17
Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian families with keratoconus Justyna A. Karolak, 1 Karolina Kulinska, 1,2 Dorota M. Nowak, 1 Jose A. Pitarque, 3 Andrea Molinari, 3 Malgorzata Rydzanicz, 1 Bassem A. Bejjani, 4 Marzena Gajecka 1,2 1 Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland; 2 Basic Medical Sciences Program, WWAMI (Washington, Wyoming, Alaska, Montana, and Idaho), Washington State University, Spokane, WA; 3 Department of Ophthalmology, Hospital Metropolitano, Quito, Ecuador; 4 Signature Genomics, Spokane, WA Purpose: Keratoconus (KTCN) is a non-inflammatory, usually bilateral disorder of the eye which results in the conical shape and the progressive thinning of the cornea. Several studies have suggested that genetic factors play a role in the etiology of the disease. Several loci were previously described as possible candidate regions for familial KTCN; however, no causative mutations in any genes have been identified for any of these loci. The purpose of this study was to evaluate role of the collagen genes collagen type IV, alpha-1 (COL4A1) and collagen type IV, alpha-2 (COL4A2) in KTCN in Ecuadorian families. Methods: COL4A1 and COL4A2 in 15 Ecuadorian KTCN families were examined with polymerase chain reaction amplification, and direct sequencing of all exons, promoter and intron-exon junctions was performed. Results: Screening of COL4A1 and COL4A2 revealed numerous alterations in coding and non-coding regions of both genes. We detected three missense substitutions in COL4A1: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro), and c. 4002A>C (Gln1334His). Five non-synonymous variants were identified in COL4A2: c.574G>T (Val192Phe), c.1550G>A (Arg517Lys), c.2048G>C (Gly683Ala), c.2102A>G (Lys701Arg), and c.2152C>T (Pro718Ser). None of the identified sequence variants completely segregated with the affected phenotype. The Gln1334His variant was possibly damaging to protein function and structure. Conclusions: This is the first mutation screening of COL4A1 and COL4A2 genes in families with KTCN and linkage to a locus close to these genes. Analysis of COL4A1 and COL4A2 revealed no mutations indicating that other genes are involved in KTCN causation in Ecuadorian families. Keratoconus (KTCN, OMIM 148300) is a non- inflammatory, usually bilateral disorder of the eye, characterized by progressive thinning and protrusion of the central cornea which results in altered refractive powers and loss of visual acuity [1]. The prevalence of the disease is estimated to be 1 in 2,000 individuals, and is the most common ectatic disorder of the cornea [1]. KTCN afflicts males and females in all ethnic groups [1]. Signs and symptoms depend on the stage of disease, with the first signs usually appearing in the third decade of life [1,2]. The cause of KTCN is still unknown; both genetic and environmental factors seem to play a role in its etiology. Although most cases of KTCN are isolated, an association with many syndromes, such as Down syndrome [3], Ehlers-Danlos syndrome [4], and Leber congenital amaurosis [5] has been described. Furthermore, extensive studies have shown an association between KTCN and constant eye rubbing [6], contact lens wear [7], or atopy [8]. Usually, KTCN is a sporadic disorder, but positive family history has been observed in 6%–8% of cases [1]. An Correspondence to: Marzena Gajecka, Ph.D., Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan, 60-479, Poland; Phone: (061) 657-9160; FAX: (061) 823-3235; email: [email protected] autosomal dominant inheritance pattern with reduced penetrance has been suggested in 90% of patients with familial KTCN [9,10]. Genomewide linkage analyses have indicated several loci involved in the etiology of familial KTCN at 16q22.3-q23.1 (KTCN2; OMIM 608932), 3p14-q13 (KTCN3; OMIM 608586), 2p24 (KTCN4; OMIM 609271), 1p36.23–36.21, 5q14.3-q21.1, 5q21.2, 5q32-q33, 8q13.1-q21.11, 9q34, 14q11.2, 14q24.3, 15q2.32, 15q22.33-q24.2, 17p13, and 20q12 [10-20]. However, no mutations in any genes at any of these loci have been associated with KTCN. We have demonstrated an evidence of linkage to a novel locus at 13q32 [21]. Collagen type IV, alpha-1 (COL4A1; OMIM 120130) and collagen type IV, alpha-2 (COL4A2; OMIM 120090) are mapped in close proximity to that locus. The COL4A1 and COL4A2 genes are organized in a head-to- head conformation [22]. These gene pairs share a common promoter, and each gene is transcribed in opposite directions [23]. The COL4A1 gene is placed on the minus strand and consists of 52 exons, while the COL4A2 gene is on the opposite strand and consists of 48 exons. They encode two of six collagen type IV chains – α1 and α2 (1,669 and 1,712 amino acids, respectively) – forming a heterotrimeric protein molecule of collagen type IV (α1α1α2), which is found in the Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> Received 2 February 2011 | Accepted 22 March 2011 | Published 30 March 2011 © 2011 Molecular Vision 827

Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

Sequence variants in COL4A1 and COL4A2 genes in Ecuadorianfamilies with keratoconus

Justyna A. Karolak,1 Karolina Kulinska,1,2 Dorota M. Nowak,1 Jose A. Pitarque,3 Andrea Molinari,3Malgorzata Rydzanicz,1 Bassem A. Bejjani,4 Marzena Gajecka1,2

1Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland; 2Basic Medical Sciences Program, WWAMI(Washington, Wyoming, Alaska, Montana, and Idaho), Washington State University, Spokane, WA; 3Department of Ophthalmology,Hospital Metropolitano, Quito, Ecuador; 4Signature Genomics, Spokane, WA

Purpose: Keratoconus (KTCN) is a non-inflammatory, usually bilateral disorder of the eye which results in the conicalshape and the progressive thinning of the cornea. Several studies have suggested that genetic factors play a role in theetiology of the disease. Several loci were previously described as possible candidate regions for familial KTCN; however,no causative mutations in any genes have been identified for any of these loci. The purpose of this study was to evaluaterole of the collagen genes collagen type IV, alpha-1 (COL4A1) and collagen type IV, alpha-2 (COL4A2) in KTCN inEcuadorian families.Methods: COL4A1 and COL4A2 in 15 Ecuadorian KTCN families were examined with polymerase chain reactionamplification, and direct sequencing of all exons, promoter and intron-exon junctions was performed.Results: Screening of COL4A1 and COL4A2 revealed numerous alterations in coding and non-coding regions of bothgenes. We detected three missense substitutions in COL4A1: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro), and c.4002A>C (Gln1334His). Five non-synonymous variants were identified in COL4A2: c.574G>T (Val192Phe), c.1550G>A(Arg517Lys), c.2048G>C (Gly683Ala), c.2102A>G (Lys701Arg), and c.2152C>T (Pro718Ser). None of the identifiedsequence variants completely segregated with the affected phenotype. The Gln1334His variant was possibly damaging toprotein function and structure.Conclusions: This is the first mutation screening of COL4A1 and COL4A2 genes in families with KTCN and linkage toa locus close to these genes. Analysis of COL4A1 and COL4A2 revealed no mutations indicating that other genes areinvolved in KTCN causation in Ecuadorian families.

Keratoconus (KTCN, OMIM 148300) is a non-inflammatory, usually bilateral disorder of the eye,characterized by progressive thinning and protrusion of thecentral cornea which results in altered refractive powers andloss of visual acuity [1]. The prevalence of the disease isestimated to be 1 in 2,000 individuals, and is the most commonectatic disorder of the cornea [1]. KTCN afflicts males andfemales in all ethnic groups [1]. Signs and symptoms dependon the stage of disease, with the first signs usually appearingin the third decade of life [1,2]. The cause of KTCN is stillunknown; both genetic and environmental factors seem toplay a role in its etiology. Although most cases of KTCN areisolated, an association with many syndromes, such as Downsyndrome [3], Ehlers-Danlos syndrome [4], and Lebercongenital amaurosis [5] has been described. Furthermore,extensive studies have shown an association between KTCNand constant eye rubbing [6], contact lens wear [7], or atopy[8]. Usually, KTCN is a sporadic disorder, but positive familyhistory has been observed in 6%–8% of cases [1]. An

Correspondence to: Marzena Gajecka, Ph.D., Institute of HumanGenetics, Polish Academy of Sciences, Strzeszynska 32, Poznan,60-479, Poland; Phone: (061) 657-9160; FAX: (061) 823-3235;email: [email protected]

autosomal dominant inheritance pattern with reducedpenetrance has been suggested in 90% of patients with familialKTCN [9,10].

Genomewide linkage analyses have indicated several lociinvolved in the etiology of familial KTCN at 16q22.3-q23.1(KTCN2; OMIM 608932), 3p14-q13 (KTCN3; OMIM608586), 2p24 (KTCN4; OMIM 609271), 1p36.23–36.21,5q14.3-q21.1, 5q21.2, 5q32-q33, 8q13.1-q21.11, 9q34,14q11.2, 14q24.3, 15q2.32, 15q22.33-q24.2, 17p13, and20q12 [10-20]. However, no mutations in any genes at any ofthese loci have been associated with KTCN.

We have demonstrated an evidence of linkage to a novellocus at 13q32 [21]. Collagen type IV, alpha-1 (COL4A1;OMIM 120130) and collagen type IV, alpha-2 (COL4A2;OMIM 120090) are mapped in close proximity to that locus.The COL4A1 and COL4A2 genes are organized in a head-to-head conformation [22]. These gene pairs share a commonpromoter, and each gene is transcribed in opposite directions[23]. The COL4A1 gene is placed on the minus strand andconsists of 52 exons, while the COL4A2 gene is on theopposite strand and consists of 48 exons. They encode two ofsix collagen type IV chains – α1 and α2 (1,669 and 1,712amino acids, respectively) – forming a heterotrimeric proteinmolecule of collagen type IV (α1α1α2), which is found in the

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94>Received 2 February 2011 | Accepted 22 March 2011 | Published 30 March 2011

© 2011 Molecular Vision

827

Page 2: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

structure of the basement membrane (BM) [22,23]. Eachchain contains three domains: an NH2-terminal 7S domain, amajor collagenous domain with Gly-X-Y repeats (the Xposition is frequently occupied by proline, whereas the Yposition is often occupied by 4-hydroxyproline) and a non-collagenous domain (NC1) at the COOH-terminus.Repetitions of the Gly-X-Y motif determine the formation ofthe triple-helical structure of collagen [22].

Collagens are the major protein components of the humancornea, and several types of collagen, including collagen typeIV, have been identified [24]. Biochemical studies haverevealed thinning of corneas from patients with KTCN, whichmay occur as a result of a reduced amount of total collagenproteins [25] and changes in collagen fibers orientation [26].Moreover, a cornea affected by KTCN contains defects in BMand alterations in the BM composition [27]. The presence ofcollagen type IV in normal human cornea has remainedunclear [28]. Results from expression arrays have shown anexpression of COL4A1 in transplant-quality human donorcorneas [29] and a downregulation of COL4A1 in keratoconuscorneas [30]. Immunohistochemical studies have foundcollagen type IV α1/α2 chains in keratoconus corneas in largedefect sites [28]. In light of these results, we recognizeCOL4A1 and COL4A2 as candidate genes for KTCN.

The purpose of this study was to screen COL4A1 andCOL4A2 genes and determine whether sequence variants inthese genes are involved in the causation of KTCNin Ecuadorian families.

