25
© Salvador Acevedo, 2000 EECE 458/571 Three-phase systems 1 Resistor Inductor Capacitor Passive Elements and Phasor Diagrams I V I V I V v Ri = V=RI R i + v - v L di dt = V = jwL I i + v - L i C dv dt = I = jwC V C i + v - v i v i v i

Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems1

Resistor

Inductor

Capacitor

Passive Elements and Phasor Diagrams

I V

IV

I

V

v Ri=V = R I

Ri

+ v -

v Ldi

dt=

V = jwL I

i

+ v -

L

i Cdv

dt=

I = jwC V

Ci

+ v -

v

i

v i

vi

Page 2: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems2

+V2-

+V1-

I1 I2

Z

V2 V1

I1

I2

Assuming a RL loadconnected to secondaryand ideal source to primary

Ideal Transformer

av

v

i

i

a

= = =

= = =

1

2

2

1

N1

N2V1

V2

I2

I1

N1

N2

i1 i2+v1-

+v2-

N1:N2

Transformer feeding load:

V2 = V1/a

I2 = V2/Z

I1= I2/a

Page 3: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems3

Two Winding Transformer Model

à The linear equivalent model of a real transformer consists of an ideal transformer and some passive elements

i1 i2

+

v1

-

+

v2

-N1:N2

Page 4: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems4

AC Generators and Motors

à AC synchronous generator« Single-phase equivalent

à AC synchronous motor« Single-phase equivalent

à AC induction motor (rarely used as generator)

Page 5: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems5

Steady-state Solution

In sinusoidal steady-state a circuit may be solved using phasorsR

jwL+

VS-

I

V S = R I + j w L I

V S = ( R + j w L ) I

V S = ( R + j X ) I

V S = Z I

I = V S

Z

IV

I I

m a x

m a x

=∠

= ∠ −

0

Z θ

θ

VS

I

θ

F r o m r e c t a n g u l a r f o r m t o p o l a r f o r m :

I = I x + I y M a g n i t u d e

A n g l e o r p h a s e

F r o m p o l a r f o r m t o r e c t a n g u l a r f o r m :

I x I c o s R e a l p a r t

I y I s i n R e a c t i v e o r i m a g i n a r y p a r t

2 2

θ

θθ

=

==

−t a n 1 I y

I x

θ

vs

i

0 π 2π

Iy=I sinθ

Ix=I cosθ

θ

I

Rectangular form Polar form

I = Ix + j Iy = Imax ∠ θ

Page 6: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems6

Single-phase Power Definitions

v(t) = Vm sin(wt+θv)volts

i(t) = Im sin (wt+θi) amps

+

-

Load: any R,L,Ccombination

w=2πfw: angular frequency in rad/sec

f: frequency in Hz

[ ][ ]

I n s t a n t a n e o u s p o w e r

V I

1

2V I

A v e r a g e P o w e r ( o r R E A L P O W E R )

P1

2V I V I

A p p a r e n t P o w e r

S = V I

P o w e r F a c t o r

p fR E A L P O W E R

A P P A R E N T P O W E R

F o r t h i s c i r c u i t , t h e p o w e r f a c t o r i s

p f =V I c o s

V I

m m

m m

m m r m s r m s

r m s r m s

r m s r m s

r m s r m s

p t v t i t w t w t

p t w t

Tp t d t

P

S

v i

v i v i

T

( ) ( ) ( ) s i n s i n ( )

( ) c o s ( ) c o s ( )

( ) c o s c o s

c o s

= = + +

= − − + +

= = =

= =

=

θ θ

θ θ θ θ

θ θ

θθ

2

1

0

Page 7: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems7

Power Triangle

Ssin θ=Q

S

P=Scosθ

θ

Real Power P = S cos θ = V I cos θ watts

Reactive Power Q = S sin θ = V I sin θ vars

[ ][ ]

C o m p l e x P o w e r

S = S P + j Q

S = V I c o s + j V I s i n

I f = -

a n d a s s u m i n g a r e f e r e n c e = 0

t h e n = -

t h e r e f o r e

S = V I c o s ( - ) + j I s i n ( - )

S = V I c o s ( ) - j I s i n ( )

S V I *

T h e m a g n i t u d e

i s c a l l e d A p p a r e n t P o w e r :

S = V I v o l t - a m p e r e s ( V A )

v i

v

i

i i

i i

∠ =

=

θ

θ θ

θ θ θθ

θ θ

θ θ

θ θ

Page 8: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems8

Z =1

j w C= - j X X 9 0

P V I c o s ( - 9 0 = 0 w a t t s

Q = V I s i n ( - 9 0 = - V I = - I X = - V / X

Co

o

o 2L

2L

C

s

= ∠ −

= )

) v a r

Purely Capacitive Load

A capacitor absorbs negative Q. It supplies Q.

