References - Carnegie Mellon Un References [1]Gnu emacs. [2]org-mode. [3]J. Aarik, A. Aidla, V. Sammelselg,

  • View
    0

  • Download
    0

Embed Size (px)

Text of References - Carnegie Mellon Un References [1]Gnu emacs. [2]org-mode. [3]J. Aarik, A. Aidla, V....

  • References

    [1] Gnu emacs.

    [2] org-mode.

    [3] J. Aarik, A. Aidla, V. Sammelselg, and T. Uustare. Effect of growth conditions on formation of TiO2-II thin films in atomic layer deposition process. Journal of Crystal Growth, 181(3):259–264, 1997.

    [4] B. L. Adams, S. I. Wright, and K. Kunze. Orientation imaging - the emergence of a new microscopy. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 24(4):819–831, 1993.

    [5] Stuart B. Adler. Factors governing oxygen reduction in solid ox- ide fuel cell cathodes. Chemical Reviews, 104(10):4791–4844, 2004. doi:10.1021/cr020724o.

    [6] R Ahuja, S Rekhi, SK Saxena, and B Johansson. High-pressure struc- tural phase transitions in RuO2 and its geophysical implications. Jour- nal Of Physics And Chemistry Of Solids, 62(11):2035–2037, 2001.

    [7] Sneha A. Akhade and John R. Kitchin. Effects of strain, d-band fill- ing, and oxidation state on the bulk electronic structure of cubic 3d perovskites. J. Chemical Physics, 135(10):104702, 2011.

    [8] W. Richard Alesi, McMahan Gray, and John R Kitchin. CO2 ad- sorption on supported molecular amidine systems on activated carbon. Chemsuschem, 3(8):948–956, 2010. doi:10.1002/cssc.201000056.

    [9] Salai Cheettu Ammal and Andreas Heyden. Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: A periodic electrostatic embedded cluster model study. The Journal of Chemical Physics, 133(16):164703–15, 2010. doi:10.1063/1.3497037.

    [10] M. E. Arroyo y de Dompablo, Yueh-Lin Lee, and D. Morgan. First principles investigation of oxygen vacancies in columbite MNb2O6 (M = Mn, Fe, Co, Ni, Cu). Chemistry of Materials, 22(3):906–913, 2009. doi:10.1021/cm901723j.

    1

    http://dx.doi.org/10.1021/cr020724o http://dx.doi.org/10.1002/cssc.201000056 http://dx.doi.org/10.1063/1.3497037 http://dx.doi.org/10.1021/cm901723j

  • [11] A. Aruga, E. Tokizaki, I. Nakai, and Y. Sugitani. Structure of iron din- iobium hexaoxide, FeNb2O6 - an example of metal-disordered trirutile structure. Acta Crystallographica Section C-Crystal Structure Commu- nications, 41(May):663–665, 1985.

    [12] A. Asthagiri, C. Niederberger, A. J. Francis, L. M. Porter, P. A. Sal- vador, and D. S. Sholl. Thin Pt films on the polar SrTiO3(111) surface: an experimental and theoretical study. Surface Science, 537(1-3):134– 152, 2003. doi:10.1016/S0039-6028(03)00609-5.

    [13] P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, P. Sal- vador, M. Hagerman, T. Spiro, and E. Steifel. Shriver & Atkins Inor- ganic Chemistry. W. H. Freeman and Company, 2006.

    [14] Richard F. W. Bader. A quantum theory of molecular struc- ture and its applications. Chemical Reviews, 91(5):893–928, 1991. doi:10.1021/cr00005a013.

    [15] U. Balachandran and Beihai Ma. Mixed-conducting dense ceramic membranes for air separation and natural gas conversion. Journal of Solid State Electrochemistry, 10(8):617–624, 2006. doi:10.1007/s10008- 006-0126-y.

    [16] K R Balasubramaniam. Thin film growth and phase competition of lay- ered ferroelectrics and related perovskite phases. PhD Thesis, Carnegie Mellon University, page 254, 2006.

    [17] K R Balasubramaniam. Thin film growth and phase competition of lay- ered ferroelectrics and related perovskite phases. PhD Thesis, Carnegie Mellon University, page 254, 2006.