METHODSSubjects: Twenty-three individuals from family KTCN-014,25 affected individuals from other Ecuadorian families withKTCN, and 64 Ecuadorian control subjects were included inthe study. The pedigrees of these families have been describedelsewhere [21]. All individuals were examined in the HospitalMetropolitano in Quito, Ecuador, undergoing a completeophthalmic evaluation as previously described [21]. Thepossible consequences of the study were explained andinformed consent was obtained from all family members,according to the Declaration of Helsinki. Study protocol wasapproved by both the Institutional Review Board atWashington State University Spokane, Spokane, WA andPoznan University of Medical Sciences (Poland).Sequencing analyses: Oligonucleotide primers were designedto amplify all coding sequences and intron-exon junctions,promoter, and UTRs of both COL4A1 and COL4A2 (Table 1).PCR amplifications were performed using Taq DNAPolymerase (Fermentas Inc., Glen Burnie, MD). PCRproducts were purified with ExoSAP-IT® (USB Corporation,Cleveland, OH) or Montage® PCR Filter Units (Millipore,Jaffrey, NH) and sequenced using the BigDye® Terminatorv3.1 Cycle Sequencing Kit (Applied Biosystems, Inc. [ABI],Foster City, CA). Sequencing was visualized on an ABI

PRISM® 3100 Genetic Analyzer (ABI) and a 3730xl DNAAnalyzer (ABI). The DNA sequences of study subjects werecompared with the reference sequences of COL4A1 andCOL4A2 (GRCh37/hg19, GenBank accession numbers forthe mRNA NM_001845.4 and NM_001846.2, respectively)using Sequencher® 4.1.4. Software (Gene CodesCorporation, Ann Arbor, MI).Haplotype analysis: PEDSTATS [31] was used to verify thestructure of KTCN-014 family and identify potentialMendelian inconsistencies in the inheritance of singlenucleotide polymorphisms (SNPs) in COL4A1 and COL4A2.For that region, to determine the full haplotypes inheritedalong with the substitutions occurring in affected individuals,a reconstruction of observed sequence variants was preparedusing SimWalk2 [32,33]. Allele frequencies were set as equal.The location of genetic markers was determined on the basisof the Rutgers combined linkage-physical map of the humangenome [34], either directly or by interpolation. Haplotypewas generated with HaploPainter [35].Statistical analysis for Gln1334His substitution: Thedifference in distribution of Gln1334His substitution betweenaffected and unaffected individuals in family KTCN-014 wasanalyzed by Fisher's Exact Test for Count Data. Similarly, 25affected individuals from the remaining KTCN familiesversus 64 Ecuadorian control individuals were comparedusing Fisher's Exact Test. The difference between theexamined groups was considered significant if the value ofprobability (p) did not exceed 0.05.Prediction of effect of amino acid substitutions on proteinfunction: The potential impact of amino acid substitutions onthe COL4A1 and COL4A2 proteins was examined usingPolyPhen, SIFT, PMUT, PANTHER, and SNAP tools.

The PolyPhen tool predicts which missense substitutionaffects the structure and function of protein, and uses Position-Specific Independent Counts software to assign profile scores.These scores are the likelihood of the occurrence of a givenamino acid at a specific position, compared to the likelihoodof this amino acid occurring at any position (backgroundfrequency) [36].

The SIFT analytic tool, on the basis of gene sequenceshomology, evaluates conserved positions, and calculates ascore for the amino acid change at a particular position. Ascore of <0.05 is considered as pathogenic and has aphenotypic effect on protein structure [37].

The PMUT calculates the pathological significance ofnon-synonymous amino acid substitution using neuralnetworks (NN). NN output >0.5 is considered to be deleterious[38]. PANTHER estimates the likelihood of a particularamino acid’s change affecting protein function. On the basisof an alignment of evolutionarily related proteins, it generatesthe substitution Position-Specific Evolutionary Conservation(subPSEC). The subPSEC could achieve values from 0(neutral) to about −10 (most likely to be deleterious). The

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

828

Page 3: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 1

. PR

IMER

SEQ

UEN

CES

AN

D A

NN

EALI

NG

TEM

PER

ATU

RE

USE

D T

O P

CR

AM

PLIF

ICA

TIO

NS O

F CO

L4A1

AN

D C

OL4

A2 FR

AG

MEN

TS.

Nam

eFo

rwar

dR

ever

seA

nnea

ling

Tem

pera

ture

(°C

)A

mpl

icon

Size

(bp)

CO

L4A

1.1

CA

CC

CTC

CC

CC

TTTC

TAC

TCG

CC

CA

GA

GA

ATG

CA

CC

TG59

837

CO

L4A

1.2

TTG

GG

CTG

AG

TAA

CA

CTT

GG

GC

CTG

GTT

TGG

CTT

CA

TTTG

5845

9C

OL4

A1.

3–4

GG

GC

AA

CA

GA

ATG

AG

AC

TCC

TGTG

AG

CTG

GG

AG

AG

GA

GA

T66

477

CO

L4A

1.5–

6TG

CTC

TGTC

TGC

TTTG

TGTG

AC

AA

GC

TGTG

CTA

CTG

GG

TA60

698

CO

L4A

1.7–

8C

CA

AC

AA

ATG

AA

GG

GTA

GG

GTG

TGC

CA

AG

TGTC

TGA

AC

G58

578

CO

L4A

1.9–

10C

CTT

TGC

TTTG

CC

GTC

TCTA

TCA

TCA

TCC

CTT

TCC

CA

CA

G60

691

CO

L4A

1.11

GG

AG

ATG

GA

TTG

GTA

TTG

GT

GA

CTA

AG

GG

ATG

GA

TGA

AA

G58

451

CO

L4A

1.12

GG

GA

CA

AA

GC

TATT

GC

CTG

AG

AC

ATT

GA

TCC

AA

AG

GTG

GG

5823

9C

OL4

A1.

13G

CA

GA

GG

CA

AG

GA

TGA

TTA

GG

GG

GC

TCG

TATT

TTA

TGG

AC

5839

3C

OL4

A1.

14–1

5C

CC

TGC

CC

TGC

TTA

CA

TTG

TCC

CTA

CG

AG

CC

TTTT

CTG

6050

5C

OL4

A1.

16–1

7TT

AG

TGG

AG

AC

GG

GA

TTTC

GA

AC

TGC

CTG

CTT

GTG

TATG

C60

725

CO

L4A

1.18

GA

TGG

GA

CA

AG

TATC

TGG

GC

CA

TCTC

CTC

TCC

TTC

CTC

TC60

459

CO

L4A

1.19

GC

TAC

CA

TTG

CTG

CTA

CTT

CA

CA

ATA

GA

AA

GC

GTG

GG

GA

GA

G62

447

CO

L4A

1.20

GTC

AC

AA

CA

GG

CTT

CA

GG

AG

CC

CA

GG

AG

AG

AC

ATA

AG

GG

T60

486

CO

L4A

1.21

CA

GTG

ATG

GTC

TGG

TTG

GA

TA

TGC

CA

GG

AG

TCTC

AG

AG

GT

6053

2C

OL4

A1.

22TG

GG

TGG

TGTG

TGG

TGA

TTA

GA

GA

AG

GG

GC

AA

AA

CTC

TGA

6051

6C

OL4

A1.

23TT

CC

AC

CC

ATT

AG

CA

GA

GA

GG

CC

AA

CA

CA

CC

AA

AG

CA

A60

304

CO

L4A

1.24

GTC

CG

TCTT

GG

GC

ATT

TTA

GA

TTTG

GG

CTC

TGTG

GG

TAA

C60

431

CO

L4A

1.25

GTG

CC

CA

AA

GC

CA

CA

CTA

TATG

TTC

AG

TTC

CC

CC

AA

ATG

C60

718

CO

L4A

1.26

CC

TGG

GA

GG

GTA

GA

TGA

AG

TG

AA

AG

GG

AG

GC

AC

AA

AA

GG

6248

8C

OL4

A1.

27–2

8A

AG

TGG

AG

AA

CA

CA

GG

CA

GA

TCTT

CC

CA

AC

CA

AA

CC

CTA

C56

636

CO

L4A

1.29

AG

GTG

CTG

GA

AG

AG

AC

AG

CA

GC

TGA

GG

CTG

AG

AA

AC

CA

TC60

678

CO

L4A

1.30

GC

TTG

AA

AA

GG

GTT

GA

GC

AG

GG

CC

TCTA

AG

ATT

TGC

ATC

G64

315

CO

L4A

1.31

CA

GA

GC

CC

CTA

CC

GA

GTA

TAC

AG

TGG

GTG

GG

AG

AA

GA

ATC

6148

3C

OL4

A1.

32–3

3C

ATT

CA

AG

TTC

CC

AG

TGTG

GG

CC

TTC

TGC

TTG

ATG

TTC

CT

6065

3C

OL4

A1.

34C

TCA

TTTA

CC

TGG

GG

TTG

GA

TATG

GA

GG

AC

CC

GA

TAA

CC

C60

411

CO

L4A

1.35

–36

TGTG

CC

TTTC

CTG

GG

TTA

TCA

ATG

TCA

TCC

ATC

CC

TGA

GC

6459

4C

OL4

A1.

37G

GG

GG

ATT

CA

CG

TTC

TTG

TATC

CC

TGTG

TGTT

ATG

GC

TCA

5836

4C

OL4

A1.

38–3

9TG

GC

AG

GTA

GA

AA

CC

AG

ATG

TGA

AG

ATG

GG

AG

AC

AG

GA

CA

6164

1C

OL4

A1.

40G

AC

CTC

AG

GA

AA

AC

CA

GG

TGG

TAG

TTG

CA

GG

GA

TGTG

CA

G60

359

CO

L4A

1.41

TGG

TGG

TTC

TGA

GC

TGA

AA

GC

ATG

TGTC

TTG

CA

GG

CA

TTG

6044

7C

OL4

A1.

42TA

AA

GA

GA

AG

GA

GG

GA

TCG

GTC

TTC

AC

CA

GA

AC

CC

AC

AA

G60

673

CO

L4A

1.43

CC

TGC

CTC

GA

TTTC

TGTC

TCTA

GTG

GG

GA

TGTG

GG

AG

TGT

6043

5C

OL4

A1.

44C

CA

CA

AG

GC

AC

CA

TTTG

TTC

TAC

AA

ATT

GG

GC

TGC

CA

CA

C60

376

CO

L4A

1.45

GG

AC

CA

AA

AA

CA

GTG

CC

CTA

GA

GC

CTT

GG

GA

AG

TTTC

TGA

6079

0C

OL4

A1.

46C

CA

GA

ATG

CA

GTG

GG

AA

GTT

TTC

CTG

GG

TTTT

CTT

CTG

GA

6059

0C

OL4

A1.

47A

CA

GC

AA

GA

AA

CC

AG

GG

AG

AG

GC

TGC

CTT

TCA

AC

AA

CA

TC60

591

CO

L4A

1.48

TGA

AG

GA

GG

TAG

GC

TGC

TGT

CG

CA

GTG

TTTC

AC

TCG

CTA

C60

516

CO

L4A

1.49

TGTT

GTG

AA

AG

AC

ATT

GC

CC

GC

CC

AG

CC

AA

CTG

AC

TTTT

A60

650

CO

L4A

1.50

AA

AA

CC

AA

CG

GG

GA

GG

TAC

TTA

AG

CA

GC

GA

GA

TGC

AG

AG

A59

407

CO

L4A

1.51

GG

AA

GC

AG

CC

ATT

AG

AC

GA

TA

AA

TCG

TCTC

GG

TCA

TCTG

C60

573

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

829

Page 4: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 1

. CO

NTI

NU

ED.

