Review Ch8

Embed Size (px)

Citation preview

  • 8/11/2019 Review Ch8

    1/22

    (1) Method of separation of variables (MSV)

    (2) Solution of wave equation (Two versions)

    (b) dAlembertsmethod

    1

    ( , ) sin cosnn

    n ny x t A x c t

    L L

    0

    2( )sin

    L

    n

    nA f x x dxL L

    where

    (a)By MSV

    1

    ( , ) ( ) ( )2

    y x t f x ct f x ct

    (3) Solution of Heat equation

    22

    1( , ) sin

    nc t

    L

    nn

    n

    u x t A x eL

    0

    2( )sin

    L

    n

    nA f x x dx

    L L

    where

    Review Chapter 8

  • 8/11/2019 Review Ch8

    2/22

    Example

    solve 0x yu xu SolutionLet ( , ) ( ) ( )u x y X x Y y

    Then ' '( ) ( ) ( ) ( ) 0X x Y y xX x Y y Hence

    ' '1 ( ) ( )

    ( ) ( )

    X x Y y

    x X x Y y holds for any x and y

    Use method of S V to

    2

  • 8/11/2019 Review Ch8

    3/22

    Therefore

    '' '

    00

    ( )1 ( ) ( )

    ( ) ( ) ( )

    Y yX x Y y

    x X x Y y Y y for any fixed 0y

    Thus' '

    1 ( ) ( ) constant( ) ( )

    X x Y y kx X x Y y

    holds for any x and y

    So 'X kxX 'Y kY

    for any fixed k

    3

  • 8/11/2019 Review Ch8

    4/22

    Solve the above two 1storder ODE, get

    2 /2( ) kxX x Ae ( ) kyY y Be

    Hence

    ( , ) ( ) ( )u x y X x Y y2 2/2 /2kx ky kx ky

    ABe e Ce e

    4

  • 8/11/2019 Review Ch8

    5/22

    8.2 Wave Equation

    Elastic string of length L

    tightly stretched

    The string is set in motion.

    It vibrates in vertical plane.

    Animation slide

    5

    fixed at the end points

  • 8/11/2019 Review Ch8

    6/22

    We have2 ( , ) ( , )xx ttc y x t y x t

    where 0 , 0x L t

    with boundary conditions:

    (0, ) 0, ( , ) 0, for all 0y t y L t t

    with initial conditions:

    ( ,0) ( ), ( ,0) 0, where 0ty x f x y x x L

    Initial position Initial velocity

    6

    Proof omitted

  • 8/11/2019 Review Ch8

    7/22

    1

    ( , ) sin cosnn

    n ny x t A x c t

    L L

    0

    2( )sin

    L

    n

    nA f x x dx

    L L

    Solution of wave equation

    7

  • 8/11/2019 Review Ch8

    8/22

    Example 1

    2 ( , ) ( , )xx ttc y x t y x t 0 , 0x t

    (0, ) 0, ( , ) 0, for all 0y t y t t

    ( ,0) , ( ,0) 0, where 0ty x x y x x

    Solve the following wave equation

    with boundary conditions:

    with initial conditions:

    8

  • 8/11/2019 Review Ch8

    9/22

    0

    2sinnA x nx dx

    sin() sin() cos() Use formula

    2 sin 2sin() cos()

    2cos()

    = - (1)= (1)+

    9

    Solution

  • 8/11/2019 Review Ch8

    10/22

    (, ) 21+sin cos

    =

    is the solution of wave equation

    with boundary conditions:

    and initial conditions:

    2 ( , ) ( , )xx ttc y x t y x t 0 , 0x t

    (0, ) 0, ( , ) 0, for all 0y t y t t

    ( ,0) , ( ,0) 0, where 0ty x x y x x 10

  • 8/11/2019 Review Ch8

    11/22

    Example 2

    2 ( , ) ( , )xx ttc y x t y x t 0 , 0x t

    (0, ) 0, ( , ) 0, for all 0y t y t t

    ( ,0) sin(10 ), ( ,0) 0, where 0ty x x y x x

    Solve the following wave equation

    with boundary conditions:

    with initial conditions:

    Solution

    1

    ( , ) sin cosnn

    y x t A nx nct

    11

  • 8/11/2019 Review Ch8

    12/22

    02 sin(10 )sin

    1

    sin(10 )sin( )

    nA x nx dx

    x nx dx

    where

    Hence 10 1, 0, if 10nA A n

    Or we can get the above result

    by comparing the coefficients

    See next slide

    odd odd

    12

  • 8/11/2019 Review Ch8

    13/22

    1

    sin(10 ) sinnn

    x A nx

    1

    ( ) sinnn

    f x A nx

    10 1, 0, if 10nA A n

    Hence

    ( , ) sin 10 cos 10y x t x ct

    So

    13

  • 8/11/2019 Review Ch8

    14/22

    2

    ( , ) ( , )xx ttc y x t y x t 0 , 0x L t

    (0, ) 0, ( , ) 0, for all 0y t y L t t

    ( ,0) ( ), ( ,0) 0, where 0ty x f x y x x L

    with boundary conditions:

    with initial conditions:

    dAlembertssolution of the wave equation

    Then solution (given by dAlembert) is

    1

    ( , ) ( ) ( )2

    y x t f x ct f x ct

    14

  • 8/11/2019 Review Ch8

    15/22

    Revisit Example 2

    2 ( , ) ( , )xx ttc y x t y x t 0 , 0x t

    (0, ) 0, ( , ) 0, for all 0y t y t t

    ( ,0) sin(10 ), ( ,0) 0, where 0ty x x y x x

    Solve the following wave equation

    bydAlembertssolution

    with boundary conditions:

    with initial conditions:

    15

  • 8/11/2019 Review Ch8

    16/22

    16

    The solution (given by dAlembert) is

    1

    ( , ) ( ) ( )

    2

    y x t f x ct f x ct

    In this Example 2 ,

    ( ) sin(10 )f x x

    Hence 1( , ) sin 10( ) sin 10( )2

    y x t x ct x ct

    L

    ( , ) sin 10 cos 10y x t x ct

    Recall by MSV, the solution is

    1

    sinA cosB sin(A ) sin(A )2

    B B

    These two solutions are equivalent which can be proved by the following formula

  • 8/11/2019 Review Ch8

    17/22

    8.3 Heat Equation

    Heat-conducting rod with length L0 L

    ( , )u x t represents temperature at point x,

    at time t

    Let2

    c be thermal diffusivity

    We have2( , ) ( , )t xxu x t c u x t where 0 , 0x L t

    17

    Proof omitted

  • 8/11/2019 Review Ch8

    18/22

    with boundary conditions:

    (0, ) 0, ( , ) 0, for any 0u t u L t t

    0 0Temperatures are always ZERO at both end points

    with initial condition:

    ( ,0) ( ), where 0u x f x x L

    Initial distribution of temperature given by f(x)

    18

  • 8/11/2019 Review Ch8

    19/22

    0

    2

    ( )sin

    L

    n

    n

    A f x x dxL L

    22

    1

    ( , ) sin

    nc t

    L

    n

    n

    nu x t A x e

    L

    Solution of Heat equation

    19

  • 8/11/2019 Review Ch8

    20/22

    Suppose ( ) 2 1, 0f x x x L

    20

    Example 1

    0

    0 0

    2(2 1)sin

    4 2sin sin

    L

    n

    L L

    nA x x dx

    L L

    n nx x dx x dx

    L L L L

    22

    1( , ) sin

    nc t

    L

    nn

    n

    u x t A x eL

  • 8/11/2019 Review Ch8

    21/22

    sin() sin() cos() Use the following formulae we can find

    sin() 1 cos cos ( 1)

    n

    n

    21

  • 8/11/2019 Review Ch8

    22/22

    22

    Example 2

    Suppose

    3,

    () sin(10)

    0

    2( )sin

    L

    n

    nA f x x dx

    L L

    1

    ( ) sinnn

    nf x A x

    L

    Now findWe shall compare coeff.

    sin(10) sin 3= Note that if

    10 3

    then 30So