Reflecting Parabolic Solar Collectors

Embed Size (px)

Citation preview

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    1/27

    SOCRATES PROGRAMME

    A EUROPEAN SUMMER SCHOOL

    AN INTENSIVE COURSE ON

    ICT Tools on PV - Systems Engineering: Teaching & Learning

    3 1 !"ly# $%%

    Technological E'"cational Instit"te o( Patra

    )esign# Sim"lation an' Per(ormance o( *e(lecting Para+olic Solar

    Collector

    GEORGE BARAKOS

    Department of Mechanical Engineering

    Technological Educational Institute of PatraGR!""# GREE$E

    %ara&os'teipat(gr

    Intro'"ction:

    In this lecture a stud) of mini para%olic collectors s)stems is presented( The mini

    Para%olic $ollector S)stems *P($(S(+ are designed as to %e integrated on the roofs of a

    residential %uildings or in a larger scale on the roofs of %igger %uildings, *offices,

    store houses, green farm houses+( The common approach to locate collector-s arra)s

    on roofs is to slope them at appro.imatel) the optimum solar collector angle(

    Then a detailed parametric anal)sis of the constructed para%olic trough/concentrating

    collectors *P(T($(+ %) using a simulation method de0eloped is made( The simulation

    procedure re0eals the indi0idual contri%utions of %oth direct and diffuse components

    of the solar radiation to the flu. reaching the c)lindrical a%sor%er of the P(T($(

    In addition, one ma) stud) the effects of 0arious optical and thermal parameters of

    the collector-s performance(

    Collectors ,eometric Elements:

    In this section an anal)sis of the geometrical characteristics of the mini para%olic solar

    collectors is made(

    The data of the mini para%olic s)stem *fig(1+ used for our stud) are pro0ided( 2et us

    suppose that the length, l1$.%mm#is %ig enough to a0oid end effects, as the image

    from the end of the trough is formed %e)ond the end of the recei0er 314(

    The length or aperture sy$ , and the height hof the para%ola are gi0en as data input

    according to the designer(

    5rom the e6uation of the para%ola one ma) o%tain the focus length ((

    /0y(

    $

    =

    1

    mailto:[email protected]:[email protected]
  • 8/12/2019 Reflecting Parabolic Solar Collectors

    2/27

    2et the c)lindrical a%sor%er tu%e ha0e diameter '7ere some definitions a%out linear

    concentrating s)stems or para%olic trough concentrating s)stems ma) %e gi0en 3, ",

    #4(

    Fig.1:Characteristics of the parabola

    2ert"reis the opening through 8hich the solar radiation enters( 22$ys

    Concentrator or otical system is the part of the collector that directs

    radiation onto the recei0er(

    2rea concentration ratio C or geometric concentration ratioCis the ratio

    of the area of aperture to the area of the recei0er(

    4l"5 concentration ratiois defined as the ratio of the a0erage energ) flu. on

    the recei0er to that on the aperture(

    2ccetance angle $67is the angular range o0er 8hich all or almost all ra)s

    are accepted 8ithout mo0ing all or part of the collector( The half acceptance

    angle for the para%olic trough collector is gi0en at the position y%) the

    formulae9

    =$y

    ($

    y1($

    'sin

    *1+

    This means that a ra) hits the a%sor%er if the angle of incidence is y (

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    3/27

    y Is the angle at 8hich the ra)s reach the recei0er tu%e tangentiall)(

    y 9 Increases 8ith )(

    5or Syy the a%o0e formulae gi0es , the largest angle for 8hich allincident ra)s are accepted( This acceptance, half : angle of the para%olic trough, can

    %e 8ritten in terms of rim angle * and concentration ratio C

    C

    sinsin * = *+*im angle 8*( This angle is related to aperture and focal length (%)

    ($

    y

    (0

    y$

    $tan ss* = or

    1y(1& y(tan $s s* *"+

    The linear concentrating s)stems to %e used in this stud) 8ill %e fi.ed, integrated

    on the roof, oriented to 9on Trac;

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    4/27

    Fig.2a, b:Head and base parabola.