Nam

eFo

rwar

dR

ever

seA

nnea

ling

Tem

pera

ture

(°C

)A

mpl

icon

Size

(bp)

CO

L4A

1.52

.1TA

CC

AG

GTT

GA

GG

CC

TGA

TGA

CC

TCC

TAG

CA

CC

CTT

TGG

T65

530

CO

L4A

1.52

.2G

AA

AA

CC

AA

AG

GG

TGC

TAG

GC

CG

AA

TGTG

CTT

AC

GTG

TGA

6579

3C

OL4

A1.

52.3

CC

TGG

CTT

GA

AA

AA

CA

GC

TCA

ATC

AC

CC

CC

AG

TCTG

TGA

C60

429

CO

L4A

2.1

TCG

TGG

GA

AA

GC

TCA

GA

TAC

AG

AC

AA

AG

CG

AG

TTTA

GC

GC

6014

54C

OL4

A2.

2G

CTT

CTG

GA

AG

GG

CC

AA

TG

GG

AA

AG

GG

AG

GA

AG

AG

AG

A60

587

CO

L4A

2.3

CC

TCA

TCC

TGC

GC

TAA

AC

TCA

CA

CTT

TCC

TGG

CC

TCTA

CG

6062

5C

OL4

A2.

4A

TTTC

AG

GG

GTG

GG

AG

AG

AC

CG

GC

CA

TCTA

GG

TTTG

TGTG

6046

7C

OL4

A2.

5–6

TTC

TTTC

ATC

CC

AA

CC

CA

GT

TCC

CC

AC

GTG

TTTT

ATG

TCA

5966

3C

OL4

A2.

7A

GA

CA

GA

AG

AA

AC

CC

CG

AC

ATC

TTG

GG

CG

TCA

AC

ATA

CA

G60

515

CO

L4A

2.8

TCA

GA

ATA

AC

CC

CC

ATC

AG

CA

AC

AG

ATC

AG

CC

CTA

TCA

GG

AC

6056

8C

OL4

A2.

9–10

AG

GTC

CTG

ATA

GG

GC

TGA

TCT

TAA

CTG

GC

AG

AG

AG

CTG

GTG

5955

1C

OL4

A2.

11G

CA

TCA

GA

AA

CC

TCC

ATG

CA

CA

TTG

GC

CTC

CC

TAC

AA

CA

5955

6C

OL4

A2.

12TC

CA

ATC

TCA

GC

TCC

CA

CTC

TGTC

CTC

AC

CTC

CA

CC

TTC

T60

548

CO

L4A

2.13

GG

AA

AC

AA

CC

CC

AC

AG

AA

AC

GG

AG

GA

CC

CG

GTT

ATG

TTTT

5952

4C

OL4

A2.

14G

TAA

AC

ATC

TGC

CTG

GA

AC

GC

TATG

GA

CA

AG

GG

GA

TGA

GA

5846

9C

OL4

A2.

15TG

TCA

CTG

CC

TGTC

CTC

AG

AC

CC

CA

GTG

CTA

GA

TGTT

CG

T61

513

CO

L4A

2.16

ATT

ATT

TCC

CA

TCC

CC

AC

CT

GC

AA

AA

ATG

AG

AG

CC

AA

GG

T59

473

CO

L4A

2.17

CC

CA

GTG

TCTT

CA

AC

AA

CC

ATG

TCA

GA

GG

CC

GTG

TATT

TG59

505

CO

L4A

2.18

AG

CA

CA

GTC

TCC

TGG

CA

TTC

CA

GG

CA

AC

ATG

AA

GG

TCTC

C60

569

CO

L4A

2.19

TTC

GA

GC

TTTG

GA

CTC

AC

CT

CTG

TGA

AG

GTG

TCC

AA

AG

CA

6052

1C

OL4

A2.

20A

CC

CA

TCG

GA

GTT

ATT

GA

CG

TAC

AG

GG

CTT

CA

GC

TTC

CA

T60

490

CO

L4A

2.21

CC

TGC

ATC

TGTG

GTT

GTC

TCA

AG

TTC

GC

CTC

CTC

ATC

AA

C59

609

CO

L4A

2.22

CC

TCTG

AA

TGTG

GTC

CC

AG

TA

AA

GTC

CG

CC

TTG

GG

GTA

T59

602

CO

L4A

2.23

–24

ATC

GC

AG

AA

AG

TGC

TCC

TTG

ATG

AG

CA

GC

CTG

TCC

TATG

C60

545

CO

L4A

2.25

TGG

CA

CTA

GG

TTC

CTG

TTC

AA

CA

GG

AG

AG

GC

TGC

ATG

TTT

5955

3C

OL4

A2.

26A

AA

CA

TGC

AG

CC

TCTC

CTG

TTT

CTG

AC

AA

GA

GG

GG

TTTG

G60

492

CO

L4A

2.27

CC

AG

AA

TGG

TAG

CC

GG

TTT

GC

AA

GA

CC

AG

TTTG

TGC

TGA

6031

8C

OL4

A2.

28TA

AG

CC

TGG

AG

GTG

CTG

TTT

CC

GA

AA

CA

CC

TGTC

TCC

TTT

5949

9C

OL4

A2.

29G

CG

AA

GG

TTG

TAG

GTT

CC

AA

TGC

CA

AG

AC

AA

AC

AG

TGA

GC

6070

8C

OL4

A2.

30G

AA

TAG

AC

AA

GG

GC

AG

GA

AG

GC

AG

AG

GA

TGA

GC

CG

ATG

TCT

6058

1C

OL4

A2.

31C

AC

AG

CC

TCA

AC

CTC

CA

GA

TC

AG

GC

AG

GA

GC

AG

TTTG

TCT

6064

3C

OL4

A2.

32TG

CTC

CTC

TGC

CTT

TGTC

TTTG

TTG

AG

GC

AG

GG

ATA

AA

GC

6065

6C

OL4

A2.

33TG

GTC

TCTC

TCC

AA

GG

CTT

CA

CC

GA

GG

TTA

CTC

AG

GC

ATC

5944

2C

OL4

A2.

34A

CA

GC

AC

GTA

GG

AC

AG

CA

AA

AC

ATC

TGC

ATG

GTG

TCC

AA

G59

470

CO

L4A

2.35

GC

TAA

GC

AA

AC

CG

CC

TATG

AA

CA

GG

AC

TTTC

CA

CTG

GG

AC

T60

416

CO

L4A

2.36

GG

GA

GTC

CA

CA

ATT

CA

GA

GC

GA

CC

CTT

CG

CTG

TTTC

TGA

G59

629

CO

L4A

2.37

CC

CA

TGC

TTC

TCTC

CA

ATT

CA

TGC

CTC

TCTC

CA

TTC

CTG

A60

446

CO

L4A

2.38

CTG

CTG

CTG

CTT

TCTG

TGTT

CC

TGTG

CTG

CTA

TGTT

GG

TG60

626

CO

L4A

2.39

GTG

CTG

TCC

CA

CA

CA

TGA

AA

AG

TCC

ATT

CA

AC

CC

AG

CA

AC

6151

0C

OL4

A2.

40A

TGG

GC

CTC

GA

TCC

TCTT

AT

AA

AC

CA

GC

TCTT

TCC

TGC

AC

6048

4C

OL4

A2.

41C

CC

AC

CA

TGA

GA

TGTT

CC

TTA

TGA

CA

CA

GG

AG

GA

GC

CA

TC60

427

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

830

Page 5: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 1

. CO

NTI

NU

ED.

Nam

eFo

rwar

dR

ever

seA

nnea

ling

Tem

pera

ture

(°C

)A

mpl

icon

Size

(bp)

CO

L4A

2.42

–43

AG

TCA

TTC

CA

TGC

CA

CA

GA

CTA

AG

CTC

TCC

ATT

CC

CC

AA

G60

666

CO

L4A

2.44

–45

CC

CG

TTA

GTG

TCTG

GC

TCA

TA

GG

TGTT

CTG

CTG

GG

CA

TAG

6074

4C

OL4

A2.

46G

AA

AC

TGC

CC

TGC

AC

TCC

TTA

GA

TGG

AC

CC

TTC

CG

TCA

G60

664

CO

L4A

2.47

CA

CTC

CC

TGG

TGA

TCC

AA

CT

CC

AA

CTA

CC

CTT

GTG

CA

GTG

6067

5C

OL4

A2.

48.1

GG

ATG

CC

TCA

TGTC

CG

TATT

TAC

ATG

GG

TGTG

TGC

GA

AG

T60

689

CO

L4A

2.48

.2C

ATC

CA

GC

AG

CA

GC

AC

TTA

GA

GG

TCTC

CA

CTT

CTG

CC

TGA

5953

0C

OL4

A2.

48.3

CC

TGC

TTTC

TAC

GC

CA

ATG

TC

TGG

TTG

GG

GTG

TTTT

CTG

T60

573

In

the

tabl

e, A

mpl

icon

Siz

e re

pres

ents

leng

th o

f the

PC

R p

rodu

ct in

bas

e pa

irs (b

p) a

nd A

nnea

ling

Tem

pera

ture

repr

esen

ts th

e an

neal

ing

tem

pera

ture

of t

he p

rimer

s

use

d fo

r PC

R a

mpl

ifica

tions

.

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

831

Page 6: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

value −3 is the cutoff point for functional significance, andcorresponds to a Pdeleterious of 0.5. If the substitution occurs ata position not appearing in the multiple sequence alignment,a subPSEC score cannot be calculated and change is not likelyto be pathogenic [39,40].

The SNAP tool predicts the functional consequences ofexchanging amino acids using evolutionary conservation andstructure/function relationships. The SNAP output showsprediction neutral or non-neutral, and the expected accuracy[41].

RESULTSForty eight members of 15 Ecuadorian families and 64Ecuadorian control subjects were included in the study.Twenty-three individuals from family KTCN-014, twoaffected individuals from each of the families KTCN-011,015, 019, 020, 021, 024, 025, 030, 031, 034, and 035, and onepatient from each of KTCN-05, 013, and 017 were examined.

COL4A1 and COL4A2 sequence analyses: Screening ofCOL4A1 (NM_001845.4) coding regions revealed 12sequence variants, three of which were amino acidsubstitutions: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro),and c.4002A>C (Gln1334His). We identified one novelsynonymous change, c.3693G>A (Thr1231Thr), and eightpreviously reported sequence variants: c.432T>A(Ala144Ala), c.1257T>C (Pro419Pro), c.1815T>C(Pro605Pro), c.2130G>A (Pro710Pro), c.3183G>A(Gly1061Gly), c.3189A>T (Arg1063Arg), c.4470C>T(Ala1490Ala), and c.4800C>T (Ser1600Ser). In the 5′untranslated region (5′ UTR), one novel sequence variant, c.84+124T>A, was identified. In the 3′ untranslated region (3′UTR), two previously reported variants, c.*587C>A andc.*975A>C, were detected.

Sequencing analyses of COL4A2 (NM_001846.2) codingregions revealed 13 previously reported sequence variants,including five non-synonymous substitutions: c.574G>T(Val192Phe), c.1550G>A (Arg517Lys), c.2048G>C(Gly683Ala), c.2102A>G (Lys701Arg), and c.2152C>T(Pro718Ser), and eight synonymous substitutions: c.297G>A(Thr99Thr), c.1008C>T (Pro336Pro), c.1095G>A(Pro365Pro), c.1179C>T (Ile393Ile), c.1488G>A(Pro496Pro), c.4089G>A (Ala1363Ala), c.4290T>C(Phe1430Phe), c.4515A>G (Pro1505Pro). In the 5′ UTR, fiveknown nucleotide changes, c.-277A>C, c.-232C>G,c.-215C>T, c.-203T>C, and c.-133A>G, were identified. Inthe 3′ UTR, eight previously reported sequence variants,c.*76T>C, c.*101_*102del2, c.*417C>G, c.*541C>T,c.*557A>G, c.*650T>C, c.*663T>C, and c.*727G>C weredetected.

