[ps]t~-10 -5 0 5 10

Can

dida

tes

/ 0.1

ps

1

10

210

310

410LHCb = 13 TeVs

(jet) < 30 GeVT

p20 <

) < 0.5ψ/J(z0.4 < Data

Total Fitψ/JPrompt

ψ/J→b

Background

Wrong PV

Ilten Quarkonia in Jets 19 / 33

J/ψ in a Jet

Unfolding

• correct for z resolution and pT(j) resolution, ≈ 20− 25%• perform 2D unfolding in z and pT(j) (iterative D’Agostini)

0

1

1) [true]ψ/J(z

) [r

eco]

ψ/J(z(jet) [reco]

Tp

15-20 GeV

20-30 GeV

>30 G

eV

(jet) [true]T

p

15-20 GeV 20-30 GeV >30 GeV

LHCbsimulation

Ilten Quarkonia in Jets 20 / 33

J/ψ in a Jet

Displaced Results

)ψ/J(z0 0.2 0.4 0.6 0.8 1

σ/σd

0

0.1

0.2

0.3

Data (syst)

Pythia 8

LHCb = 13 TeVs

ψ/J→b

Ilten Quarkonia in Jets 21 / 33

J/ψ in a Jet

Displaced Results

)ψ/J(z0 0.2 0.4 0.6 0.8 1

σ/σd

0

0.1

0.2

0.3

0.4Pythia 8

-splitgno

no MPI

LHCb simulation = 13 TeVs

ψ J/→b

Ilten Quarkonia in Jets 22 / 33

J/ψ in a Jet

Prompt Results

)ψ/J(z0 0.2 0.4 0.6 0.8 1

σ/σd

0

0.1

0.2

0.3

DPS

SPS

Data (syst)

LO NRQCD

LHCb = 13 TeVsPrompt

σeff = 31 mb (Pythia default)

Ilten Quarkonia in Jets 23 / 33

J/ψ in a Jet

Prompt Results

)ψ/J(z0 0.2 0.4 0.6 0.8 1

σ/σd

0

0.2

0.4

0.6

0.8

1

+ MPI(1)1LO 3S

(1)1LO 3S

(1)1NLO* 3S

+ MPI(8)1LO 3S

(8)1LO 3S

(8)1NLO* 3S

LHCb simulation = 13 TeVsPrompt

Ilten Quarkonia in Jets 24 / 33

Jets in a Jet?

Jets in a Jet?

Ilten, Rodd, Thaler and Williams,Phys. Rev. D 96 (2017)

Ilten Quarkonia in Jets 25 / 33

Jets in a Jet?

SoftDrop and Jet Sub-structure

• what happens with boosted topology when Qhard � Qobs,e.g. W ,Z ,H → qq̄?

• anti-kt produces a single jet → need jet sub-structure• use jet sub-structure technique like SoftDrop

j0

j1→j0j2

j1 j2

final state particlesmin(pT1, pT2)

pT1 + pT2> zcut

(∆R12R

1 create fat anti-kt jets2 build Cambridge/Aachen tree

for each fat jet3 split j0 into sub-jets j1 and j2

4 if j1 and j2 fulfil SoftDropcondition, terminate

5 otherwise, assign j0 to largerpT sub-jet and return to 3

Ilten Quarkonia in Jets 26 / 33

Jets in a Jet?

Averaged Massless Splittings

+

+

=

1− zz + z

1− z + 12

zg ≡pT1

pT1 + pT2

0123456789

dσdz g

CMS 2010 Open DataTheory (MLL)Pythia 8.219Herwig 7.0.3Sherpa 2.2.1

p PFCT > 1.0 G eV

AK5; | η | < 2.4p jet

T > 150 G eV

mMDT / SDβ=0 : z cut = 0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6zg

0.5

1.0

1.5

2.0

Rat

ioto

Pyt

hia

arXiv:1704.05842

• SoftDrop provides direct access to the hardest 1→ 2 splitting

Ilten Quarkonia in Jets 27 / 33

Jets in a Jet?

Jet Anatomy

1 find all tags in event and treat as ghosts2 build anti-kt jets with R = 1, including tags3 apply SoftDrop with zcut > 0.1 and β = 04 consider sub-jet tagged if ptag

T /(pT1 + pT2) > 0.05

Δy

Δφ

0 1-1

0

-1

1

Δy

Δφ

0 1-1

0

-1

1

Δy

Δφ

0 1-1

0

-1

1

(0, 0)Q (0, 1)Q (1, 1)Q

Ilten Quarkonia in Jets 28 / 33

Jets in a Jet?