Power Consumption by Passive Elements

Impedance: Z = R + jX = Z ∠θ Ω

Z = R = R 0

P = V I c o s 0 = V I = I R = V / R w a t t s

Q = V I s i n 0 = 0 v a r s

o

o 2 2

o

Resistive Load

A resistor absorbs P

Z = j w L = j X X 9 0

P V I c o s ( 9 0 = 0 w a t t s

Q = V I s i n ( 9 0 = V I = I X = V / X

L Lo

o

o 2L

2L

= ∠

= )

) v a r s

Purely Inductive Load

An inductor absorbs Q

Page 9: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems9

à Creation of the three-phase induction motor

à Efficient transmission of electric powerð 3 times the power than a single-phase circuit by

adding an extra cable

à Savings in magnetic core when constructingð Transformers

ð Generators

Advantages of Three-phase Systems

Three-phaseinduction motor

Single-phaseinduction motor

Starting torque yes noneeds auxiliarystarting circuitry

Steady state torque Constant Oscillating causingvibration

Single-phaseLoad

+v-

i

Three-phaseLoad

va

vb

vc

ia

ib

ic

p = vi p = va ia + vb ib + vc ic

Page 10: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems10

Three-phase Voltages

va vb vc

va(t) = Vm sin wt volts

vb(t) = Vm sin (wt - 2π/3) = Vm sin (wt - 120°) volts

vc(t) = Vm sin (wt - 4π/3) = Vm sin (wt - 240°) voltsor

vb(t) = Vm sin (wt + 2π/3) = Vm sin (wt + 120°) volts

w = 2 π f w: angular frequency in rad/sec f : frequency in Hertz

Va

Vb

Vc

120°

120°120°

Page 11: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems11

Star Connection (Y)

à Y-connected Voltage Source

a

bc

n

+Van

-

Vbn

Vcn+

-

+

-

Line - to - neutral voltages Van, Vbn, Vcn.

(phase voltages for Y - connection)

same magnitude: V

V Van Vbn Vcn

Line - to - line voltages Vab, Vbc, Vca

same magnitude: V

Vab = Van - Vbn

V = 3 V

P

P

LL

LL P

= = =

Page 12: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems12

Delta Connection (∆∆ )

à ∆-connected Voltage Source

a

b

c

+Vab

-

Vbc

Vca

+

-

+

-

Line - to - line voltages Vab, Vbc, Vca.

(phase voltages for - connection)

same magnitude: V V

Phase currents Iab, Ibc, Ica.

same magnitude: I

Line currents Ia, Ib, Ic.

same magnitude: I

I = 3 I

LL P

P

L

L P

∆=

Page 13: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems13

Y-connected Load

a

bc

n

+Van

-

Vbn

Vcn+

-

+

-

ia

Ia

ia

Ib

ia

Ic

Za

ZbZcn'

Balanced case: Za = Zb = Zc = Z

Ia + Ib + Ic = 0

Ib = Ia -120

Ic = Ia - 240

∠ °∠ °

Page 14: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems14

∆∆-connected Load

a

bc

n

+Van

-

Vbn

Vcn+

-

+

-

ia

Ia

ia

Ib

ia

Ic

Zbc

ZabZca

Page 15: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems15

Y-∆∆ Equivalence

Za

ZbZcn'

Zbc

ZabZca

Balanced case:

Za = Zb = Zc = Zy

Z = 3Zy

Zab = Zbc = Zca = Z = 3Zy

Page 16: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems16

Power in Three-phase Circuits

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

Three-phase voltages and currents:

The three-phase instantaneous power is:

v V wt i I wt

v V wt i I wt

v V wt i I wt

p t p v i v i v i

p V Iwt wt wt wt

wt

a m v a m i

b m v b m v

c m v c m i

a a b b c c

m m

v i v v

= + = +

= + − ° = + − °

= + − ° = + − °

= = + +

=+ + + + − ° + − °

+ +

sin sin

sin sin

sin sin

( )

sin sin sin sin

sin

θ θ

θ θ

θ θ

θ θ θ θ

θ

φ

φ

120 120

240 240

120 120

3

3 ( ) ( )

