32
SIDE BY SIDE CELL Magnetic engine Magnetic engine Donor Receiver Teflon adapter solid drug membrane stirrer Thermostatic unit Thermostatic unit j a c k e t j a c k e t pump surge chamber spectrophotometer computer

SIDE BY SIDE CELL

  • Upload
    morty

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

SIDE BY SIDE CELL. spectrophotometer. s urge chamber. computer. pump. Thermostatic unit. Thermostatic unit. Teflon adapter. Donor. Receiver. membrane. jacket. jacket. solid drug. stirrer. Magnetic engine. Magnetic engine. 2 - DRUG DIFFUSION MEASUREMENT. TEFLON ADAPTER. - PowerPoint PPT Presentation

Citation preview

Page 1: SIDE BY SIDE CELL

SIDE BY SIDE CELL

Magnetic engine

Magnetic engine

Donor Receiver

Teflon adapter

solid drug

membrane

stirrer

Thermostatic unit Thermostatic unit

jack

et

jac ke t

pump

surge chamber

spectrophotometer

computer

Page 2: SIDE BY SIDE CELL

2 - DRUG DIFFUSION MEASUREMENT

MAGNETIC STIRRERS

TEFLON ADAPTERDONOR CHAMBER RECEIVER CHAMBER

THERMOSTATICJACKET

Page 3: SIDE BY SIDE CELL

DONOR RECEIVER

STIRRER

jack

etjacket

POWDER DISSOLUTION DRUG PERMEATION

DRUG CONCENTRATION INCREASE

2 - MODELING

Page 4: SIDE BY SIDE CELL

dissolution(K t)

solid drug (M )

donor 1st layer 2nd

layermembrane receiver

X = 0

concentration profile

h 1 h 2 h 3

X = h 1 X = h 1+ h 2 X = h 1+ h 2+h 3

MATHEMATICALL MODELING

Page 5: SIDE BY SIDE CELL

SOLID SURFACE VARIATION: MONODISPERSED PARTICLES SYSTEM

20P0 4 RNA

A

R 30

Particles initial surface area

330

0

43

43

p RM

RMN

30

0

43

p RMN

SOLID DRUG

M N M N R p p p34

3

R RMM

00

3

Page 6: SIDE BY SIDE CELL

XCD

ttC 1

w1

XCD

ttC m

mm

XCD

ttC 2

w2

1st stagnant layer

membrane

2nd stagnant layer

FICK LAW

Page 7: SIDE BY SIDE CELL

BOUNDARY CONDITIONS

dissolution(K t)

solid drug (M )

donor 1st layer 2nd

layermembrane receiver

X = 0

concentration profile

h 1 h 2 h 3

X = h 1 X = h 1+ h 2 X = h 1+ h 2+h 3

0

1w

dd d

d

XXCSD

tM

tCV dDPdd

d CCSKVtM

sP

Page 8: SIDE BY SIDE CELL

BOUNDARY CONDITIONS

dissolution(K t)

solid drug (M )

donor 1st layer 2nd

layermembrane receiver

X = 0

concentration profile

h 1 h 2 h 3

X = h 1 X = h 1+ h 2 X = h 1+ h 2+h 3

11

m1

whX

m

hX XCD

XCD

2121

2w

mm

hhXhhX XCD

XCD

p1

m KCC

p2

m KCC

Page 9: SIDE BY SIDE CELL

BOUNDARY CONDITIONS

dissolution(K t)

solid drug (M )

