31
Scanning Electron Microscope ادر ق ل د ا ب ع ر م ع د.

Scanning Electron Microscope د. عمر عبد القادر

  • View
    276

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Scanning Electron Microscope د. عمر عبد القادر

Scanning Electron Microscope

القادر. عبد عمر د

Page 2: Scanning Electron Microscope د. عمر عبد القادر

القادر. عبد عمر د

Page 3: Scanning Electron Microscope د. عمر عبد القادر

The basic premise of an SEM is that signal produced from a scanned area of the specimen is displayed as an image with the exact same scan pattern on a CRT

القادر. عبد عمر د

Page 4: Scanning Electron Microscope د. عمر عبد القادر

The scan pattern on the specimen is created by a set of deflection coils in the column that move the beam in a coordinated X/Y pattern. This is referred to as a scan or “raster” pattern

القادر. عبد عمر د

Page 5: Scanning Electron Microscope د. عمر عبد القادر

Cathode Ray Tube accelerates electrons towards the phosphor coated screen where they produce flashes of light upon hitting the phosphor. Deflection coils create a scan pattern forming an image in a point by point manner

القادر. عبد عمر د

Page 6: Scanning Electron Microscope د. عمر عبد القادر

Color CRTs usually have three separate e-guns, one each for red, green, and blue (RGB)

القادر. عبد عمر د

Page 7: Scanning Electron Microscope د. عمر عبد القادر

القادر. عبد عمر د

Page 8: Scanning Electron Microscope د. عمر عبد القادر

The scan generator coordinates the movement of the primary beam with the movement of the e-gun in the back of the CRT

القادر. عبد عمر د

Page 9: Scanning Electron Microscope د. عمر عبد القادر

Magnification is accomplished by scanning a progressively smaller portion of the specimen and displaying the image on the CRT. Thus total magnification is square area of CRT divided by area scanned.

القادر. عبد عمر د

Page 10: Scanning Electron Microscope د. عمر عبد القادر

In contrast focus is accomplished by bringing the beam to its crossover point on the surface of the specimen. In this way focus and magnification are completely separate from one another in the SEM.

القادر. عبد عمر د

Page 11: Scanning Electron Microscope د. عمر عبد القادر

In the TEM the specimen lies very close to the objective lens resulting in a relatively large half angle of illumination. In SEM since the image is not formed by an objective lens the half angle can be very small resulting in a large depth of field.

القادر. عبد عمر د

Page 12: Scanning Electron Microscope د. عمر عبد القادر

10X

An SEM focused at high magnification will still be in focus at low magnification

القادر. عبد عمر د

Page 13: Scanning Electron Microscope د. عمر عبد القادر

110X

القادر. عبد عمر د

Page 14: Scanning Electron Microscope د. عمر عبد القادر

200X

القادر. عبد عمر د

Page 15: Scanning Electron Microscope د. عمر عبد القادر

400X

القادر. عبد عمر د

Page 16: Scanning Electron Microscope د. عمر عبد القادر

4K

القادر. عبد عمر د

Page 17: Scanning Electron Microscope د. عمر عبد القادر

16K

القادر. عبد عمر د

Page 18: Scanning Electron Microscope د. عمر عبد القادر

45K .القادر عبد عمر د

Page 19: Scanning Electron Microscope د. عمر عبد القادر

Strong Lens:Small probe size, high resolution, short working distance and shallow depth of field

Weak Lens:Larger probe size, low resolution, long working distance, and larger depth of field .القادر عبد عمر د

Page 20: Scanning Electron Microscope د. عمر عبد القادر

A smaller final lens aperture can reduce the half angle and therefore increase the depth of field. This is true on a relatively strong lens which has a fairly short working distance and therefore high resolution.

القادر. عبد عمر د

Page 21: Scanning Electron Microscope د. عمر عبد القادر

The SEM forms an image by generating a number of signals as a result of the beam interacting with the specimen.

القادر. عبد عمر د

Page 22: Scanning Electron Microscope د. عمر عبد القادر

The SEM is a probe forming (e- beam) and signal detecting device. By developing an image created in a point by point fashion an important factor is the signal to noise (S/N) ratio. The signal being the result of the beam interacting with the specimen and the noise being the result of imperfections in the electronics of the detector and display systems as well as spurious signal.

القادر. عبد عمر د

Page 23: Scanning Electron Microscope د. عمر عبد القادر

Signal can be increased by:Creating more beam specimen interactions

Noise can be reduced by:Cooling electronicsKeeping detectors settings to a minimum

Signal/noise ratio can be increased by:Placing detector closer to source of signalSlowing down the scan (collect more signal per unit time)

القادر. عبد عمر د

Page 24: Scanning Electron Microscope د. عمر عبد القادر

Although the same amount of signal is produced throughout the specimen the topography of the surface will allow differing amounts of signal to reach a detector placed off to the side.

القادر. عبد عمر د

Page 25: Scanning Electron Microscope د. عمر عبد القادر

A number of different detectors can be incorporated into the chamber surrounding the specimen.

القادر. عبد عمر د

Page 26: Scanning Electron Microscope د. عمر عبد القادر

The shadow produced in an SEM is determined by the position of the detector but the view is a “beam’s eye” view as ifcolumn

one were looking down theالقادر. عبد عمر د

Page 27: Scanning Electron Microscope د. عمر عبد القادر

LEO Gemini Column

A detector placed within the column is known as

an “in-lens” detector and produces a very different image compared to a conventionally located detector القادر. عبد عمر د

Page 28: Scanning Electron Microscope د. عمر عبد القادر

Secondary Electron Detector

Side Mounted In-Lens

القادر. عبد عمر د

Page 29: Scanning Electron Microscope د. عمر عبد القادر

Secondary Electron Detector

Side Mounted In-Lens

Page 30: Scanning Electron Microscope د. عمر عبد القادر

MIRA SEM

القادر. عبد عمر د

Page 31: Scanning Electron Microscope د. عمر عبد القادر

MIRA SEM

القادر. عبد عمر د