( )

v i

m m v i

P P

Pm

Pm

v i

wt

p V I

P p

P V I

VV

II

− ° + − °

= −

=

=

= = = −

240 240

3

2 2

332

3 3

3

sin

cos

cos

θ

θ θ

θ

θ θ θ

φ

φ φ

φ

This expression can easily be reduced to:

Since the instantaneous power does not change with the time,

its average value equals its intantaneous value:

where:

Page 17: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems17

Three-phase Power

In a Y-connection

In a -connection

Regardless of the connection (for balanced systems),

the average power (real power) is :

Similarly, reactive power and apparent power expressions are:

Q vars3

V V I I

P V IV

I V I

V V I I

P V I VI

V I

P V I watts

V I

LL P L P

P PLL

L LL L

LL P L P

P P LLL

LL L

LL L

LL L

= =

= =

=

= =

= =

=

=

=

3

3 33

3

3

3 33

3

3

3

3

3

3

φ

φ

φ

φ

θ θ θ

θ θ θ

θ

θ

cos cos cos

cos cos cos

cos

sin

S3φ = 3V I VALL L

Page 18: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems18

àPower lines operate at kilovolts (KV)

and kilowatts (KW) or megawatts (MW)

To represent a voltage as a percent of a reference value, we first define this BASE VALUE.

Example:

Base voltage: Vbase = 120 KV

** The percent value and the per unit value help the analyzer visualize how close the operating conditions are to their nominal values.

Per unit modelling

Circuit voltage Percent ofbase value

Per unit value

108 KV 90% 0.9

120 KV 100% 1.0

126 KV 105% 1.05

60 KV 50% 0.5

per unit quantity = actual quantitybase quantity

Voltage_1=108120

= 0 9. . .p u

Page 19: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems19

Defining bases

4 quantities are needed to model a network in per unit system:

V: voltage VBASE

I: current IBASE

S: power SBASE

Z: impedance ZBASE

Given two bases, the other two quantities are easily determined.

VV

VI

I

I

SS

SZ

Z

Z

p ua c t u a l

b a s ep u

a c t u a l

b a s e

p ua c t u a l

b a s ep u

a c t u a l

b a s e

= =

= =

( )

I f b a s e v o l t a g e a n d b a s e p o w e r a r e k n o w n :

V K V , S M V A

t h e n , b a s e c u r r e n t a n d b a s e i m p e d a n c e a r e :

I =S

VI A .

Z =V

IZ

A n o t h e r w a y t o e x p r e s s b a s e i m p e d a n c e i s :

Z =V

I

V

S

V

V

S

R e a l p o w e r b a s e a n d r e a c t i v e p o w e r b a s e a r e :

P = S = 1 0 0 M W

Q = S = 1 0 0 M V A R

b a s e b a s e

b a s eb a s e

b a s eb a s e

b a s eb a s e

b a s eb a s e

b a s eb a s e

b a s e

b a s e

b a s e

b a s e

b a s e

b a s e

b a s e b a s e

b a s e b a s e

= =

= =

= =

=

=

1 0 0 1 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 01 0 0 0

1 0 0 0 0 0

1 0 0 01 0 0

2

, ,

,

Page 20: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems20

Three phase bases

In three-phase systems it is common to have data for the three-phase power and the line-to-line voltage.

( )

S

T h e b a s e c u r r e n t a n d i m p e d a n c e

f o r t h e t h r e e - p h a s e c a s e a r e :

I n p e r u n i t ,

l i n e - t o - n e u t r a l v o l t a g e = l i n e - t o - l i n e v o l t a g e

V = V

w h y ?

b a s e - 3

L N ( p u ) L L ( p u )

Φ Φ

Φ

Φ

Φ Φ

=

=

=

=

=

=

− −

3

3

3

33

3

3

1

3

3

3

2

3

S

V V

I

S

VS

V

Z

V

S

V

S

b a s e

b a s e L L b a s e L N

b a s e

b a s e

b a s e L L

b a s e

b a s e L L

b a s e

b a s e L L

b a s e

b a s e L L

b a s e

With p.u. calculations, three-phase values of voltage, current and power can be used without undue anxiety about the result being a factor of √3 incorrect !!!

With p.u. calculations, three-phase values of voltage, current and power can be used without undue anxiety about the result being a factor of √3 incorrect !!!

Page 21: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems21

Example

The following data apply to a three-phase case:

Sbase=300 MVA (three-phase power)

Vbase=100 KV (line-to-line voltage)

+V=1 p.u.-

Single-phase equivalent:

I=1.125 p.u.

Using the per unit method:

P =270

300 p.u.

V =1.0 p.u.