Some Numbers

σ(Pythia) [µb] σ(Herwig++) [µb](0, 0)c 9.96× 102 5.28× 102

(0, 1)c 7.56× 101 2.64× 101

(1, 1)c 6.87 × 100 2.87 × 100

(0, 2)c 1.00× 101 5.64× 100

otherc 8.86× 10−1 2.47 × 10−1

(0, 0)b 1.07 × 103 5.52× 102

(0, 1)b 1.34× 101 9.58× 100

(1, 1)b 8.40× 10−1 5.03× 10−1

(0, 2)b 9.50× 10−1 5.94× 10−1

otherb 1.13× 10−2 7.75× 10−3

• missed tags migrate category up → minimal contamination• efficiency of tagging well understood from data

Ilten Quarkonia in Jets 29 / 33

Jets in a Jet?

Heavy Flavour Splittings

0.0 0.2 0.4 0.6 0.8 1.0z

0

1

2

3

4

5

(1/σ

)(d

σ/d

z g)

c-hadron tagPythiaR = 1.0

LHCb: pT > 20 GeV, z tag > 0.1, η ∈ [3, 4]

(0, 0)c

(0, 1)c

(1, 1)c

g

(0, 0)c

(0, 1)c

(1, 1)c

Ilten Quarkonia in Jets 30 / 33

Jets in a Jet?

Quarkonia Splitting

0.0 0.2 0.4 0.6 0.8 1.0z

0

1

2

3

4

5

(1/σ

)(d

σ/d

z g)

c-hadron tagPythiaR = 1.0

LHCb: pT > 20 GeV, z tag > 0.1, η ∈ [3, 4]

(0, 1)c

(0, 2)c

(0, 1)J/ψ

g

(0, 1)c

(0, 2)c

c

(0, 1)J/ψ

Ilten Quarkonia in Jets 31 / 33

Conclusions

Conclusions

Ilten Quarkonia in Jets 32 / 33

Conclusions

Outlook

• LHCb has unique jet tagging capabilities• valence and strange quark PDFs• top asymmetry• intrinsic charm

• J/ψ production is not isolated!• reconsider theory with parton shower framework• implications for J/ψ production in medium• more measurements are needed

• SoftDrop accesses fundamental 1→ 2 QCD splittings• paired with jet tagging, probe heavy flavour splitting• new technique to understand J/ψ production

Thank you!Ilten Quarkonia in Jets 33 / 33

Appendix

Appendix

Ilten Quarkonia in Jets 1 / 15

Appendix

Efficiencies

N (probe SV)N (total)

• N (probe SV) from BDT fit• N (total) from hardest χ2

IP fit

)IP2χmuon log(

-5 0 5 10 15

cand

idat

es

0

500

1000

1500

2000

LHCbdatabc

udsg

+jetD

light-parton mistag probability0.001 0.002 0.003 0.004 0.005

(b,c

)-je

t tag

eff

icie

ncy

0

0.2

0.4

0.6

0.8

1

-jetb-jetc

LHCb simulation

(jet) < 4.2η2.2 <

(jet) < 100 GeVT

20 < p

(jet) [GeV]T

p20 40 60 80 100

SV-t

ag e

ffic

ienc

y

0

0.2

0.4

0.6

0.8

1LHCb

-jetb

-jetc

Ilten Quarkonia in Jets 2 / 15

Appendix

Probing the Proton

10−6 10−5 10−4 10−3 10−2 10−1 100

x

100

101

102

103

104

105

106

107

108

Q2

[GeV

2 ]

Tevatron

HERA

fixed target

GPD 13 TeV

LHCb 13 TeV

g

qi

qj

W

g

s

c

W

qj

qi

b

b

W

Ilten Quarkonia in Jets 3 / 15

Appendix

W with a Jet

muon

tag

1 trigger on a high pT muon2 build jets in the event3 require jet containing muon jµ and tagged jet j4 bin data as a function of isolation, pT(µ)/pT(jµ)5 determine flavour in each isolation bin with BDT fit6 fit isolation to determine signal