Screening of exon/intron junctions in COL4A1 andCOL4A2 revealed numerous sequence variants in thesurrounding non-coding sequences, 71 and 86, respectively,including single nucleotide changes, insertions, and deletions.All screening results are summarized in Table 2.

The sequencing of the genomic region containing thecommon promoter of COL4A1 and COL4A2 revealed nosequence changes.

Statistical analysis and in silico predictions: PolyPhenanalyses of non-synonymous changes in COL4A1 andCOL4A2 predicted that only the Gln1334His variant inCOL4A1 was possibly damaging for protein function andstructure (Table 3). The multiple sequence alignment ofCOL4A1 orthologs shows that the amino acid glutamine atposition 1,334 is conserved throughout the analyzed species(Figure 1). Gln1334His substitution was observed morefrequently in patients than in healthy individuals in familyKTCN-014 (p=0.056). There was no difference in the c.4002A>C allele distribution between the analyzed affectedindividuals from the remaining KTCN families and theEcuadorian control subjects (p=0.17).

The SIFT, PMUT, PANTHER, and SNAP analysesdefined all missense amino acid substitutions in COL4A1 andCOL4A2 as neutral/tolerated and lacking any effect on proteinfunction. All prediction results are summarized in Table 3.

Haplotype reconstruction: Haplotypes of sequencevariants observed in family KTCN-014 are shown in Figure2. The coding sequence variants in COL4A1 are surroundedby markers rs13260 and col4a1_snp2. Exons of COL4A2 arelocalized between rs35466678 and rs422733.

KTCN-014 consists of two family branches. Distincthaplotypes in the branches were identified (Figure 2). In thefirst one, initiated by parents KTCN-93 and KTCN-01, sixsubjects with KTCN had the same haplotype in the COL4A1region, extending from rs13260 to col4a1_snp1. Threeunaffected individuals, KTCN-13, KTCN-14, and KTCN-22,share that part of the haplotype with their affected relatives.One of four variants in this region, rs3742207, causes a changein the protein sequence, replacing Gln in position 1334 withHis (Gln1334His). That haplotype region, from rs13260 tocol4a1_snp1, represents a short fragment of the haplotypewhich covers the whole COL4A1 and COL4A2 sequence inKTCN-03, KTCN-05, KTCN-06, and KTCN-14. In addition,individuals KTCN-07, KTCN-09, KTCN-13, KTCN-22, andKTCN-23 share the rs874203-rs422733 region (Figure 2 –pink bars). For markers rs13260-col4a1_snp1, a differenthaplotype was observed in the second family branch, initiatedby parents KTCN-92 and KTCN-16. This haplotype coveredthe entire length of the analyzed region, and was identified inall affected individuals and KTCN-21, whose phenotype wasunknown. Subject KTCN-17 had the same allele pattern formarkers s13260-col4a1_snp1, as individuals from the firstbranch of the family. However, in this case, analysis indicatedthat these markers are inherited from KTCN-92, who isunrelated to KTCN-93 and KTCN-01.

DISCUSSIONTo our knowledge, this is the first report describing completesequence analysis of the coding regions and the exon-intron

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

832

Page 7: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 2

. SEQ

UEN

CE

VA

RIA

NTS

FOU

ND

IN C

OL4

A1 A

ND

CO

L4A2

GEN

ES.

Aff

ecte

dK

TC

N-0

14

(n=1

0)

Una

ffec

ted

KT

CN

-014

(n

=11)

Unk

now

nK

TC

N-0

14

(n=

2)A

ll K

TC

N-0

14

(n

=23)

Oth

er K

TC

N

fa

mili

esaf

fect

ed (n

=25)

All

(n=4

8)

Exo

ndb

SNP

refI

DC

hrom

osom

ePo

sitio

nA

llele

Cha

nge

Res

idue

Cha

nge

no.

%no

.%

no.

%no

.%

no .%

no.

%

CO

L4A1

(NM

_001

845.

4)-

1109

5946

4c.

-90G

>T-

550

763

.60

012

52.2

1560

2756

.31

rs95

1518

511

0959

356

c.19

G>C

Val

7Leu

880

654

.51

5015

65.2

1872

3368

.8

-11

0959

167

c.84

+124

T>A

-10

100

1110

0.0

210

023

100.

025

100

4810

0.0

rs

7527

0666

1108

9520

0c.

85–1

19C

>T-

00

218

.21

503

13.0

520

816

.7

rs41

2751

0611

0895

150

c.85

–69T

>C-

110

327

.30

04

17.4

416

816

.7

rs95

2165

011

0866

265

c.23

4+8C

>T-

220

19.

10

03

13.0

520

816

.7

rs37

3732

811

0866

065

c.27

9+64

G>A

-5

505

45.5

150

1147

.810

4021

43.8

7rs

5326

2511

0864

225

c.43

2T>A

Ala

144A

la7

708

72.7

210

017

73.9

1456

3164

.6

rs71

8053

6611

0863

985,

1108

6398

9c.

468+

5_46

8+9d

el5

-3

302

18.2

00

521

.74

169

18.8

rs

7657

4181

1108

6275

0c.

469–

191C

>T-

330

436

.41

508

34.8

416

1225

.0

rs21

6620

811

0862

686

c.46

9–12

7C>T

-3

304

36.4

150

834

.84

1612

25.0

rs

9521

649

1108

6230

3c.

615+

24C

>T-

330

654

.51

5010

43.5

1664

2654

.2

rs21

6620

711

0862

268

c.61

5+59

T>G

-7

709

81.8

210

018

78.3

2184

3981

.3

rs64

5114

1108

6178

5c.

616–

11G

>C-

1010

011

100.

02

100

2310

0.0

2510

048

100.

0

rs73

3320

411

0861

671

c.65

1+68

A>G

-3

306

54.5

150

1043

.516

6426

54.2

rs

7332

120

1108

6167

0c.

651+

69C

>T-

330

654

.51

5010

43.5

1664

2654

.2

rs10

6876

4211

0861

652,

1108

6165

3c.

651+

86_6

51+8

7ins

2-

330

654

.51

5010

43.5

1664

2654

.2

rs

5583

3821

1108

6164

9c.

651+

90C

>G-

330

654

.51

5010

43.5

1664

2654

.2

rs35

6382

9411

0861

620,

1108

6162

1c.

651+

118_

651+

119i

ns4

-3

306

54.5

150

1043

.516

6426

54.2

rs

7333

008

1108

6156

0c.

651+

179A

>G-

330

654

.51

5010

43.5

1664

2654

.2

rs59

8893

1108

5974

3c.

780+

7G>A

-7

708

72.7

210

017

73.9

1768

3470

.8

rs59

8819

1108

5969

0c.

780+

60T>

C-

1010

011

100.

02

100

2310

0.0

2510

048

100.

0

rs95

8811

611

0859

069

c.80

8–7C

>G-

770

981

.82

100

1878

.321

8439

81.3

rs

6777

2891

1108

5932

6c.

781–

88de

lT-

1010

011

100.

02

100

2310

0.0

2510

048

100.

0

rs67

7877

1108

5789

5c.

859–

10T>

C-

770

545

.52

100

1460

.917

6831

64.6

rs

4827

5711

0857

823

c.90

3+18

G>A

-7

705

45.5

210

014

60.9

1768

3164

.6

rs66

5713

1108

5750

2c.

957+

198T

>C-

1010

011

100.

02

100

2310

0.0

1976

4287

.5

rs64

8735

1108

5618

0c.

958–

226T

>C-

770

872

.72

100

1773

.917

6834

70.8

rs

6487

0511

0856

153

c.95

8–19

9T>G

-7

708

72.7

210

017

73.9

1768

3470

.8

rs73

2772

811

0856

094

c.95

8–14

0T>A

-0

00

0.0

00

00.

01

41

2.1

rs

6482

6311

0856

085

c.95

8–13

1T>C

-7

708

72.7

210

017

73.9

1768

3470

.8

-11

0855

997

c.95

8–43

delT

-0

00

0.0

00

00.

01

41

2.1

-

1108

5303

2c.

1085

–205

A>T

-10

100

1110

0.0

210

023

100.

022

8845

93.8

rs

9952

2311

0851

036

c.11

21–5

8A>G

-3

306

54.5

150

1043

.517

6827

56.3

rs

4969

1611

0851

014

c.11

21–3

6C>G

-10

100

763

.61

5018

78.3

832

2654

.221

rs99

5224

1108

5084

2c.

1257

T>C

Pro4

19Pr

o3

306

54.5

150

1043

.517

6827

56.3

rs

6833

0911

0850

770

c.12

85+4

4A>G

-10

100

1110

0.0

210

023

100.

025

100

4810

0.0

rs

9588

112

1108

4756

6c.

1286

–101

G>A

-3

304

36.4

150

834

.84

1612

25.0

rs

5050

5011

0847

227

c.13

81+1

43C

>A-

1010

010

90.9

150

2191

.321

8442

87.5

rs

9521

643

1108

4721

7c.

1381

+153

T>C

-4

406

54.5

150

1147

.818

7229

60.4

rs

2241

966

1108

4719

0c.

1381

+180

A>G

-4

406

54.5

150

1147

.818

7229

60.4

rs

6858

8411

0845

314

c.13

82–5

4C>T

-9

9011

100.

02

100

2295

.721

8443

89.6

rs

2241

967

1108

4472

1c.

1466

–90G

>A-

880

763

.61

5016

69.6

1144

2756

.3

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

833

Page 8: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 2

. CO

NTI

NU

ED.

25rs

5361

7411

0839

550

c.16

63A

>CTh

r555

Pro

1010

011

100.

02

100

2310

0.0

2510

048

100.

0

rs95

2163

811

0839

428

c.17

28+5

7T>C

-7

707

63.6

150

1565

.219

7634

70.8

26rs

6174

9897

1108

3881

4c.

1815

T>C

Pro6

05Pr

o3

304

36.4

150

834

.84

1612

25.0

rs

2305

080

1108

3870

3c.

1897

+29A

>G-

770

763

.61

5015

65.2

1976

3470

.8

rs56

5470

1108

3864

6c.

1897

+86T

>C-

990

1090

.92

100

2191

.325

100

4695

.8

rs72

6541

1211

0835

460

c.19

91–1

6G>A

-0

00

0.0

00

00.

04

164

8.3

rs

7329

411

1108

3519

5c.

2095

+145

G>T

-7

707

63.6

150

1565

.219

7634

70.8

29rs

1697

5492

1108

3370

2c.

2130

G>A

Pro7

10Pr

o7

707

63.6

150

1565

.217

6832

66.7

rs

1697

5491

1108

3356

4c.

2193

+75G

>A-

770

763

.61

5015

65.2

1768

3266

.7

rs10

4924

9711

0831

866

c.21

94–9

8A>G

-3

304

36.4

150

834

.86

2414

29.2

rs

2131

939

1108

3183

7c.

2194

–69C

>T-

00

00.

00

00

0.0

416

48.

3

rs50

3053

1108

3145

1c.