donor 1st layer 2nd

layermembrane receiver

X = 0

concentration profile

h 1 h 2 h 3

X = h 1 X = h 1+ h 2 X = h 1+ h 2+h 3

321

2w

rr

hhhXXCSD

tCV

Page 10: SIDE BY SIDE CELL

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000t+

Cd+ , C

r+

H = 1H = 0.5H = 0.25H = 0.01

Cd+

Cr+

SIMULATION: NO DISSOLUTION

Vr = Vd

2m

m

hDtt

d0

d

CCCd

d0

r

CCCr

D1 = 8.8*10-6 cm2/s

Dm = 5.3*10-6 cm2/s

D1 = D2

Kp = 0.8

*hm

H = Stagnant layer thickness

*hm

*hm

*hm

hm = 100 m

S = 10 cm2

Page 11: SIDE BY SIDE CELL

SIMULATION: PROFILE CONCENTRATION

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4X+=X/hm

Cm+

membrane

1st layer 2nd layer

t+ = 0

t+ = 533

t+ = 5333

donor

receiver

t+ = 0.266

Vr = Vd

D1 = 8.8*10-6 cm2/s

Dm = 5.3*10-6 cm2/s

D1 = D2

Kp = 0.8

h1 = h2 = 0.5*hm

hm = 100 m

S = 10 cm2

Page 12: SIDE BY SIDE CELL

SIMULATION: DISSOLUTION

Vr = 800 cm3

2m

m

hDtt

d0

d

CCCd

d0

r

CCCr

D1 = 8.8*10-6 cm2/sDm = 5.3*10-6 cm2/s

D1 = D2

Kp = 0.8

Vd = 100 cm3

h1 = h2 = hm=100m

0

0.2

0.4

0.6

0.8

1

1.2

0 50000 100000 150000 200000t+

Cd+ , C

r+ Cd+

Cr+

Kd = 10-6cm/s

A = 5000 g/cm2

Cs = 12495 g/cm3

S = 10 cm2

Page 13: SIDE BY SIDE CELL

SIMULATION: STEADY STATE APPROXIMATION

tDhn

n

n

enV

KChhthD

VSKC

Cm

2

m

122

r

pd0mm

m

m

r

pd0r

126

Cd = Cd0 (constant drug concentration in the donor)Cr = 0 (sink conditions in the receiver)

FICK eq. solution (only membrane) is:

For t ∞

LttVPSCC r

d0r m

p

hDK

P

m

2m

6DhtL

Membrane Permeability

Page 14: SIDE BY SIDE CELL

For a trilaminate system the solution is:

LttVPSCC r

d0r

For t ∞

p2p1213p3p1312p3p2321

p3p2p1321

KKDDhKKDDhKKDDhKKKDDD

P

L

12

1

1 1

2

2 2

3

3 3

22

2

1

1 1

2

2

3

3 3

32

3

1

1 1

2

2 2

3

3 3

1 2 3

1 3 1 3

1

1 1

2

2 2

36 2 2 2 6

2 2 6

t

h

D

h

D K

h

D K

h

D K

h

D

h

D K

h

D K

h

D K

h

D

h

D K

h

D K

h

D K

K h h h

D D K K

h

D K

h

D K

1 2 2

2

h

D K3 3

Page 15: SIDE BY SIDE CELL

SIMULATION: LINEAR PROFILES (THIN MEMBRANES)

d 1 2 1 2C t A A e A em mt t( ) 3

r 1 2 1 3 2C t B B e B em mt t( )

M t M E e E em mt t( ) 0 1 1 2 2 11

Page 16: SIDE BY SIDE CELL

SIMULATION: LINEAR PROFILES (THIN MEMBRANES)EMPIRICAL APPROACH

eAeAAC rr tttt mm)t( 21321d

eBeBBC rr tttt mm)t( 21321r

11 21210 eEeEMtM rr tttt mm

Page 17: SIDE BY SIDE CELL

3 - DRUG DIFFUSION COEFFICIENT MEASUREMENT REQUIRES THE DETERMINATION OF:

1 DRUG SOLUBILITY CS IN THE RELEASE ENVIRONMEMT

2 DRUG DIFFUSION COEFFICIENT DW IN THE RELEASE ENVIRONMEMT

3 DRUG POWDER DISSOLUTION CONSTANT KDP

4 DRUG PARTITION COEFFICIENT Kp (MEMBRANE/RELEASE ENVIRONMENT)

5 THICKNESS OF STAGNANT LAYERS SANDWICHING THE MEMBRANE

Page 18: SIDE BY SIDE CELL

CASE STUDY: THEOPHYLLINE AND ALGINATES

THEOPHYLLINE MONOHYDRATED- Carlo Erba , Milano- (C7H8N4O2*H2O); MW 198, WHITE CRYSTALLINE POWDER- DENSITY 1.49 ± 01 g/ cm3 (Helium picnometer)- SURFACE AREA = 2941 cm2/g (mercury porosimeter)- U.V. PEAK ABSORBANCE 271 nm

ALGINATE:- Protanal LF 20/ 60, Pronova Biopolymer, Drammen, Norway)- THEY ARE EXTRACTED FROM BROWN SEAWEED- SEQUENCE OF GULURONATE AND MANNURONATE (LF 20/60: 70%