Ilten Quarkonia in Jets 4 / 15

Appendix

Flavour Determination

Ilten Quarkonia in Jets 5 / 15

Appendix

Signal Determination

0.5 0.6 0.7 0.8 0.9 1

Can

dida

tes/

0.1

0

500

Data

W

Z

Jets

= 8 TeVs, +µLHCb-jetc+µ

) µj(T

p)/µ(T

p0.5 0.6 0.7 0.8 0.9 1

cand

idat

es

0

500

= 8 TeVs, −µ

0.5 0.6 0.7 0.8 0.9 1

Can

dida

tes/

0.1

0

500

1000 = 8 TeVs, +µLHCb

-jetb+µ

) µj(T

p)/µ(T

p0.5 0.6 0.7 0.8 0.9 1

cand

idat

es

0

500

1000 = 8 TeVs, −µ Data

W

Z

Jets

Ilten Quarkonia in Jets 6 / 15

Appendix

Topping the W

Tevatron LHC

y=0 y=0

topanti-top

tg

g

b

W

t

tq

q

b

W

t

tqj

qi

b

W

b

gluon fusion quark fusion single top

Ilten Quarkonia in Jets 7 / 15

Appendix

A Tricky Background

) [GeV]c+µ(T

p

)c+

W(N

0

50

100

150

200

Data

SM

LHCb

20 45 70 95 ∞

• constrain W b with W j• scale with W b/W j theory• validate with W c

) [GeV]b+µ(T

p

)W

+b

(N

0

100

200

Data+topWb

Wb

LHCb

20 45 70 95 ∞) [GeV]b+µ(

Tp

Cha

rge

Asy

mm

etry

-0.4

-0.2

0

0.2

0.4

Data

+topWb

Wb

LHCb

20 45 70 95 ∞

Ilten Quarkonia in Jets 8 / 15

Appendix

Putting Everything Together

−0.09± 0.08± 0.04 A(Wc)0.51± 0.20± 0.09 A(Wb)5.80± 0.44± 0.75 σ(Wc)/σ(Wj)× 102

0.66± 0.13± 0.13 σ(Wb)/σ(Wj)× 102

6.61± 0.19± 0.33 σ(W−j)/σ(Zj)10.49± 0.28± 0.53 σ(W +j)/σ(Zj)

−0.01± 0.05± 0.04 A(Wc)0.27± 0.13± 0.09 A(Wb)5.62± 0.28± 0.73 σ(Wc)/σ(Wj)× 102

0.78± 0.08± 0.16 σ(Wb)/σ(Wj)× 102

6.02± 0.13± 0.30 σ(W−j)/σ(Zj)9.44± 0.19± 0.47 σ(W +j)/σ(Zj)

7 TeV

8 TeV

(exp - thr)/max(δthr)-5 0 5 10 239± 53± 41 [fb]7 TeV

289± 43± 49 [fb]8 TeV

(exp - thr)/max(δthr)-1 0 1 2

Ilten Quarkonia in Jets 9 / 15

Appendix

Intrinsic Charm

µ

µ

cg

c

Z

p

extrinsic c

intrinsic c

simulation

Ilten Quarkonia in Jets 10 / 15

Appendix

Bonus Intrinsic Charm

10−6 10−5 10−4 10−3 10−2 10−1 100

x

100

101

102

103

104

105

106

107

108

Q2

[GeV

2 ]

Tevatron

HERA

fixed target

GPD 13 TeV

LHCb 13 TeV

LHCb 110 GeV

type timepNe 30m

PbNe 30mpNe 12hpHe 7hpAr 20hpAr 11h

PbAr 100hpHe 20hpHe 87h

Ilten Quarkonia in Jets 11 / 15

Appendix

Heavy Flavour Production

• understanding heavy flavour production critical for many signals• two approaches typically taken

1 hadron-level: good angular properties, poor energy proxy2 tagged jet-level: poor angular properties, good energy proxy

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

π σd

σd|Δ

φ∗|

|Δ φ∗| / π

PowhegPythiauncorrelatedLHCb

arXiv:1708.05994

Ilten Quarkonia in Jets 12 / 15

Appendix

FlavorCone

• good angular properties, good energy proxy• collinear and infrared safe by jet-axis definition

y

φ

3 42-3

3

-2

-1

2

1

0

5y

φ

3 42-3

3

-2

-1

2

1

0

5

1 given n tags define njet-axes

2 particles outside of R withan jet-axis is not clustered

3 remaining particles areclustered with nearest axis

4 jet momenta is sum ofconstituents

Ilten Quarkonia in Jets 13 / 15

Appendix

Comparison

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Δφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4(1

/σ)(

dσ/

φ)c-hadron tagPythiaR = 0.5

LHCb: pleadT > 20 GeV, zsub > 0.1, η ∈ [2.5, 4.5]

FlavorConeFlavorConeJetAnti-kt

Q-hadron× 0.9

Ilten Quarkonia in Jets 14 / 15

Appendix

Variable Discrimination

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Δφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(1/σ

)(d

σ/dΔ

φ)

c-hadron tagPythiaR = 0.5

LHCb: pleadT > 20 GeV, zsub > 0.1, η ∈ [2.5, 4.5]

gluon splittingnon-splittingtotal

− 3 − 2 − 1 0 1 2 3

Δ y

0.0

0.2

0.4

0.6

0.8

1.0

(1/σ

)(d

σ/dΔ

y)

c-hadron tagPythiaR = 0.5

LHCb: pleadT > 20 GeV, zsub > 0.1, η ∈ [2.5, 4.5]

gluon splittingnon-splittingtotal

0 1 2 3 4 5

ΔR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(1/σ

)(d

σ/dΔ

R)

c-hadron tagPythiaR = 0.5

LHCb: pleadT > 20 GeV, zsub > 0.1, η ∈ [2.5, 4.5]

gluon splittingnon-splittingtotal

0 20 40 60 80 100

m j j [GeV]

0.00

0.01

0.02

0.03

0.04

0.05

(1/σ

)(d

σ/d

mjj

[GeV

])

c-hadron tagPythiaR = 0.5

LHCb: pleadT > 20 GeV, zsub > 0.1, η ∈ [2.5, 4.5]

gluon splittingnon-splittingtotal

Ilten Quarkonia in Jets 15 / 15