2345

–68A

>G-

770

763

.61

5015

65.2

1768

3266

.7

-11

0830

612

c.26

26–3

4T>C

-0

00

0.0

00

00.

01

41

2.1

rs

2305

081

1108

3009

0c.

2716

+99C

>T-

550

436

.41

5010

43.5

936

1939

.6

rs15

6217

311

0828

922

c.29

68+5

1C>T

-7

707

63.6

150

1565

.217

6832

66.7

rs

1975

514

1108

2889

1c.

2969

–31A

>G-

770

763

.61

5015

65.2

1768

3266

.737

rs87

4204

1108

2758

0c.

3183

G>A

Gly

1061

Gly

770

763

.61

5015

65.2

1768

3266

.737

rs87

4203

1108

2757

4c.

3189

A>T

Arg

1063

Arg

770

763

.61

5015

65.2

1768

3266

.7

-11

0826

231

c.35

05+1

6C>T

-0

00

0.0

00

00.

01

41

2.1

rs

1751

7598

1108

2526

4c.

3506

–147

C>A

-1

101

9.1

00

28.

74

166

12.5

rs

2289

799

1108

2497

4c.

3556

+93G

>C-

770

763

.61

5015

65.2

1768

3266

.7

rs22

7584

511

0823

178

c.35

57–9

9C>T

-3

304

36.4

150

834

.86

2414

29.2

42-

1108

2294

3c.

3693

G>A

Thr1

231T

hr0

02

18.2

150

313

.07

2810

20.8

-

1108

2265

3c.

3742

+231

C>T

-0

00

0.0

00

00.

02

82

4.2

rs

5899

8511

0819

586

c.38

77–9

C>T

-9

9010

90.9

210

021

91.3

2496

4593

.8

rs17

7881

711

0819

460

c.39

49+4

5C>T

-9

9010

90.9

210

021

91.3

2496

4593

.8

rs65

2572

1108

1945

7c.

3949

+48T

>C-

990

1090

.92

100

2191

.324

9645

93.8

rs

1213

026

1108

1936

2c.

3949

+143

T>C

-9

9010

90.9

210

021

91.3

2496

4593

.8

-11

0818

760:

1108

1876

3c.

3950

–110

_395

0–11

3del

4-

00

00.

00

00

0.0

14

12.

1

45rs

3742

207

1108

1859

8c.

4002

A>C

Gln

1334

His

880

436

.41

5013

56.5

1040

2347

.9

rs18

1688

411

0817

171

c.41

50+3

8C>G

-4

406

54.5

210

012

52.2

1456

2654

.2

rs22

9824

111

0816

097

c.41

51–1

89C

>G-

220

654

.50

08

34.8

520

1327

.1

rs22

9824

011

0815

673

c.42

49+1

37G

>C-

00

00.

00

00

0.0

28

24.

2

rs16

9754

2411

0814

923

c.42

50–1

34T>

C-

110

545

.50

06

26.1

520

1122

.949

rs11

3321

911

0813

709

c.44

70C

>TA

la14

90A

la3

305

45.5

210

010

43.5

1040

2041

.7

rs22

7584

311

0813

532

c.46

40+7

C>T

-2

206

54.5

00

834

.85

2013

27.1

-

1108

1353

1c.

4640

+8G

>A-

440

218

.20

06

26.1

00

612

.5

rs22

7584

211

0813

523

c.46

40+1

6G>A

-2

206

54.5

00

834

.85

2013

27.1

rs

6171

1111

0807

776

c.46

41–3

2G>A

-4

402

18.2

00

626

.10

06

12.5

rs

6818

8411

0805

062

c.47

56–2

09C

>T-

1010

011

100.

02

100

2310

0.0

2496

4797

.9

-11

0804

970

c.47

56–1

17G

>C-

110

19.

10

02

8.7

00

24.

251

rs65

0724

1108

0480

9c.

4800

C>T

Ser1

600S

er2

204

36.4

00

626

.111

4417

35.4

rs

1326

011

0802

123

c.*5

87C

>A-

220

436

.40

06

26.1

1144

1735

.4

rs28

3625

1511

0801

735

c.*9

75A

>C-

110

19.

10

02

8.7

00

24.

2

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

834

Aff

ecte

dK

TC

N-0

14

(n=1

0)

Una

ffec

ted

KT

CN

-014

(n

=11)

Unk

now

nK

TC

N-0

14

(n=

2)A

ll K

TC

N-0

14

(n

=23)

Oth

er K

TC

N

fa

mili

esaf

fect

ed (n

=25)

All

(n=4

8)

Exo

ndb

SNP

refI

DC

hrom

osom

eA

llele

Cha

nge

Res

idue

Cha

nge

no.

%no

.%

no.

%no

.%

no%

no.

%

Page 9: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 2

. CO

NTI

NU

ED.

CO

L4A2

(NM

_001

846.

2)

rs

7989

823

1109

5964

3c.

-277

A>C

7

709

81.8

00

1669

.625

100

4185

.4

rs79

9000

911

0959

688

c.-2

32C

>G

550

763

.60

012

52.2

1768

2960

.4

rs79

9001

711

0959

705

c.-2

15C

>T

770

981

.80

016

69.6

2392

3981

.3

rs79

9133

211

0959

717

c.-2

03T>

C

550

763

.60

012

52.2

1560

2756

.3

rs35

4666

7811

0959

787

c.-1

33A

>G

330

327

.30

06

26.1

1456

2041

.7

rs73

2752

811

0960

044

c.-4

4–16

3G>C

0

00

0.0

00

00.

04

164

8.3

rs

7653

6922

1109

6016

4c.

-44–

43C

>T

00

00.

00

00

0.0

416

48.

3

rs47

7314

311

0960

685

c.99

+215

T>C

7

707

63.6

150

1565

.221

8436

75.0

rs

4773

144

1109

6071

2c.

99+2

42A

>G

770

763

.61

5015

65.2

2184

3675

.0

rs12

8765

1711

1009

643

c.10

0–17

6G>A

6

609

81.8

210

017

73.9

1976

3675

.0

rs47

7167

811

1076

940

c.18

1–14

1T>C

8

8010

90.9

210

020

87.0

2080

4083

.3Ex

5rs

4238

272

1110

7719

7c.

297G

>ATh

r99T

hr10

100

1110

0.0

210

023

100.

022

8845

93.8

rs

7496

7960

1110

7723

4c.

315+

19T>

C

00

00.

00

00

0.0

14

12.

1

rs73

3498

611

1080

609

c.36

1–20

5G>A

7

704

36.4

150

1252

.28

3220

41.7

-

1110

8096

4c.

477+

34C

>T

330

436

.41

508

34.8

00

816

.7

rs39

2975

811

1082

157

c.47

8–75

C>A

9

9010

90.9

210

021

91.3

2288

4389

.6Ex

9rs

6262

1885

1110

8277

2c.

574G

>TV

al19

2Phe

00

00.

00

00

0.0

14

12.

1

rs60

2120

7211

1086

650

c.68

5–98

G>A

0

03

27.3

00

313

.06

249

18.8

rs

4127

5108

1110

8845

6c.

727–

160A

>T

440

218

.20

06

26.1

28

816

.7

rs79

8348

711

1090

854

c.86

2–11

1A>G

1

105

45.5

00

626

.112

4818

37.5

rs

7984

937

1110

9090

9c.

862–

56T>

C

110

545

.50

06

26.1

1352

1939

.6

rs79

8410

011

1090

924

c.86

2–41

G>A

1

105

45.5

00

626

.113

5219

39.6

rs

7983

979

1110

9102

4c.

912+

9C>T

0

03

27.3

00

313

.06

249

18.8

rs

4771

680

1110

9801

7c.

958–

159T

>C

110

218

.20

03

13.0

1248

1531

.3

rs74

8970

511

1098

110

c.95

8–66

C>T

10

100

1110

0.0

210

023

100.

021

8444

91.7

Ex17

rs41

0311

1098

226

c.10

08C

>TPr

o336

Pro

1010

011

100.

02

100

2310

0.0

1560

3879

.2

rs59

9057

4711

1099

045

c.10

12–1

00C

>G

550

545

.51

5011

47.8

520

1633

.3

rs45

6128

3311

1099

057

c.10

12–8

8G>A

10

100

1110

0.0

210

023

100.

021

8444

91.7

rs

7326

449

1110

9912

2c.

1012

–23G

>A

1010

011

100.

02

100

2310

0.0

2184

4491

.7

rs56

6761

8111

1101

931

c.10

79–9

5C>T

5

506

54.5

150

1252

.27

2819

39.6

rs

7508

2326

1111

0195

2c.

1079

–74A

>G

550

654

.51

5012

52.2

728

1939

.6Ex

19rs

7642

5569

1111

0204

2c.

1095

G>A

Pro3

65Pr

o5

506

54.5

150

1252

.27

2819

39.6

Ex19

rs74

9417

9811

1102

126

c.11

79C

>TIle

393I

le5

506

54.5

150

1252

.27

2819

39.6

rs

3473

4302

1111

0218

3c.

1189

+47A

>G

990

981

.82

100

2087

.013

5233

68.8

-

1111

0285

3c.

1339

+52C

>G

00

00.

00

00

0.0

14

12.

1

rs72

6579

3411

1102

865

c.13

39+6

4G>A

0

02

18.2

00

28.

73

125

10.4

rs

9515

218

1111

0985

9c.

1432

+77A

>G

990

1090

.92

100

2191

.316

6437

77.1

rs

9555

703

1111

0988

2c.

1432

+100

A>G

6

604

36.4

210

012

52.2

520

1735

.4

rs95

1521

911

1109

960

c.14

32+1

78T>

C

990

1090

.92

100

2191

.316

6437

77.1

rs

9521

781

1111

1102

3c.

1433

–95T

>C

990

1090

.92

100

2191

.316

6437

77.1

rs

9521

782

1111

1104

3c.

1433

–75G

>A

990

1090

.92

100

2191

.315

6036

75.0

Ex22

rs79

9021

411

1111

173

c.14

88G

>APr

o496

Pro

990

1090

.92

100

2191

.316

6437

77.1

Ex22

rs79

9038

311

1111

235

c.15

50G

>AA

rg51

7Lys

990

1090

.92

100

2191

.316

6437

77.1

rs

4773

186

1111

1138

2c.

1596

+101

G>A

10

100

1110

0.0

210

023

100.

022

8845

93.8

rs

4127

5110

1111

1455

4c.

1669

+21G

>A

440

654

.50

010

43.5

624

1633

.3

rs79

9233

011

1114

751

c.17

76+2

0G>A

6

604

36.4

210

012

52.2

520

1735

.4

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

835

Aff

ecte

dK

TC

N-0

14

(n=1

0)

Una

ffec

ted

KT

CN

-014

(n

=11)

Unk

now

nK

TC

N-0

14

(n=

2)A

ll K

TC

N-0

14

(n

=23)

Oth

er K

TC

N

fa

mili

esaf

fect

ed (n

=25)

All

(n=4

8)

Exo

ndb

SNP

refI

DC

hrom

osom

eA

llele

Cha

nge

Res

idue

Cha

nge

no.

%no

.%

no.

%no

.%

no%

no.

%

Page 10: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 2

. CO

NTI

NU

ED.

rs

3803

237

1111

1766

8c.

1777

–84G

>A

440

654

.50

010

43.5

624

1633

.3

rs38

0323

611

1117

745

c.17

77–7

C>T

9

9010

90.9

210

021

91.3

1664

3777

.1

rs38

2549

011

1117

984

c.19

78+3

1C>T

4

404

36.4

150

939

.18

3217

35.4

rs

7265

7953

1111

1807

3c.

