1
o Reactor antineutrinos Reactor antineutrinos in the world in the world V. Chubakov 1 , F. Mantovani 1 , B. Ricci 1 , J. Esposito 2 , L. Ludhova 3 and S. Zavatarelli 4 1 Dip. di Fisica, Università degli Studi di Ferrara and INFN-Ferrara, Italy 2 INFN, Laboratori Nazionali di Legnaro, Padova, Italy 3 INFN- Milano, Italy 4 INFN- Genova, Italy The High Energy Region (HER) has to be controlled by studying the different contributions from the nuclear reactors, if one wants to disentangle N geo- and N react in the Low Energy Region (LER) Signal Calculations Result: a world wide map Total uncertainties on predicted signal is about 5%, coming from mixing, anti- spectrum, fuel composition and thermal power Reactor signal in Low Energy Region, for different sites. React. signal and geo neutrino detection Conclusions and perspectives We calculated reactor anti-e signal all over the world, by taking into account updated data on nuclear plants, anti-e spectrum and e oscillation parameters. We compare reactor signal with geo-neutrino signal for different places in the world. Study of time variation of reactor signal is also possible (± 10% variation in summer/winter). Detailed study on the effect of exhausted fuel must be completed (we estimate a 2% increase in the signal). 1 3 5 6 Reactor antineutrinos are the main source of background in the detection of geo- neutrinos (i.e. anti-e from 238 U and 232 Th decay chains, present in the Earth interior) 3. 3 1. 8 [MeV] E 8 Why reactor antineutrinos ? d d i i =reactor =reactor distance distance P P i =thermal power =thermal power LF LF = Load Factor = Load Factor [1] [1] p p k = power = power fraction fraction Q Q k = = energy energy released for released for fission fission [4] [4] k k =reactor =reactor anti-neutrino anti-neutrino spectrum spectrum [5] [5] P P ee ee = = oscillation oscillation survival survival probability probability [2] [2] (E (E ) ) = cross = cross section section anti- anti- e e +p -> e +p -> e + + PHYSICS DETECTO REACTOR Many ingredients: neutrino physics, nuclear physics, reactor properties… Sites Sites React. LER React. LER [TNU] [TNU] Geo Geo (G) (G) [6] [6] [TNU] [TNU] R R LER LER /G /G FREJUS FREJUS 138 138 (1±5%) (1±5%) 43±13 43±13 3.2 3.2 SUDBURY SUDBURY 47 47 51±10 51±10 0.92 0.92 GRAN SASSO GRAN SASSO 23 23 41±8 41±8 0.56 0.56 PYHASALMI PYHASALMI 19 19 51±8 51±8 0.37 0.37 BAKSAN BAKSAN 9.8 9.8 51±8 51±8 0.19 0.19 DUSEL DUSEL 8.0 8.0 53±8 53±8 0.15 0.15 KAMIOKA KAMIOKA 6.7 6.7 34±6 34±6 0.20 0.20 CURACAO CURACAO 2.5 2.5 32±6 32±6 0.078 0.078 HAWAII HAWAII 0.90 0.90 12±4 12±4 0.073 0.073 Bibliography: [1] courtesy by J. Mandula ,IAEA, International Atomic Energy Agency 2012. [4] M. Apollonio et al., Eur. Phys. J. C27, 331 (2003) [2]G.L. Fogli et al., Phys. Rev. D 84, 053007 (2011) [5]Th. A Mueller et al., Phys.Rev.C83:054615 (2011) [3]F.Vissani and A. Strumia, Phys.Lett.B564:42-54 (2003) [6]G. Fiorentini et al., Phys.Rept.453:117-172 (2007) NUCLEAR k = 235 U, 238 U, 239 Pu , 241 Pu (nuclear fuel) 4 Frejus requires a detailed knowledge of closeby reactors. Kamioka is at the moment a very good site. Hawaii and Curacao are ‘wonderful’ places also for geo- study. Neutrino 2012 June 3-9, 2012 Kyoto, Japan R.B. =100% efficiency =100% efficiency = 1 year = 1 year N N p p =10 =10 32 32 target target protons protons (1 kton kton liquid liquid scintillator) scintillator) reactor N i i ee k k k k i i i p TOT E d E P E Q p dE LF d P N N 1 4 1 2 ) ( ) , ( ) ( 4 DETECTOR Reactor antineutrino events all over the worl [1 TNU=1 event/ 10 32 32 target protons /year] Current status http://pris.iaea.org/public/ Japan cores switched off 394 333 215 Nuclear power plants in the world 2 Total Thermal Power =1023 GW 265;60% 94;21% 44;10% 18;4% 16;4% 2;< 1% 0 100 200 300 PW R BW R PHW R GCR LW GR FBR C ore type N um berofcores 0.0 20.0 40.0 60.0 % PWR BWR PHWR GCR LWGR FBR % Total Thermal Power 63; 17% 249; 69% 47; 7.7% 18; 2.6% 15; 3.5% 2; 1 % PWR Pressurized (light) Water Reactor BWR Boiling Water Reactor PHWR Pressurized Heavy Water Reactor GCR GCR Gas Cooled Reactor Gas Cooled Reactor LWGR LWGR Light Water Graphite Light Water Graphite mod. mod. FBR FBR Fast Breeder Reactor Fast Breeder Reactor

Reactor antineutrinos in the world

  • Upload
    latham

  • View
    34

  • Download
    2

Embed Size (px)

DESCRIPTION

Neutrino 2012 June 3-9, 2012 Kyoto, Japan. Reactor antineutrinos in the world. V. Chubakov 1 , F. Mantovani 1 , B. Ricci 1 , J. Esposito 2 , L. Ludhova 3 and S. Zavatarelli 4. 1 Dip. di Fisica, Università degli Studi di Ferrara and INFN-Ferrara, Italy - PowerPoint PPT Presentation