    [18] K. R. Balasubramaniam, S. Havelia, P. A. Salvador, H. Zheng, and J. F. Mitchell. Epitaxial stabilization and structural properties of REMnO3 (RE = Dy, Gd, Sm) compounds in a layered, hexagonal ABO3 struc- ture. Applied Physics Letters, 91(23):232901, 2007.

    [19] K. R. Balasubramaniam, S. Havelia, P. A. Salvador, H. Zheng, and J. F. Mitchell. Epitaxial stabilization and structural properties of REMnO3 (RE = Dy, Gd, Sm) compounds in a layered, hexagonal ABO3 struc- ture. Applied Physics Letters, 91(23):232901–3, 2007.

    2

    http://dx.doi.org/10.1016/S0039-6028(03)00609-5 http://dx.doi.org/10.1021/cr00005a013 http://dx.doi.org/10.1007/s10008-006-0126-y http://dx.doi.org/10.1007/s10008-006-0126-y

  • [20] K. R. Balasubramaniam, Y. Cao, N. Patel, S. Havelia, P. J. Cox, E. C. Devlin, E. P. Yu, B. J. Close, P. M. Woodward, and P. A. Salvador. Phase and structural characterization of Sr2Nb2O7 and SrNbO3 thin films grown via pulsed laser ablation in O2 or N2 at- mospheres. Journal of Solid State Chemistry, 181(4):705–714, 2008. doi:10.1016/j.jssc.2008.01.007.

    [21] K. R. Balasubramanian, A. A. Bagal, O. Castillo, A. J. Francis, and P. A. Salvador. Epitaxial phase selection in the rare earth manganite system. Ceramic Transactions, 162:59–67, 2005.

    [22] K. R. Balasubramanian, Kai-Chieh Chang, Feroz A. Mohammad, Lisa M. Porter, Paul A. Salvador, Jeffrey DiMaio, and Robert F. Davis. Growth and structural investigations of epitaxial hexagonal YMnO3 thin films deposited on wurtzite GaN(001) substrates. Thin Solid Films, 515(4):1807–1813, 2006.

    [23] A. Bhardwaj, N.V. Burbure, A. Gamalski, and G.S. Rohrer. Composi- tion dependence of the photochemical reduction of Ag by Ba1-xSrxTiO3. Chemistry of Materials, 22:3527–3534, 2010.

    [24] A. Bhardwaj, N.V. Burbure, and G.S. Rohrer. Enhanced photochem- ical reactivity at the ferroelectric phase transition in Ba1-xSrxTiO3. Journal of the American Ceramic Society, 93:4129–4134, 2010. doi:10.1111/j.1551-2916.2010.04002.x.

    [25] N. V. Burbure, P. A. Salvador, and G. S. Rohrer. Orientation and phase relationships between titania films and polycrystalline BaTiO3 substrates as determined by electron backscatter diffraction mapping. Journal of the American Ceramic Society, 93(9):2530–2533, 2010. doi:10.1111/j.1551-2916.2010.03878.x.

    [26] N. V. Burbure, P. A. Salvador, and G. S. Rohrer. Photochemical reactivity of titania films on BaTiO3 substrates: Influence of titania phase and orientation. Chemistry of Materials, 22:5831–5837, 2010. doi:10.1021/cm1018019.

    [27] N. V. Burbure, P. A. Salvador, and G. S. Rohrer. Photochem- ical reactivity of titania films on BaTiO3 substrates: Origin of

    3

    http://dx.doi.org/10.1016/j.jssc.2008.01.007 http://dx.doi.org/10.1111/j.1551-2916.2010.04002.x http://dx.doi.org/10.1111/j.1551-2916.2010.03878.x http://dx.doi.org/10.1021/cm1018019

  • spatial selectivity. Chemistry of Materials, 22:5823–5830, 2010. doi:10.1021/cm1018025.

    [28] Nina V. Burbure, Paul A. Salvador, and Gregory S. Rohrer. Orienta- tion and phase relationships between titania films and polycrystalline BaTiO3 substrates as determined by electron backscatter diffraction mapping. Journal of the American Ceramic Society, 93(9):2530–2533, 2010. doi:10.1111/j.1551-2916.2010.03878.x.