GULURONATE)- THEY FORM STRONG PHYSICAL GELS IN PRESENCE OF DIVALENT

IONS (TYPICALLY Ca++)

Page 19: SIDE BY SIDE CELL

OO O

OH

OH

OHOH

OH

O

O OH

O

OCa 2+Ca++

Ca++ Ca++Ca++ Ca++ Ca++Ca++

EGG BOX CONFIGURATION

Page 20: SIDE BY SIDE CELL

1 DRUG SOLUBILITY CS IN THE RELEASE ENVIRONMEMT

Cs = 12945 ± 104 g/cm3 (DISTILLED WATER 37°C)

2 DRUG DIFFUSION COEFFICIENT DW IN THE RELEASE ENVIRONMEMT

t

VSK

eCC Rd

S 1

Kd = 0.62*DW2/3 1/2 *-1/6

0

0.0005

0.001

0.0015

0.002

0.0025

0 1 2 3 4 5

0.5

Kd(

cm/s

)

DW = (8.2 ± 0.6)*10-6 cm2/s (DISTILLED WATER 37°C)

IDRIDR

Page 21: SIDE BY SIDE CELL

3 DRUG POWDER DISSOLUTION CONSTANT KDP

Magnetic engine

Donor

solid drug

jack

et

SEALING TAPE

Page 22: SIDE BY SIDE CELL

- SINK CONDITIONS- Np MONOSIZED SPHERICAL PARTICLES (Rp0 INITIAL RADIUS)

t = 0

Rp0

t > 0

Rp

DISSOLUTION

SDPp2p

dd

d 4d

dd

d CKNRtCV

tM

PARTICLES SURFACE

SDP2p

3pp 4

34

dd

dd

CKRR

ttM

Md =drug amount in the donor (soluble)

Mp = solid particle mass

Page 23: SIDE BY SIDE CELL

tCKRtCKR

tCKC SDP2p0

22SDP

p033SDP2d 3

tCKRR

SDPp0p

d

P4VN

34 3p0

P0P

RMN

2p0P0 4 RNA

34 3p0

P0P

RMN

A

R 3p0

A = Particles initial surface areaMp0 = initial particles mass

Page 24: SIDE BY SIDE CELL

Theophylline m.(powder; water 37°C)

020406080

100120140160

0 5 10 15 20

t(s)

C(

g/cm

3 )

Modelexp

KDP = 1.2*10-3 cm/s

Page 25: SIDE BY SIDE CELL

4 DRUG PARTITION COEFFICIENT Kp (MEMBRANE/RELEASE ENVIRONMENT)

Cylindrical gel

(DISTILLED WATER 37°C)IDR

C0 = 20 g/cm3

V

Vg

24 hC∞

M0 = V*C∞+Vg* Cg∞

Kp = Cg∞ /C∞

900p .

VCCCVKg

Page 26: SIDE BY SIDE CELL

5 THICKNESS OF STAGNANT LAYERS SANDWICHING THE MEMBRANE

Donor Receiver

MEMBRANE

stirrer

jack

etjac ke t

stirrer

STAGNANT LAYER

STAGNANT LAYER

Page 27: SIDE BY SIDE CELL

Donor

DRUGja

cket

stirrer

0

50

100

150

200

250

300

0 100 200 300 400 500 600t(s)

C(

g/m

l)

mediamodello

t

VhSD

sseCC R

W

1S

hss = 60.7 m

STAGNANT LAYER

Page 28: SIDE BY SIDE CELL

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500t (s)

Cr(

g/cm

3 )4 - RESULTS

- Model- Linear approximation

Experimental data

Vr = 100 cm3 Dm = (5.1± 0.64)*10-6 cm2/sVd = 100 cm3

S = 10 cm2

%P = 4

Page 29: SIDE BY SIDE CELL

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

t(s)

Cr(

g/cm

3 )T = 25°C

1%

2%

4%

Page 30: SIDE BY SIDE CELL

T = 37°C

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

t(s)

Cr(

g/cm

3 )

1%

2%

4%

Page 31: SIDE BY SIDE CELL

MEMBRANES CHARACTERISTICS

Page 32: SIDE BY SIDE CELL

DIFFUSION COEFFICIENTS