Similarities between photophosphorylation and oxidative phosphorylation e-e- Proton pump ATP synthase H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ADP+Pi ATP e-e- e-e-

  • Published on
    21-Dec-2015

  • View
    216

  • Download
    1

Embed Size (px)

Transcript

<ul><li> Slide 1 </li> <li> Slide 2 </li> <li> Similarities between photophosphorylation and oxidative phosphorylation e-e- Proton pump ATP synthase H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ADP+Pi ATP e-e- e-e- Energy from electrons is used for H + translocation ATP synthesis is driven by H + gradient H + gradient formation </li> <li> Slide 3 </li> <li> Differences between photophosphorylation and oxidative phosphorylation e-e- Proton pump ATP synthase H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ADP+Pi ATP NADH FADH 2 NADP + NADPH O2O2 H2OH2O Energy source: light Energy source: electrons By-product: electrons By-product: water </li> <li> Slide 4 </li> <li> Slide 5 </li> <li> Photosynthesis: The light reactions (photophosphorylation) </li> <li> Slide 6 </li> <li> Chlorophyll (or other pigments) absorbs light energy and conserve it as ATP and NADPH. Not all photosynthetic organisms use H 2 O as electron donor in photosynthesis; thus not all of them produce O 2 while they produce ATP and NADPH. There are two types of photosynthesis: oxygenic (producing oxygen) photosynthesis and anoxygenic (not producing oxygen) photosynthesis. Only organisms with two photosystems can do oxygenic photosynthesis. At lease half of the photosynthsis in this world is done by microorganisms (algae, photosynthetic eukaryotes and photosynthetic bacteria). </li> <li> Slide 7 </li> <li> p724 </li> <li> Slide 8 </li> <li> Outer membrane Inner membrane Thylakoid membrane (lamellae) grana stroma lumen </li> <li> Slide 9 </li> <li> Slide 10 </li> <li> p729 Chloroplast has photosystems with closely arranged chlorophyll </li> <li> Slide 11 </li> <li> p727 Cyanobacteria &amp; red algae also contain similar structures called phycobilisome to facilitate light absorption </li> <li> Slide 12 </li> <li> p726 Alternating single and double bonds give strong absorption in the visible light The major light absorbing pigment in higher plants </li> <li> Slide 13 </li> <li> p726 The accessory pigment in bacteria and algae </li> <li> Slide 14 </li> <li> p725 What wavelength of light chlorophyll absorbs? </li> <li> Slide 15 </li> <li> p727 Chlorophylls can cover part of the spectrum blue and red </li> <li> Slide 16 </li> <li> The part of spectrum covered by chlorophylls coincides with the action spectrum of photosynthesis </li> <li> Slide 17 </li> <li> Accessory pigment: the red-orange -carotene p726 </li> <li> Slide 18 </li> <li> Accessory pigment: lutein (the red-orange isoprenoid) </li> <li> Slide 19 </li> <li> -carotene and lutein can help plant absorb more light </li> <li> Slide 20 </li> <li> Phycoerythrin and phycocyanin can absorb light that other pigments cannot absorb </li> <li> Slide 21 </li> <li> p731 (PSII) (PSI) Anoxygenic photosynthesis (pheophytin) (ferredoxin) (restore RC to original state) </li> <li> Slide 22 </li> <li> p733 The Z scheme of oxygenic photosynthesis Purple bacteria type Green bacteria type (pheophytin) (plastoquinone) (special form of chlorophyll) (phylloquinone) </li> <li> Slide 23 </li> <li> (A1)(A1) </li> <li> Slide 24 </li> <li> p736 LHCII holds grana together PSI and PSII on thylakoid membrane are separated to prevent Excition Larceny </li> <li> Slide 25 </li> <li> -Thr- P Granal stacking by LHCII is regulated by light intensity -Thr-OH LHCII Protein kinase ATP ADP Protein PPase Pi High light [PQH 2 ] [PQ] Low light [PQH 2 ] [PQ] appressed nonappressed </li> <li> Slide 26 </li> <li> p737 Cytochrome b 6 f complex </li> <li> Slide 27 </li> <li> Slide 28 </li> <li> p738 Oxidative phosphorylation and photophosphorylation has something in common in cyanobacteria </li> <li> Slide 29 </li> <li> e e e e e e e e Tyr p739 Oxygen-evolving complex (water-splitting complex) Mn P680 D1 D2 Pheo QAQA QBQB Fe e e e e 2H 2 O e e e e O2O2 4H + </li> <li> Slide 30 </li> <li> p741 P N </li> <li> Slide 31 </li> <li> p742 N N N </li> <li> Slide 32 </li> <li> p744 bacteriorhodopsin </li> <li> Slide 33 </li> <li> All-trans-retinal13-cis-retinol Proton transport </li> <li> Slide 34 </li> <li> p1062 Chloroplast from higher plants is probably evolved from endosymbiotic bacteria (prochlorophytes) Chloroplast from red algae is probably evolved from cyanobacteria </li> <li> Slide 35 </li> <li> p723 </li> </ul>