Citation preview

Page 1: Reactor antineutrinos                         in the world

o

Reactor antineutrinos Reactor antineutrinos in the in the

worldworldV. Chubakov1, F. Mantovani1, B. Ricci1, J. Esposito2, L. Ludhova3 and S. Zavatarelli4

1Dip. di Fisica, Università degli Studi di Ferrara and INFN-Ferrara, Italy2INFN, Laboratori Nazionali di Legnaro, Padova, Italy

3INFN- Milano, Italy 4INFN- Genova, Italy

The High Energy Region (HER) has to be controlled by studying the different contributions from the nuclear reactors, if one wants to disentangle Ngeo- and Nreact in the Low Energy Region (LER)

Signal Calculations

Result: a world wide map

Total uncertainties on predicted signal is about 5%, coming from mixing, anti-spectrum, fuel composition and thermal power

Reactor signal in Low Energy Region, for different sites.React. signal and geo neutrino detection

Conclusions and perspectives

We calculated reactor anti-e signal all over the world, by taking into account updated data on nuclear plants, anti-e

spectrum and e oscillation parameters.

We compare reactor signal with geo-neutrino signal for different places in the world.

Study of time variation of reactor signal is also possible (± 10% variation in summer/winter).

Detailed study on the effect of exhausted fuel must be completed (we estimate a 2% increase in the signal).

1

3

5

6

Reactor antineutrinos are the main source of background in the detection of geo-neutrinos (i.e. anti-e from 238U and 232Th decay chains, present in the Earth interior)

3.31.8 [MeV]

E 8

Why reactor antineutrinos ?

reactorN

iiee

Nfuel

kk

k

ki

i

ipTOT EdEPE

QpdELF

dP

NN1 1

2 )(),()(4

ddii =reactor distance =reactor distance PPii=thermal power=thermal power LFLF= Load Factor = Load Factor [1] [1] ppkk= power fraction = power fraction

QQkk = =energy released energy released for fission for fission [4][4]

kk =reactor anti- =reactor anti-neutrino spectrum neutrino spectrum [5][5]

PPeeee = = oscillation oscillation survival probability survival probability [2][2]

(E(E))= cross section = cross section anti-anti-e e +p -> e+p -> e++ +n +nEEthth=1.806 MeV =1.806 MeV [3][3]

PH

YSI

CS

DET

ECTO

REA

CTO

R

Many ingredients: neutrino physics, nuclear physics, reactor properties…

SitesSites React. LER React. LER [TNU][TNU]

Geo Geo (G)(G) [6] [6] [TNU][TNU]

RRLERLER/G/G

FREJUSFREJUS 138 138 (1±5%)(1±5%)

43±1343±13 3.23.2

SUDBURYSUDBURY 47 “47 “ 51±1051±10 0.920.92GRAN SASSOGRAN SASSO 23 “23 “ 41±841±8 0.560.56PYHASALMIPYHASALMI 19 “19 “ 51±851±8 0.370.37BAKSANBAKSAN 9.8 “9.8 “ 51±851±8 0.190.19DUSELDUSEL 8.0 “8.0 “ 53±853±8 0.150.15KAMIOKAKAMIOKA 6.7 “6.7 “ 34±634±6 0.200.20CURACAOCURACAO 2.5 “2.5 “ 32±632±6 0.0780.078HAWAIIHAWAII 0.90 “0.90 “ 12±412±4 0.0730.073

Bibliography:[1] courtesy by J. Mandula ,IAEA, International Atomic Energy Agency 2012. [4] M. Apollonio et al., Eur. Phys. J. C27, 331 (2003)[2]G.L. Fogli et al., Phys. Rev. D 84, 053007 (2011) [5]Th. A Mueller et al., Phys.Rev.C83:054615 (2011)[3]F.Vissani and A. Strumia, Phys.Lett.B564:42-54 (2003) [6]G. Fiorentini et al., Phys.Rept.453:117-172 (2007)

NU

CLE

AR

k = 235U, 238U, 239Pu , 241Pu (nuclear fuel)

4

Frejus requires a detailed knowledge of closeby reactors.

Kamioka is at the moment a very good site.

Hawaii and Curacao are ‘wonderful’ places also for geo- study.

Neutrino 2012 June 3-9, 2012 Kyoto, Japan

R.B

.

=100% efficiency=100% efficiency = 1 year= 1 year NNpp=10=103232 target protons target protons

(1kton kton liquid liquid scintillator)scintillator)

reactorN

iiee

kk

k

ki

i

ipTOT EdEPE

QpdELF

dP

NN1

4

12 )(),()(

4

DET

ECTO

R Reactor antineutrino events all over the world[1 TNU=1 event/ 103232 target protons /year]

Current status

http://pris.iaea.org/public/

Japan cores switched off

394333 215

Nuclear power plants in the world 2Total Thermal Power =1023 GW

265; 60%

94; 21%

44; 10%18; 4% 16; 4%

2; < 1%0

100

200

300

PWR BWR PHWR GCR LWGR FBR

Core type

Num

ber o

f cor

es

0.0

20.0

40.0

60.0

%

PWR BWR PHWR GCR LWGR FBR

% Total Thermal Power

63; 17%

249; 69%

47; 7.7%18; 2.6% 15; 3.5% 2; 1 %

PWR Pressurized (light) Water Reactor

BWR Boiling Water Reactor

PHWR Pressurized Heavy Water Reactor

GCRGCR Gas Cooled ReactorGas Cooled Reactor

LWGRLWGR Light Water Graphite mod.Light Water Graphite mod.

FBRFBR Fast Breeder ReactorFast Breeder Reactor