    Fig. 2c, d:CNC machine where our base and head parabola constructed

    Those para%olas *%ase and head+ are constructed from common aluminum foil of

    mm thic&ness(

    The %ase para%ola using cutting tool 8ith radius *must ha0e9

    Aperture 9 bb= 2ys + 2Sf/ sin 2!/sin *#+

    7eight 9 hb= h + Sf " ! *@+

    5ocal distance 9 fb = #bb/2$2/ 4hb *!+

    The head para%ola must ha0e9

    Aperture 9 bh= 2ys + 2Sf/ sin *;+

    7eight 9 hh= h + ! *+

    5ocal distance 9 fh = #bh/2$2/ 4hh *+

    #

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    5/27

    The sinus =is due to the fact that the tangent to the para%ola on the upper e.treme A

    of the aperture, see fig( comes from9

    ($

    y

    (0

    y$

    'y

    '/tan

    s

    22 =

    =

    = *1?+

    The e6uation of the para%ola in a >?# y# /+ s)stem is9

    y2= 4 f % *11+

    The aluminum reflecting para%ola foil for e0er) channel of the P($(S( 8ill ha0e a

    mean length e6ual to9

    m

    $

    m

    $

    mm

    m

    $

    m$

    m

    $

    mm +

    h1&+h0ln

    h

    +h1&+

    $

    1L

    *11+

    8here,

    (m

    (sm

    S$

    1hh

    sin

    Sy$+

    *1+

    5or the o0erall dimensions of the para%olic trough collector see figure "a and "%(

    @

    Fig.&a: The parabolic trough collector of

    single aperture 100mm.

    Fig.&b: The parabolic trough collector of single

    aperture 160mm.

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    6/27

    )etermination o( Solar *a'iation Parameters concerning Para+olic Collectors:

    The determination of the solar radiation intense *direct, diffuse and glo%al+, can %e

    done e.perimentall), using p)ranometers, or theoreticall), using prediction methods(

    Solar 0ectors9

    In a specific instant time, fig( # sho8s the position of the sun in the O*.,),5# y@plane is the hori

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    7/27

    Fig.':Suns and collectors position on !"1#$1#%1& coordinate s$stem

    The sun-s unit 0ector as it is gi0en %) *1"+ in the O *., ), i@n>n 111 *1@+The components of the solar unit 0ector in the coordinate s)stem *. 1,)1,@n> ss1s5s 1 sinsinesincosesincoscosecossincos@An>@n> ss1sys 1

    *1!+

    cossinsincoscos@;n>@n> s1s/s 1

    ;

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    8/27

    Chere 1i , 1A and 1k are the unit 0ectors of the a.is .1, )1,

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    9/27

    decrease is slightl) non/linear( The non/linearit) is due to the fact that the 0alue of the

    o0erall loss coefficient increases slightl) as (iT increases(

    An increase in the mass flo8 rate of the thermic fluid, has as a result an increase to

    the heat transfer coefficient c(h and due to this the collector efficienc) factor 4 ,and the collector heat remo0al factor *4 and the efficienc) increases(

    An increase in the concentration ratio C#%) decreasing the si

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    10/27

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    11/27

    The alge%raic e6uation of the c)lindrical a%sor%er section is9

    $$

    1

    $

    1 */y = *#+Chere *is the a%sor%er radius

    The program ta&es under consideration the direct and the diffuse component of solar

    radiation(

    5inall), it summariC C1C1C1 on

    the c)linder( At position $11 .. = 8e ha0e a circular section *fig(;+(

    11

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    12/27

    Fig.): (eam directl$ impinging the absorber

    Parameters sn and i' are not necessaril) located in the plane )1, or

    11 ;sinAcos* if %y C1cos@n>@*n>cos 1/s1yssi' if %y C1>or

    @sin>@n>@cos>@n>@*n>cos1/s1yssi'