1978

+120

C>T

2

202

18.2

00

417

.44

168

16.7

rs

1983

931

1111

1810

2c.

1978

+149

G>A

9

9010

90.9

210

021

91.3

1664

3777

.1

rs19

8393

211

1118

221

c.19

79–1

29T>

C

330

327

.30

06

26.1

728

1327

.1

rs41

2751

1211

1118

450

c.20

38+4

1C>T

0

00

0.0

00

00.

01

41

2.1

rs

1927

350

1111

1854

6c.

2038

+137

T>G

3

303

27.3

00

626

.17

2813

27.1

rs

3803

232

1111

1929

6c.

2039

–91A

>G

990

1090

.92

100

2191

.316

6437

77.1

rs

3803

231

1111

1934

2c.

2039

–45T

>C

220

218

.20

04

17.4

416

816

.7Ex

27rs

3803

230

1111

1939

6c.

2048

G>C

Gly

683A

la2

202

18.2

00

417

.44

168

16.7

rs

9559

813

1111

2144

4c.

2096

–120

C>A

8

809

81.8

210

019

82.6

1456

3368

.8

rs95

5981

411

1121

483

c.20

96–8

1A>G

9

9010

90.9

210

021

91.3

1664

3777

.1Ex

28rs

7882

9338

1111

2157

0c.

2102

A>G

Lys7

01A

rg1

103

27.3

150

521

.73

128

16.7

Ex28

rs95

8350

011

1121

620

c.21

52C

>TPr

o718

Ser

440

436

.40

08

34.8

520

1327

.1

rs95

1522

911

1121

717

c.22

03+4

6A>G

9

9010

90.9

210

021

91.3

1664

3777

.1

rs95

1523

011

1121

847

c.22

03+1

76T>

C

220

218

.20

04

17.4

416

816

.7

rs95

8817

811

1125

576

c.24

25+7

9G>A

0

00

0.0

00

00.

02

82

4.2

rs

1161

7206

1111

2560

6c.

2425

+109

A>G

7

707

63.6

150

1565

.222

8837

77.1

rs

9588

179

1111

2574

7c.

2425

+250

C>A

0

00

0.0

00

00.

02

82

4.2

rs

9559

818

1111

3022

6c.

2426

–124

G>A

8

807

63.6

150

1669

.621

8437

77.1

rs

2281

974

1111

3051

9c.

2587

+8C

>T

550

545

.51

5011

47.8

1872

2960

.4

rs93

0145

711

1130

599

c.25

87+8

8G>C

10

100

1110

0.0

210

023

100.

025

100

4810

0.0

rs

2281

973

1111

3067

4c.

2587

+163

C>T

4

405

45.5

150

1043

.515

6025

52.1

rs

7265

7977

1111

3241

3c.

2588

–154

C>T

4

403

27.3

00

730

.43

1210

20.8

rs

4773

194

1111

3249

0c.

2588

–77A

>G

1010

08

72.7

210

020

87.0

1768

3777

.1

rs95

2180

311

1132

556

c.25

88–1

1C>T

8

806

54.5

210

016

69.6

832

2450

.0

rs14

7543

811

1132

820

c.27

58+8

3G>A

4

406

54.5

00

1043

.511

4421

43.8

rs

5812

4222

1111

3294

7c.

2758

+210

G>A

0

03

27.3

00

313

.08

3211

22.9

rs

3803

229

1111

3478

0c.

2759

–83G

>A

660

763

.61

5014

60.9

936

2347

.9

rs38

0322

811

1134

858

c.27

59–5

T>C

0

03

27.3

00

313

.08

3211

22.9

rs

2296

853

1111

3724

0c.

2903

–12A

>G

330

327

.32

100

834

.86

2414

29.2

rs

2296

852

1111

3746

5c.

3025

+91G

>A

220

218

.20

04

17.4

1040

1 429

.2

rs11

8395

2711

1137

488

c.30

25+1

14G

>A

220

218

.20

04

17.4

1040

1429

.2

rs41

3150

4811

1137

975

c.30

26–2

7G>T

1

103

27.3

00

417

.42

86

12.5

rs

2296

851

1111

3825

5c.

3207

+72G

>A

220

218

.20

04

17.4

1040

1429

.2

rs35

1209

1811

1143

541

c.33

47–3

9G>A

0

01

9.1

150

28.

70

02

4.2

rs

4137

5611

1143

755

c.34

54+6

8T>C

8

8011

100.

01

5020

87.0

2288

4287

.5

rs40

2661

1111

4385

1c.

3454

+164

G>C

3

305

45.5

00

834

.810

4018

37.5

rs

4520

2011

1144

102

c.34

55–3

15T>

C

1010

011

100.

02

100

2310

0.0

2510

048

100.

0

rs40

3839

1111

4432

1c.

3455

–96G

>A

220

218

.20

04

17.4

728

1122

.9

-11

1144

382

c.34

55–3

5T>C

1

100

0.0

00

14.

31

42

4.2

rs

2296

849

1111

4441

2c.

3455

–5C

>G

110

327

.30

04

17.4

28

612

.5

rs42

1177

1111

4456

5c.

3562

+41C

>T

110

327

.30

04

17.4

28

612

.5

rs57

0035

8211

1145

456:

1111

4548

6c.

3563

–100

_356

3–70

del3

07

7011

100.

01

5019

82.6

2288

4185

.4

rs

2274

544

1111

4563

3c.

3634

+4C

>T

110

327

.30

04

17.4

28

612

.5

rs23

9183

311

1145

676

c.36

34+4

7G>C

8

8010

90.9

150

1982

.620

8039

81.3

rs

9559

826

1111

4577

9c.

3634

+150

C>T

2

202

18.2

00

417

.48

3212

25.0

-

1111

4763

7c.

3635

–52A

>G

330

436

.41

508

34.8

00

816

.7

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

836

Aff

ecte

dK

TC

N-0

14

(n=1

0)

Una

ffec

ted

KT

CN

-014

(n

=11)

Unk

now

nK

TC

N-0

14

(n=

2)A

ll K

TC

N-0

14

(n

=23)

Oth

er K

TC

N

fa

mili

esaf

fect

ed (n

=25)

All

(n=4

8)

Exo

ndb

SNP

refI

DC

hrom

osom

eA

llele

Cha

nge

Res

idue

Cha

nge

no.

%no

.%

no.

%no

.%

no%

no.

%

Page 11: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

TAB

LE 2

. CO

NTI

NU

ED.

rs

3786

0111

1153

934

c.37

61–8

1G>A

10

100

1110

0.0

210

023

100.

025

100

4810

0.0

rs

3882

2211

1154

159

c.38

77+2

8C>T

8

808

72.7

210

018

78.3

2184

3981

.3

rs22

8196

811

1154

160

c.38

77+2

9G>A

5

508

72.7

150

1460

.918

7232

66.7

rs

4773

198

1111

5571

1c.

4040

–19C

>T

550

654

.51

5012

52.2

832

2041

.7Ex

43rs

4773

199

1111

5577

9c.

4089

G>A

Ala

1363

Ala

550

436

.41

5010

43.5

832

1837

.5

rs93

0146

011

1156

153

c.41

39–4

1G>A

5

506

54.5

150

1252

.28

3220

41.7

rs

4148

8111

1156

411

c.42

85+7

1G>A

7

708

72.7

150

1669

.621

8437

77.1

Ex45

rs47

7168

311

1156

499

c.42

90T>

CPh

e143

0Phe

1010

011

100.

02

100

2310

0.0

2510

048

100.

0Ex

46rs

4453

4811

1158

874

c.45

15A

>GPr

o150

5Pro

1010

011

100.

02

100

2310

0.0

2510

048

100.

0

rs24

7942

611

1164

198

c.48

82–8

3T>C

7

706

54.5

210

015

65.2

2080

3572

.9

rs42

2733

1111

6461

4c.

*76T

>C

770

654

.52

100

1565

.220

8035

72.9

rs

3074

455

1111

6463

9,11

1164

640

c.*1

01_*

102d

el2

7

706

54.5

210

015

65.2

2080

3572

.9

rs

1050

911

1164

955

c.*4

17C

>G

880

1110

0.0

210

021

91.3

2510

046

95.8

rs

1049

906

1111

6507

9c.

*541

C>T

4

408

72.7

150

1356

.518

7231

64.6

rs

1049

931

1111

6509

5c.

*557

A>G

6

609

81.8

150

1669

.620

8036

75.0

rs

1049

977

1111

6518

8c.

*650

T>C

6

609

81.8

150

1669

.619

7635

72.9

rs

7711

1111

6520

1c.

*663

T>C

6

609

81.8

150

1669

.619

7635

72.9

rs

1545

711

1165

265

c.*7

27G

>C

440

872

.71

5013

56.5

1768

3062

.5

d

bSN

P re

f ID

: ide

ntity

num

bers

of o

bser

ved

sequ

ence

var

iant

s; c

hrom

osom

e po

sitio

n (N

CB

I bui

ld 3

7.1)

.

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

837

Aff

ecte

dK

TC

N-0

14

(n=1

0)

Una

ffec

ted

KT

CN

-014

(n

=11)

Unk

now

nK

TC

N-0

14

(n=

2)A

ll K

TC

N-0

14

(n

=23)

Oth

er K

TC

N

fa

mili

esaf

fect

ed (n

=25)

All

(n=4

8)

Exo

ndb

SNP

refI

DC

hrom

osom

eA

llele

Cha

nge

Res

idue

Cha

nge

no.

%no

.%

no.

%no

.%

no%

no.

%

Page 12: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

T AB

LE 3

. PR

EDIC

TIO

N O

F EFF

ECT

OF A

MIN

O A

CID

SUB

STIT

UTI

ON

S FO

UN

D IN

CO

L4A

1 A

ND

CO

L4A

2.

Poly

Phen

SIFT

PMU

TPA

NT

HE

RSN

AP

Gen

eSe

quen

ceva

rian

tPS

ICsc

ore

Pred

ictio

nSc

ore

Pred

ictio

nN

NPr

edic

tion

subP

SEC

Pdel

eter

ious

Exp

ecte

dA

ccur

acy

Pred

ictio

n

CO

L4A

1V

al7L

euN

/Abe

nign

1to

lera

ted

0.23

67ne

utra

l-

-92

%ne

utra

l

Thr5

55Pr

oN

/Abe

nign

0.65

tole

rate

d0.

0250

neut

ral

−0.52603

0.07

7794

%ne

utra

l

Gln

1334

His

1.66

poss

ibly

dam

agin

g0.

12to

lera

ted

0.10

39ne

utra

l−1.043

30.

1238

269

%ne

utra

l

CO

L4A

2V

al19

2Phe

1.13

beni

gn64

tole

rate

d0.

1921

neut

ral

--

78%

neut

ral

A

rg51

7Lys

0.1

beni

gn0.

96to

lera

ted

0.08

61ne

utra

l-

-92

%ne

utra

l

Gly

683A

laN

/Abe

nign

0.96

tole

rate

d0.

4841

neut

ral

--

85%

neut

ral

Ly

s701

Arg

N/A

beni

gn0.

97to

lera

ted

0.01

66ne

utra

l-

-89

%ne

utra

l

Pro7

18Se

rN

/Abe

nign

0.98

tole

rate

d0.

