1
Renewable Energy Research Center 2. Excellent rearsurface passivation (How to?) 1. Passivated Emitter Rear Cell (PERC) 5. Results and discussion (Effect of PDA on surface passivation and PERC cell performance) Development of high efficiency PERC cell Supawan Joonwichien, Yasuhiro Kida, Masaaki Moriya, Katsuhiko Shirasawa, Hidetaka Takato 産業技術総合研究所 再生可能エネルギー研究センター 太陽光チーム PERC Standard solar cell Surface passivation technology 1. Atomic layer deposition or ALD (Inhouse) 2. Reactive sputtering (SCREEN Company) AlO x SiN x Surface passivation technology 1. PECVD (Inhouse) PERC technology The concept of advanced siliconbased solar cells with a dielectric passivation layer at the rear of the cell is one of the most promising structures for changing the conventional cell into a moreefficient passivated emitter rear contact (PERC) cell. The presence of a passivation layer at the rear of the cell permits low surfacerecombination velocities, a steadier flow of electrons, and an improved performance. Consequently, excellent rearsurface passivation is essential, and is one of the most important issues in improving the efficiency of PERC structures. Influence of annealing on the Q f and D it at temp. of 400C. [1] Postdeposition annealing (PDA) is essential to activate the chemical and fieldeffect passivation mechanisms of Al 2 O 3 on the Si surface. 3. PERC cell processing Texturing Emitter formation Edge isolation PSG removal Rear AlO x deposition 2 sides SiN x deposition Rear Laser ablation KOH/HF treatment Rear Al print Front Ag print Firing Thermal annealing N 2 ambient Objective To clarify the effects of PDA on surface passivation of ALD Al 2 O 3 films for Sibased PERC solar cells. A possible mechanism underlying the effect of thermal annealing on electrical activity is discussed, particularly in terms of fieldeffect passivation based on the flatband voltage shift, an understanding of which is necessary to achieve further improvements in PERC technology. CZSi (156 mm × 156 mm × 200 μm), 2.3 to 2.9 Ω∙cm AlO x passivation technologies ALD (20 nm) Deposition temperature: 200C Postdeposition annealing (PDA) temperature 450C, 650 C PECVDSiN x films deposition temp. at 450 C Reflective index = 2.1 190 nm thick at rear, 80 nm thick at front Thermal treatment conditions Under N 2 ambient 450C for 30 min 4. Experimental details 7. Rooms for improvement 8. Summary We investigated the effects of PDA on the performance of PERC cells in order to improve the quality of surface passivation. It is found that PERC cell performance is improved after introducing to PDA under dry N 2 annealing, accorded to the full activation of fieldeffect passivation, resulting in a lower surface recombination velocity, which can be realized with increased J sc and V oc values. It is assumed that the more negatively charged traps originating from the steam are created in the ALDAl 2 O 3 films giving rise to an upward more in band bending. These results suggest that consideration of thermal annealing process is crucial for improving the quality of passivation stacks at rear side and is then high performance of PERC cell. PDA condition: 450C, 30 min, under N 2 ambient PDA process improves surface passivation, as indicated by Jsc as well Voc values. FF value increased upon PDA applied, indicating that series resistance is improved. A suitable firing temperature is about 800C, and cell performance decreases as increasing firing temperatures. A PDA for 30 min at 450 C under N2 was required to obtain a high level of surface passivation for ALDAl2O3 films, owing to local reconstruction of the Al2O3, and the consequent increase in the density of negative fixed charges (Qf) at the interface [2, 3]. Ideal schematic illustrations of the surface band diagrams of ptype silicon with (a) PDA, and (b) without PDA. [2] [1] Dingemans G, and Kessels WMM. J. Vac. Sci. Technol. A 2012; 30: 040802. [2] Joonwichien S. et al., Energy Procedia (2016).To be published [3] Hoex B. et al., Appl. Phys. Lett. 2006; 89: 042112. A possible mechanism: thermal annealing under certain conditions is crucial for full activation of fieldeffect passivation; this is directly related to the formation of a negative fixed charges, which can assist in repelling electrons in the conduction band (ptype). When accompanied by a strong holeaccumulation layer at the valence band, a reduction in the surfacerecombination velocity can occur. 6. Possible mechanism J sc (A/cm 2 ) V oc

Renewable Energy Research Center Development …€deposition annealing (PDA) temperature 450C,650C PECVD‐SiNx films deposition temp. at 450 C Reflective index = 2.1 190 nm thick