    if %y C1 '1 of theaperture is9

    1'/

    '1

    1'y

    11

    1'5

    1

    n

    //

    n

    yy

    n

    %5 == *"+The program chec&s initiall) if the random diffuse ra) presented %) the a%o0e

    e6uation hits the a%sor%er directl)( Then it determines the point and angle of

    incidence on the a%sor%er( If the diffuse solar e6uation line intersects the para%ola the

    program chec&s the reflected diffuse ra)s that hit the a%sor%er(

    The diffuse radiation directl) impinging the a%sor%er and the diffuse radiation

    incident on the a%sor%er after reflection on the para%olas surface is in0estigated in the

    follo8ing section(

    )i(("se ra'iation 'irectly iminging the a+sor+er:

    Sol0ing the s)stem of the c)linder e6uation *"+ and the diffuse irradiation e6uation

    line *"+ 8e chec& if the solar line intersects the c)linders surface at a point

    @/#y#5>C''' C1C1C1' on the c)linder( At position 'C11 55= 8e ha0e the circular

    section of fig( 11

    *"+

    1

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    19/27

    Fig.11:*sotropic diffuse impinging the absorber directl$.

    The 6uantities of the diffuse solar radiation unit 0ector @n> ' and the incident angle

    i'' are not necessaril) located in the plane 11 y#/ (

    8e ha0eC'1

    C'1

    y

    /tan =

    11 ;sinAcos* if %y C'1 >11 ;sinAcos* if %y C'1 <

    sin@n>cos@n>@*n>cos11 /'y''i''

    if %y C'1 >or

    @sin>@n>@cos>@n>@*n>cos11 /'y''i''

    if %y C'1 E''' E1E1E1' 8e

    consider the para%ola of fig(1 in the position'E1

    5 (

    Fig.12:Schematic representation of the diffuse insolation.

    The e6uation of the tangent tt to the para%ola at the point @/#y#5>E'1' E1'EE1' on

    a plane 11 /#y at the a%scissa 'E15 is9

    @yy>m//'N E11E11

    Chere ($

    y

    (0

    (0y

    'y

    '

    'y

    '/

    tanm '

    '

    E1$$

    1

    E1

    1 =

    =

    = Then, the e6uation of the tangent at point 'E is9

    ($/y($

    y+my/

    'E11

    E1

    11

    The normal to the tangent at point 'E is9

    ($/y

    y

    ($+y

    m

    1/

    '

    '

    E11

    E1

    11

    The unit 0ector of the normal to the para%ola at point 'E is9

    ?

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    21/27

    113 ;cosAsinn Chere($

    yarctan '

    E1

    5or the reflection la89 ri (So, cosnsinnnncoscos

    11 /'y''ri

    The unit 0ector of the reflected ra) in the case of isotropic diffuse radiation is 3149

    r'''' ncos$nnnn$nr

    In this case, the reflected unit 0ector components are9

    coscos$nr

    sincos$nr

    nr

    r/s'/

    rys'y

    5s'5

    11

    11

    11

    The e6uation of the reflected solar radiation-s unit 0ector line from point 'E no8 is9

    '/

    E'11

    'y

    E'11

    '5

    E'11

    111r

    //

    r

    yy

    r

    55== *#1+

    =o8, to determine the point 8here this line intersects the c)linder, 8e must sol0e the

    s)stem of e6uations *"+ and *#1+( Ce ta&e into account onl) one reflectionN this is

    true for the trough para%olic concentrator(

    If the reflected line intersects the c)linder at point @/#y#5>C'''

    C1C1C1 then 8e ha0e,

    as in su%chapter @("(19

    '

    '

    C1

    C1

    y

    /tan = ,

    11 ;sinicos* sinrcosr*rcos '/'y'ir' 11 , if %y 'C1

    or

    sinrcosr*rcos '/'y'ir' 11 , if %y 'C1 aert"retheoninci'entrateenergytotal

    @'irectan''i(("se>a+sor+e'rateenergytotalo=

    That is,

    2*I*I

    PPPP

    ''o++o

    ;

    1i

    'r'a+r+'

    o == *#+

    Or

    T

    ''o

    o'