2039

neut

ral

--

89%

neut

ral

T

he P

olyP

hen

tool

pre

dict

s w

hich

mis

sens

e su

bstit

utio

n af

fect

s th

e st

ruct

ure

and

func

tion

of p

rote

in, a

nd u

ses

Posi

tion-

Spec

ific

Inde

pend

ent C

ount

s so

ftwar

e to

a

ssig

n pr

ofile

sco

res.

The

SIFT

tool

eva

luat

es c

onse

rved

pos

ition

s, an

d ca

lcul

ates

a s

core

for t

he a

min

o ac

id c

hang

e at

a p

artic

ular

pos

ition

. A s

core

of <

0.05

is

con

side

red

as p

atho

geni

c fo

r the

pro

tein

stru

ctur

e. T

he P

MU

T ca

lcul

ates

the

path

olog

ical

sig

nific

ance

of n

on-s

ynon

ymou

s am

ino

acid

sub

stitu

tion

usin

g ne

ural

n

etw

orks

(NN

). N

N o

utpu

t >0.

5 is

cons

ider

ed to

be d

elet

erio

us. P

AN

THER

gen

erat

es th

e sub

stitu

tion

Posi

tion-

Spec

ific E

volu

tiona

ry C

onse

rvat

ion

scor

e. T

he v

alue

3 is

cut

off p

oint

for f

unct

iona

l sig

nific

ance

and

cor

resp

onds

to a

Pde

lete

rious

of 0

.5. I

f the

sub

stitu

tion

occu

rs a

t a p

ositi

on n

ot a

ppea

ring

in th

e m

ultip

le s

eque

nce

a

lignm

ent,

a su

bPSE

C s

core

can

not b

e ca

lcul

ated

and

cha

nge

is n

ot li

kely

to b

e pa

thog

enic

. The

SN

AP

outp

ut s

how

s pr

edic

tion

neut

ral o

r non

-neu

tral,

and

the

e

xpec

ted

accu

racy

.

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

838

Page 13: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

boundaries of COL4A1 and COL4A2 in families with KTCN.Previous studies have revealed a correlation between KTCNdevelopment and histopathological alterations in the structureof the corneal stroma and basement membrane, including aloss of collagen concentration [42] and rearrangement ofcollagen fibers [26]. Moreover, several types of collagen,including collagen type IV have been identified in the cornea[24], and COL4A1 and COL4A2 expression has been detectedin the human cornea [29]. Finally, we had mapped a locus forKTCN to 13q32, in close proximity of which COL4A1 andCOL4A2 are localized [21]. Given that information, wehypothesized that COL4A1 and COL4A2 genes are goodcandidates for causing KTCN in families with linkage to thatlocus.

Different studies have revealed several loci and a fewcandidate genes for familial KTCN. The first gene proposedas playing a significant role in KTCN pathogenesis was theVSX1 (visual system homeobox 1, OMIM 605020) gene. Itwas suggested that a few disease-causing mutations werepresent in this gene [43,44], but recent studies have notconfirmed these findings [21,45-47]. Next, heterozygousgenomic 7-bp deletion in intron 2 of SOD1 (superoxidedismutase 1; OMIM 147450) was identified in two familieswith KTCN [48,49]. In contrast, other studies have shown thatmutations in this gene are not associated with KTCNpathogenesis [21,47]. Genetic analyses ofCOL4A3,COL4A4,COL8A1, and COL8A2 genes haverevealed no pathogenic mutations in patients with KTCN,indicating that other genetic factors cause the disease[50-52].

We identified several single base pair substitutions in thecoding regions of COL4A1 and COL4A2, including one novelheterozygous change, c.3693G>A in exon 42 of COL4A1.None of the detected alterations segregated fullywith the affected phenotype in the analyzed members of theEcuadorian KTCN families. Among the identified missensesubstitutions in COL4A1, one change, c.4002A>C (p.Gln1334His), was observed more frequently in KTCNpatients than in healthy individuals in family KTCN-014.However, no significant statistical association of this changewith familial disease could be proven (p=0.056), and nodifference in the c.4002A>C allele distribution between theanalyzed affected individuals from the remaining KTCNfamilies and the Ecuadorian control subjects was discovered

(p=0.17). To predict the impact of the substitutions on thestructure and function of the protein, we used different tools.All identified missense substitutions in COL4A1 andCOL4A2 were predicted by the SIFT, PMUT, PANTHER, andSNAP tools to have no effect, but PolyPhen defined theGln1334His change in COL4A1 as possibly damaging.Glutamine at this position is highly conserved in differentspecies. Moreover, this change is present in the collagenousdomain of the α1(IV) chain with Gly-X-Y repeats, whichplays a role in the assembly into a triple-helical structure ofthe protein [22]. Replacement of the neutral residue (Gln) withthe polar amino acid (His) at the Y position is likely to affectthe protein structure. Nevertheless, further studies should beperformed to determine the functional significance of thissubstitution.

To the best of our knowledge, no mutations in COL4A1were associated with corneal disease. The spectrum ofCOL4A1-related disorders included porencephaly (OMIM175780) [53-55], Hereditary Angiopathy with Nephropathy,Aneurysm and Muscle Cramps (HANAC; OMIM 611773)[56], and brain small vessel disease with hemorrhage (OMIM607595) [57]. Recent studies have also revealed an associationbetween mutations in exon 29 of COL4A1 and Axenfeld-Rieger anomaly with leukoencephalopathy and stroke [58]. Inour study, none of the previously reported COL4A1 mutationswere identified. The absence of these changes in patients withKTCN suggests that they are specific to the above-mentioneddisorders only, and are not associated with KTCN in the testedfamilies. To date, no mutations responsible for COL4A2-related human diseases have been reported.

Besides changes identified in the coding regions ofCOL4A1 and COL4A2, our study revealed numerousalterations in introns and UTRs of both genes, including singlebase pair substitutions, deletions, and insertions. Fourteen ofthese were novel and their clinical significance is not known.Each of the changes was observed in affected and healthyindividuals in the tested families. Because importantfunctional elements are located in non-coding regions ofgenes [59] and intronic alterations can result in a deleteriouseffect on pre-mRNA splicing [60], identification of thesesequence variants could be non-accidental. Further researchis needed to delineate the role of these sequence variants.

Recent studies have shown that a mouse with a mutationin a splice acceptor site of Col4a1 has ocular dysgenesis. The

Figure 1. Multiple sequence alignment of the amino acid sequences of COL4A1 orthologs in different species. Conservation of glutamine (Q)at the 1334 position is shown in gray.

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

839

Page 14: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

mutation results in a lack of exon 40 from mice’s transcriptsand leads to the accumulation of mis-folded protein in the lens

epithelial cells. Col4a1∆ex40 mice show optic nerve hypoplasiaand anterior segment dysgenesis (ASD) including pigment

Figure 2. Pedigree of the family KTCN-014. Black-filled symbols: individuals with KTCN; open symbols: individuals without KTCN; gray-filled symbols: individuals with unknown KTCN status. Below each symbol the haplotypes are shown for the coding sequence in genesCOL4A1, COL4A2 and UTRs between them. In COL4A1, the coding regions are surrounded by the markers rs13260 and col4a2_snp, and byrs35466678 and rs422733 in COL4A2, which were marked by a black frame. Haplotype regions in different colors indicate patterns ofinheritance in the two branches in the pedigree.

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

840

Page 15: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

dispersion, cataracts, and corneal opacifications [61]. Spliceacceptor sites are highly conserved regions in different species[56]. We detected no alterations in the splice acceptor site inintron 39 of human COL4A1.

Extended genetic studies executed in families withKTCN have shown a high level of genetic heterogeneity[62]. The presence of many putative loci supports thehypothesis that KTCN is an oligogeneic disease in whichaccumulation of sequence variants at several loci cause aspecific KTCN haplotype and may trigger the phenotypiceffect. The absence of mutations in COL4A1 and COL4A2genes indicates that other genes are involved in KTCNpathogenesis in Ecuadorian families.

ACKNOWLEDGMENTSSupported by the Polish Ministry of Science and HigherEducation, Grant NN 402097837. The authors thankGenomed Company (Warsaw, Poland) for support insequencing service.

REFERENCES1. Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998;

42:297-319. [PMID: 9493273]2. Li X, Yang H, Rabinowitz YS. Longitudinal study of

keratoconus progression. Exp Eye Res 2007; 85:502-7.[PMID: 17681291]

3. Cullen JF, Butler HG. Mongolism (Down’s syndrome) andkeratoconus. Br J Ophthalmol 1963; 47:321-30. [PMID:14189698]

4. Kuming BS, Joffe L. Ehlers-Danlos syndrome associated withkeratoconus. A case report. S Afr Med J 1977; 52:403-5.[PMID: 897848]

5. Elder MJ. Leber congenital amaurosis and its association withkeratoconus and keratoglobus. J Pediatr OphthalmolStrabismus 1994; 31:38-40. [PMID: 8195961]

6. McMonnies CW. Mechanisms of rubbing-related cornealtrauma in keratoconus. Cornea 2009; 28:607-15. [PMID:19512912]

7. Steahly LP. Keratoconus following a contact lens wear. AnnOphthalmol 1978; 10:1177-9. [PMID: 736404]

8. Rahi A, Davies P, Ruben M, Lobascher D, Menon J.Keratoconus and coexisting atopic disease. Br J Ophthalmol1977; 61:761-4. [PMID: 603783]

9. Edwards M, McGhee CN, Dean S. The genetics of keratoconus.Clin Experiment Ophthalmol 2001; 29:345-51. [PMID:11778802]

10. Hughes AE, Dash DP, Jackson AJ, Frazer DG, Silvestri G.Familial keratoconus with cataract: linkage to the long arm ofchromosome 15 and exclusion of candidate genes. InvestOphthalmol Vis Sci 2003; 44:5063-6. [PMID: 14638698]

11. Tyynismaa H, Sistonen P, Tuupanen S, Tervo T, Dammert A,Latvala T, Alitalo T. A locus for autosomal dominantkeratoconus: linkage to 16q22.3-q23.1 in Finnish families.Invest Ophthalmol Vis Sci 2002; 43:3160-4. [PMID:12356819]

12. Brancati F, Valente EM, Sarkozy A, Feher J, Castori M, DelDuca P, Mingarelli R, Pizzuti A, Dallapiccola B. A locus forautosomal dominant keratoconus maps to human

chromosome 3p14-q13. J Med Genet 2004; 41:188-92.[PMID: 14985379]

13. Hutchings H, Ginisty H, Le Gallo M, Levy D, Stoesser F,Rouland JF, Arne JL, Lalaux MH, Calvas P, Roth MP,Hovnanian A, Malecaze F. Identification of a new locus forisolated familial keratoconus at 2p24. J Med Genet 2005;42:88-94. [PMID: 15635082]

14. Burdon KP, Coster DJ, Charlesworth JC, Mills RA, Laurie KJ,Giunta C, Hewitt AW, Latimer P, Craig JE. Apparentautosomal dominant keratoconus in a large Australianpedigree accounted for by digenic inheritance of two novelloci. Hum Genet 2008; 124:379-86. [PMID: 18795334]

15. Tang YG, Rabinowitz YS, Taylor KD, Li X, Hu M, PicornellY, Yang H. Genomewide linkage scan in a multigenerationCaucasian pedigree identifies a novel locus for keratoconuson chromosome 5q14.3-q21.1. Genet Med 2005; 7:397-405.[PMID: 16024971]

16. Bisceglia L, De Bonis P, Pizzicoli C, Fischetti L, Laborante A,Di Perna M, Giuliani F, Delle Noci N, Buzzonetti L, ZelanteL. Linkage analysis in keratoconus: replication of locus5q21.2 and identification of other suggestive Loci. InvestOphthalmol Vis Sci 2009; 50:1081-6. [PMID: 18978346]