  • Upload
    phamanh

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Renewable Energy Research Center Development …€deposition annealing (PDA) temperature 450C,650C PECVD‐SiNx films deposition temp. at 450 C Reflective index = 2.1 190 nm thick

Renewable Energy Research Center

2. Excellent rear‐surface passivation (How to?)1. Passivated Emitter Rear Cell (PERC)

5. Results and discussion (Effect of PDA on surface passivation and PERC cell performance)

Development of high efficiency PERC cell

Supawan Joonwichien, Yasuhiro Kida, Masaaki Moriya, Katsuhiko Shirasawa, Hidetaka Takato産業技術総合研究所 再生可能エネルギー研究センター 太陽光チーム

PERCStandard solar cellSurface passivation technology1. Atomic layer deposition or ALD (In‐house)2. Reactive sputtering (SCREEN Company)

AlOx

SiNx

Surface passivation technology1. PECVD (In‐house)

PERC technologyThe concept of advanced silicon‐based solar cells with a dielectric passivation layer atthe rear of the cell is one of the most promising structures for changing theconventional cell into a more‐efficient passivated emitter rear contact (PERC) cell. Thepresence of a passivation layer at the rear of the cell permits low surface‐recombination velocities, a steadier flow of electrons, and an improved performance.Consequently, excellent rear‐surface passivation is essential, and is one of the mostimportant issues in improving the efficiency of PERC structures.

Influence of annealing on the Qfand Dit at temp. of 400C. [1]

Post‐deposition annealing (PDA) isessential to activate the chemical andfield‐effect passivation mechanisms ofAl2O3 on the Si surface.

3. PERC cell processing

Texturing

Emitter formation

Edge isolation

PSG removal

Rear AlOx deposition

2 sides SiNx deposition

Rear Laser ablation

KOH/HF treatment

Rear Al print

Front Ag print

Firing

Thermal annealingN2 ambient

ObjectiveTo clarify the effects of PDA on surface passivation ofALD Al2O3 films for Si‐based PERC solar cells. A possiblemechanism underlying the effect of thermal annealingon electrical activity is discussed, particularly in terms offield‐effect passivation based on the flat‐band voltageshift, an understanding of which is necessary to achievefurther improvements in PERC technology.

CZ‐Si (156 mm × 156 mm × 200 μm), 2.3 to 2.9 Ω∙cm AlOx passivation technologies 

ALD (20 nm) Deposition temperature: 200C

Post‐deposition annealing (PDA) temperature 450C, 650 C

PECVD‐SiNx films deposition temp. at 450 C Reflective index = 2.1 190 nm thick at rear, 80 nm thick at front

Thermal treatment conditions Under N2 ambient 450C for 30 min

4. Experimental details

7. Rooms for improvement

8. Summary

We investigated the effects of PDA on the performance of PERC cells in order to improve the quality of surface passivation. It is found that PERC cell performance is improved after introducing to PDA under dry N2 annealing, accorded to the full activation of field‐

effect passivation, resulting in a lower surface recombination velocity, which can be realized with increased Jsc and Voc values. It is assumed that the more negatively charged traps originating from the steam are created in the ALD‐Al2O3 films giving rise to an upward

more in band bending. These results suggest that consideration of thermal annealing process is crucial for improving the quality of passivation stacks at rear side

and is then high performance of PERC cell.

PDA condition: 450C, 30 min, under N2 ambient

PDA process improves surface passivation, as indicated by Jsc as well Voc values. FF value increased upon PDA applied, indicating that series resistance is improved. A suitable firing temperature is about 800C, and cell performance decreases as increasing firing temperatures. A PDA for 30 min at 450 C under N2 was required to obtain a high level of surface passivation for ALD‐Al2O3 films, owing to local 

reconstruction of the Al2O3, and the consequent increase in the density of negative fixed charges (Qf) at the interface [2, 3]. 

Ideal schematic illustrations of the surface band diagramsof p‐type silicon with (a) PDA, and (b) without PDA. [2]

[1] Dingemans G, and KesselsWMM. J. Vac. Sci. Technol. A 2012; 30: 040802.

[2] Joonwichien S. et al., Energy Procedia (2016).To be published

[3] Hoex B. et al., Appl. Phys. Lett. 2006; 89: 042112.

A possible mechanism: thermal annealing under certainconditions is crucial for full activation of field‐effect passivation;this is directly related to the formation of a negative fixed charges,which can assist in repelling electrons in the conduction band (p‐type). When accompanied by a strong hole‐accumulation layer atthe valence band, a reduction in the surface‐recombinationvelocity can occur.

6. Possible mechanism

J sc (

A/cm

2 )

V oc