    T

    ++o

    o+o

    I

    *I

    I

    *I *@?+

    Notice: s far concerning the trough parabolic with a trac/ing s$stem with

    reflectiit$ r and absorptiit$ -of the absorber for the direct beam radiation the

    optical efficienc$ o3+ is appro"imatel$ aro+ we can chec/ this with theprogram results onl$ at noon

    Instantaneo"s thermal collector e((iciency:

    #

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    25/27

    The simulation code estimates the instantaneous thermal efficienc) using t8o

    different paths( The first one is 0ia e6uation *1+(

    Ta

    "

    I2

    = Chere, ground reflected radiation is neglected and useful heat gain rate is9

    (i(o" TTCm 3C4 *@1+m 9 5luid mass flo8 rate 3&gHsec4C9 Specific heat capacit) of the fluid 3H &gK4

    (i(o T#T 9 5luid outlet and inlet temperatures respecti0el)

    The second path for the estimation of the instantaneous thermal efficienc) can %e

    descri%ed %) the e6uations *+

    T

    acL

    oI

    @TT>G #

    T

    a(iL

    a

    C

    o*I

    TTG

    2

    24

    Long term er(ormance:

    In order to ha0e the option to calculate the collectors- long / term performance 8e

    constructed a fluid tan&(

    The fluidflo8 rate mass m in the a%sor%er tu%e is e0er) time selected to ta&e @# literof fluid per hour and mof aperture surface

    Fig. 14:Tan/ used on our e"periment

    1%%%3&%%

    2.0m tot

    a= 3m"Hs4 *@+

    Chere chsa nly$2 tot And chn is the num%er of para%olas channels(

    The 0olume of the tan& *fig( 1#+ is e6ual to the 0olume of the fluid that comes thro8

    the collector in an hour 8ith the a%o0e flo8 rate(

    @

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    26/27

    3&%%mV 3m"4 *@"+

    To e.ecute the soft8are, 8e supposed Tsi T(i Tc Tathen 8ith iteration after the

    calculation of4*and GL8e ta&e(

    Lc

    "ac

    acG2

    I2TT

    , i(

    3

    "

    (o TCm

    T

    *@#+

    And

    (i

    3

    "

    ( TCm$

    T

    The program calculate the tan&-s useful energ) rate

    @FTT>GIH2O4 asiLac*"s

    Ce assume

    4* %D 4*

    5or a time period of an hour and for unit a%sor%er surface 8e ha0e9

    @TT>@mc>2

    3&%%(is(S

    c

    "s *@@+

    And then

    si

    sc

    "ss( T

    @C.0>2

    3&%%T = *@!+

    *e(erences:

    1( Duffie, ( A( and C( A Bec&man, Solar Energ) Thermal ProcessesF, ohn

    Cile) and sons, =e8 or& *11+(

    ( Ra%l, A, Acti0e solar collectors and their applicationsF(O.ford ni0ersit)

    Press, =e8 or&, *1@+

    "( Kreith, 5 and ( 5( Kreider, principles of solar EngineeringF, Mc Gra8 : 7ill,

    =e8 or& *1;

    !

  • 8/12/2019 Reflecting Parabolic Solar Collectors

    27/27

    #( Suhas P( Su&hatme, Solar Energ)F Tata Mc Gra8 : 7ill, =e8 Delhi *1!+

    (R(

    @( Sir 7( C( Masse) and 7( Kestelman, QAncillar) Mathematics-, Sir Isaac

    Pitman Son, 2ondon *1!#+(

    !( Grant R( 5o8les and G(2($assida) Anal)tical MechanicsF Saunders Golden

    Sun%urst Series, Orlando *1"

    ;( D( E( Prapas, Optics of Para%olic :Trough Solar Energ) $ollectors

    Possessing Small $oncentrating RatiosF, Solar Energ), 0", =o ! *1;+(

    ( S( =( Kaplanis The Monte $arlo MethodF , Thessaloni&i, *1;+, *in Gree&+