17. Li X, Rabinowitz YS, Tang YG, Picornell Y, Taylor KD, HuM, Yang H. Two-stage genome-wide linkage scan inkeratoconus sib pair families. Invest Ophthalmol Vis Sci2006; 47:3791-5. [PMID: 16936089]

18. Liskova P, Hysi PG, Waseem N, Ebenezer ND, BhattacharyaSS, Tuft SJ. Evidence for keratoconus susceptibility locus onchromosome 14: a genome-wide linkage screen using single-nucleotide polymorphism markers. Arch Ophthalmol 2010;128:1191-5. [PMID: 20837804]

19. Hameed A, Khaliq S, Ismail M, Anwar K, Ebenezer ND, JordanT, Mehdi SQ, Payne AM, Bhattacharya SS. A novel locus forLeber congenital amaurosis (LCA4) with anteriorkeratoconus mapping to chromosome 17p13. InvestOphthalmol Vis Sci 2000; 41:629-33. [PMID: 10711674]

20. Fullerton J, Paprocki P, Foote S, Mackey DA, Williamson R,Forrest S. Identity-by-descent approach to gene localisationin eight individuals affected by keratoconus from north-westTasmania, Australia. Hum Genet 2002; 110:462-70. [PMID:12073017]

21. Gajecka M, Radhakrishna U, Winters D, Nath SK, RydzaniczM, Ratnamala U, Ewing K, Molinari A, Pitarque JA, Lee K,Leal SM, Bejjani BA. Localization of a gene for Keratoconusto a 5.6 Mb interval on 13q32. Invest Ophthalmol Vis Sci2009; 50:1531-9. [PMID: 19011015]

22. Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagenIV. Microsc Res Tech 2008; 71:357-70. [PMID: 18219669]

23. Fischer G, Schmidt C, Opitz J, Cully Z, Kuhn K, Poschl E.Identification of a novel sequence element in the commonpromoter region of human collagen type IV genes, involvedin the regulation of divergent transcription. Biochem J 1993;292:687-95. [PMID: 8317999]

24. Abalain JH, Dossou H, Colin J, Floch HH. Levels of collagendegradation products (telopeptides) in the tear film of patientswith keratoconus. Cornea 2000; 19:474-6. [PMID:10928761]

25. Patey A, Savoldelli M, Pouliquen Y. Keratoconus and normalcornea: a comparative study of the collagenous fibers of the

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

841

Page 16: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

corneal stroma by image analysis. Cornea 1984; 3:119-24.[PMID: 6536429]

26. Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH,Bron AJ. Changes in collagen orientation in distribution inkeratoconus corneas. Invest Ophthalmol Vis Sci 2005;46:1948-56. [PMID: 15914608]

27. Kenney MC, Nesburn AB, Burgeson RE, Butkowski RJ,Ljubimov AV. Abnormalities of the extracellular matrix inkeratoconus corneas. Cornea 1997; 16:345-51. [PMID:9143810]

28. Tuori AJ, Virtanen I, Aine E, Kalluri R, Miner JH, Uusitalo HM.The immunohistochemical composition of corneal basementmembrane in keratoconus. Curr Eye Res 1997; 16:792-801.[PMID: 9255508]

29. Jun AS, Liu SH, Koo EH, Do DV, Stark WJ, Gottsch JD.Microarray analysis of gene expression in human donorcorneas. Arch Ophthalmol 2001; 119:1629-34. [PMID:11709013]

30. Stachs O, Bochert A, Gerber T, Koczan D, Thiessen HJ, GuthoffRF. The extracellular matrix structure in keratoconus.Ophthalmologe 2004; 101:384-9. [PMID: 15067420]

31. Wigginton JE, Abecasis GR. PEDSTATS: descriptive statistics,graphics and quality assessment for gene mapping data.Bioinformatics 2005; 21:3445-7. [PMID: 15947021]

32. Weeks DE, Sobel E, O’Connell JR, Lange K. Computerprograms for multilocus haplotyping of general pedigrees.Am J Hum Genet 1995; 56:1506-7. [PMID: 7762577]

33. Sobel E, Lange K. Descent graphs in pedigree analysis:applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996; 58:1323-37.[PMID: 8651310]

34. Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, HeC, Hyland FC, Kennedy GC, Kong X, Murray SS, Ziegle JS,Stewart WC, Buyske S. A second-generation combinedlinkage physical map of the human genome. Genome Res2007; 17:1783-6. [PMID: 17989245]

35. Thiele H, Nurnberg P. HaploPainter: a tool for drawingpedigrees with complex haplotypes. Bioinformatics 2005;21:1730-2. [PMID: 15377505]

36. Ramensky V, Bork P, Sunyaev S. Human non-synonymousSNPs: server and survey. Nucleic Acids Res 2002;30:3894-900. [PMID: 12202775]

37. Ng PC, Henikoff S. SIFT: Predicting amino acid changes thataffect protein function. Nucleic Acids Res 2003; 31:3812-4.[PMID: 12824425]

38. Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, de la Cruz X,Orozco M. PMUT: a web-based tool for the annotation ofpathological mutations on proteins. Bioinformatics 2005;21:3176-8. [PMID: 15879453]

39. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B,Daverman R, Diemer K, Muruganujan A, Narechania A.PANTHER: a library of protein families and subfamiliesindexed by function. Genome Res 2003; 13:2129-41. [PMID:12952881]

40. Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ,Muruganujan A, Lazareva-Ulitsky B. Applications forprotein sequence-function evolution data: mRNA/proteinexpression analysis and coding SNP scoring tools. NucleicAcids Res 2006; 34:W645-50. [PMID: 16912992]

41. Bromberg Y, Rost B. SNAP: predict effect of non-synonymouspolymorphisms on function. Nucleic Acids Res 2007;35:3823-35. [PMID: 17526529]

42. Sherwin T, Brookes NH. Morphological changes inkeratoconus: pathology or pathogenesis. Clin ExperimentOphthalmol 2004; 32:211-7. [PMID: 15068441]

43. Héon E, Greenberg A, Kopp KK, Rootman D, Vincent AL,Billingsley G, Priston M, Dorval KM, Chow RL, McInnesRR, Heathcote G, Westall C, Sutphin JE, Semina E, BremnerR, Stone EM. VSX1: a gene for posterior polymorphousdystrophy and keratoconus. Hum Mol Genet 2002;11:1029-36. [PMID: 11978762]

44. Bisceglia L, Ciaschetti M, De Bonis P, Campo PA, Pizzicoli C,Scala C, Grifa M, Ciavarella P, Delle Noci N, Vaira F,Macaluso C, Zelante L. VSX1 mutational analysis in a seriesof Italian patients affected by keratoconus: detection of anovel mutation. Invest Ophthalmol Vis Sci 2005; 46:39-45.[PMID: 15623752]

45. Aldave AJ, Yellore VS, Salem AK, Yoo GL, Rayner SA, YangH, Tang GY, Piconell Y, Rabinowitz YS. No VSX1 genemutations associated with keratoconus. Invest OphthalmolVis Sci 2006; 47:2820-2. [PMID: 16799019]

46. Tang YG, Picornell Y, Su X, Li X, Yang H, Rabinowitz YS.Three VSX1 gene mutations, L159M, R166W, and H244R,are not associated with keratoconus. Cornea 2008;27:189-92. [PMID: 18216574]

47. Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absenceof pathogenic mutations in VSX1 and SOD1 genes in patientswith keratoconus. Cornea 2010; 29:172-6. [PMID:20023586]

48. Udar N, Atilano SR, Brown DJ, Holguin B, Small K, NesburnAB, Kenney MC. SOD1: a candidate gene for keratoconus.Invest Ophthalmol Vis Sci 2006; 47:3345-51. [PMID:16877401]

49. Udar N, Atilano SR, Small K, Nesburn AB, Kenney MC. SOD1haplotypes in familial keratoconus. Cornea 2009; 28:902-7.[PMID: 19654524]

50. Stabuc-Silih M, Ravnik-Glavac M, Glavac D, Hawlina M,Strazisar M. Polymorphisms in COL4A3 and COL4A4 genesassociated with keratoconus. Mol Vis 2009; 15:2848-60.[PMID: 20029656]

51. Aldave AJ, Bourla N, Yellore VS, Rayner SA, Khan MA, SalemAK, Sonmez B. Keratoconus is not associated with mutationsin COL8A1 and COL8A2. Cornea 2007; 26:963-5. [PMID:17721297]

52. Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, Hawlina M,Glavac D. Genetics and clinical characteristics ofkeratoconus. Acta Dermatovenerol Alp Panonica Adriat2010; 19:3-10. [PMID: 20664914]

53. Breedveld G, de Coo IF, Lequin MH, Arts WF, Heutink P,Gould DB, John SW, Oostra B, Mancini GM. Novelmutations in three families confirm a major role of COL4A1in hereditary porencephaly. J Med Genet 2006; 43:490-5.[PMID: 16107487]

54. Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS,Schimenti JC, Aguglia U, van der Knaap MS, Heutink P, JohnSW. Mutations in Col4a1 cause perinatal cerebralhemorrhage and porencephaly. Science 2005; 308:1167-71.[PMID: 15905400]

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

842

Page 17: Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian

55. de Vries LS, Koopman C, Groenendaal F, Van Schooneveld M,Verheijen FW, Verbeek E, Witkamp TD, van der Worp HB,Mancini G. COL4A1 mutation in two preterm siblings withantenatal onset of parenchymal hemorrhage. Ann Neurol2009; 65:12-8. [PMID: 19194877]

56. Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C,Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E,Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D,Antignac C, Ronco P. COL4A1 mutations and hereditaryangiopathy, nephropathy, aneurysms, and muscle cramps. NEngl J Med 2007; 357:2687-95. [PMID: 18160688]

57. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K,Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW. Role of COL4A1 in small-vesseldisease and hemorrhagic stroke. N Engl J Med 2006;354:1489-96. [PMID: 16598045]

58. Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, BurgelinI, Calvas P, Orignac I, Dousset V, Lacombe D, Orgogozo JM,

Arveiler B, Goizet C. COL4A1 mutation in Axenfeld-Riegeranomaly with leukoencephalopathy and stroke. Ann Neurol2007; 62:177-84. [PMID: 17696175]

59. Lomelin D, Jorgenson E, Risch N. Human genetic variationrecognizes functional elements in noncoding sequence.Genome Res 2010; 20:311-9. [PMID: 20032171]

60. Baralle D, Baralle M. Splicing in action: assessing diseasecausing sequence changes. J Med Genet 2005; 42:737-48.[PMID: 16199547]

61. Gould DB, Marchant JK, Savinova OV, Smith RS, John SW.Col4a1 mutation causes endoplasmic reticulum stress andgenetically modifiable ocular dysgenesis. Hum Mol Genet2007; 16:798-807. [PMID: 17317786]

62. Rabinowitz YS. The genetics of keratoconus. Ophthalmol ClinNorth Am 2003; 16:607-20. [PMID: 14741001]vii.14741001

Molecular Vision 2011; 17:827-843 <http://www.molvis.org/molvis/v17/a94> © 2011 Molecular Vision

Articles are provided courtesy of Emory University and the Zhongshan Ophthalmic Center, Sun Yat-sen University, P.R. China.The print version of this article was created on 25 March 2011. This reflects all typographical corrections and errata to the articlethrough that date. Details of any changes may be found in the online version of the article.

843