P = V I pf

then

I =P

V pf

This current is 12.5% higher than its base value!

To check: 1.125xIbase = (1.125)300,000

3 100 x 1732 A.

=

= =

= =

09

09

10 081125

1125 19485

.

.

( . )( . ). . .

. .

p u

Normally, we'd say:

P = 3 V I cos = 3 V I pf

I =P

3 V pf

270x10

3 (100x101948.5 A.

L L L L

L

6

3

θ

= =) ( . )0 8

Three-phase load270 MW100 KVpf=0.8

abc

Page 22: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems22

Transformers in per unit calculations

à With an ideal transformer

2400 V. 4.33 + j 2.5 ohms

2400:120 V5 KVA

+V1-

+V2-

High Voltage Bases Low Voltage BasesSbase1 = 5 KVA Sbase2 = 5KVAVbase1= 2400 V Vbase2 = 120 VIbase1 = 5000/2400=2.083 A I base2 = 5000/120=41.667 AZbase1= 2400/2.083=1152 Ω Z base2 = 120/41.667=2.88 Ω

+1.0-

+1.0-

From the circuit: V1=2400 V.V2=V1/a=V1/20=120 V.

In per unit: V1=1.0 p.u.V2=1.0 p.u.

The load in per unit is: Z=(5∠ 30°)/Zbase2 =1.7361 ∠ 30° p.u.

The current in the circuit is: I=(1.0 ∠0°)/ (1.7361 ∠ 30°) =0.576 ∠-30° p.u.

The current in amperes is:Primary: I1=0.576 x Ibase1= 1.2 A.Secondary: I2=0.576 x Ibase2= 24 A.

Page 23: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems23

One line diagrams

à A one line diagram is a simplified representation of a multiphase-phase circuit.

GENERATOR

TRANSFORMERTRANSFORMER

GENERATOR

Transmission line

Transmission line

Transmission line

LOAD

Page 24: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems24

Nodal Analysis

Suppose the following diagram represents the single-phase equivalent of a three-phase system

V1= 1 p.u.

z1=j1 p.u.

z13=j2 p.u.

z12=j0.5 p.u. z23=j0.5 p.u.

z2=10 p.u.

z3=j2 p.u.

V3= -j1 p.u.

I1= -j1 p.u.

y1=-j1 p.u.

y13=-j0.5 p.u.

y12=-j2 p.u. y23=-j2 p.u.

y2=0.1 p.u. y3=-j0.5 p.u.

I3= -0.5 p.u.

1 2 3

Finding Norton equivalents and representing impedances as admittances:

I1=y1 V1 + y12(V1-V2) + y13(V1-V3)0 = y12 (V2-V1) + y2 V2 + y23(V2-V3)I3=y13(V3-V1) + y23(V3-V2) + y3 V3

In matrix form:

y + y + y - y - y

- y y + y + y - y

- y - y y + y + y

V1

V2

V3

I1

0

I3

V1

V2

V3

- j1

0

- 0.5

1 12 13 12 13

12 12 2 23 23

13 23 13 23 3

=

−−

=

j j j

j j j

j j j

3 5 2 0 5

2 0 1 4 2

0 5 2 3

. .

.

.

solving

V1

V2

V3

=∠ − °∠ − °∠ − °

0 77 24

0 73 35

0 71 44

.

.

.

. .p u

Page 25: Resistor i v = Ri + v - V = R I v i I Vsacevedo/eece458/threeph.pdf · VS-I VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = VS Z I V I I max max = ∠ ∠ = ∠−

© Salvador Acevedo, 2000

EECE 458/571Three-phase systems25

General form of the nodal analysis

The system of equations is repeated here to find a general solution technique:

y +y +y -y -y

-y y +y +y -y

-y -y y +y +y

V1

V2

V3

I1

0

I3

or

Y Y Y

Y Y Y

Y Y Y

V1

V2

V3

J1

J2

J3

In general:

1 12 13 12 13

12 12 2 23 23

13 23 13 23 3

11 12 13

21 22 23

31 32 33

=

=

Y = y

Y =-y

J = I

ii ijj=1

N

ij ij

i i (from current sources flowing into the node)

=

= = ≠

=

i N

i N j N i j

i N

12

12 12

12

, ...

, ... ; , ... ;

, ...

Once the voltages are found, currents and powers are easily evaluated from the circuit. We have solved one of the phases of the three-phase system (e.g. phase ‘a’). Quantities for the other two phases are shifted 120 and 240 degrees under balanced conditions.

Actual quantities can be found by multiplying the per unit values by their corresponding bases.