    [29] F. Calle-Vallejo, J. I. Martinez, J. M. Garcia-Lastra, M. Mo- gensen, and J. Rossmeisl. Trends in stability of perovskite oxides. Angewandte Chemie-International Edition, 49(42):7699–7701, 2010. doi:10.1002/anie.201002301.

    [30] CAMd. Atomic simulation environment.

    [31] G. Catalan, R. M. Bowman, and J. M. Gregg. Transport properties of NdNiO3 thin films made by pulsed-laser deposition. Journal of Applied Physics, 87(1):606–608, 2000.

    [32] S. A. Chambers. Epitaxial growth and properties of doped transition metal and complex oxide films. Advanced Materials, 22(2):219–248, 2010. doi:10.1002/adma.200901867.

    [33] K.-C. Chang, B. Ingram, K. R. Balasubramaniam, B. Yildiz, D. Hen- nessy, P. A. Salvador, N. Leyarovska, and H. You. In situ synchrotron x-ray studies of dense thin-film strontium-doped lanthanum mangan- ite solid oxide fuel cell cathodes. Mat. Res. Soc. Symp. Proc, 1126: 1126–S08–10, 2009.

    [34] R. Chao, J. R. Kitchin, K. Gerdes, and P. A. Salvador. Preparation of mesoporous La0.8Sr0.2MnO3 infiltrated coatings in porous cathodes using evaporation-induced self-assembly methods. ECS Transactions, 35(1):2387–2399, 2011. doi:10.1149/1.3570235.

    [35] X. Chen, S. Wang, Y. L. Yang, L. Smith, N. J. Wu, B. I. Kim, S. S. Perry, A. J. Jacobson, and A. Ignatiev. Electrical conductivity relax- ation studies of an epitaxial La0.5Sr0.5CoO3-δ thin film. Solid State Ionics, 146(3-4):405–413, 2002. doi:10.1016/s0167-2738(01)01031-1.

    4

    http://dx.doi.org/10.1021/cm1018025 http://dx.doi.org/10.1111/j.1551-2916.2010.03878.x http://dx.doi.org/10.1002/anie.201002301 http://dx.doi.org/10.1002/adma.200901867 http://dx.doi.org/10.1149/1.3570235 http://dx.doi.org/10.1016/s0167-2738(01)01031-1

  • [36] Z. W. Chen, C. M. L. Wu, C. H. Shek, J. K. L. Lai, Z. Jiao, and M. H. Wu. Pulsed laser ablation for tin dioxide: Nucleation, growth, and microstructures. Critical Reviews in Solid State and Materials Sciences, 33(3-4):197–209, 2008. doi:10.1080/10408430802415006.

    [37] YongMan Choi, M. C. Lin, and Meilin Liu. Computational study on the catalytic mechanism of oxygen reduction on La0.5Sr0.5MnO3 in solid oxide fuel cells. Angewandte Chemie International Edition, 46(38): 7214–7219, 2007. doi:10.1002/anie.200700411.

    [38] YongMan Choi, David S. Mebane, M. C. Lin, and Meilin Liu. Oxygen reduction on LaMnO3-based cathode materials in solid ox- ide fuel cells. Chemistry of Materials, 19(7):1690–1699, 2007. doi:10.1021/cm062616e.

    [39] Steeve Chrétien and Horia Metiu. Density functional study of the CO oxidation on a doped rutile TiO2(110): Effect of ionic Au in catalysis. Catalysis Letters, 107(3):143–147, 2006. doi:10.1021/ja053695i.

    [40] D. B. Chrisey and G. K. Hubler. Pulsed Laser Deposition of Thin Films. Wiley, 1994.

    [41] F. Conchon, A. Boulle, C. Girardot, S. Pignard, R. Guinebretiere, E. Dooryhee, J. L. Hodeau, F. Weiss, J. Kreisel, and J. F. Be- rar. Epitaxial stabilization of SmNiO3 films on (001) SrTiO3 sub- strates. Jo