2
Kleine Mitteilungen ____. ~__.____. ~~ KLEINE MITTEILUNGEN ZAMM . Z. Angcw. Math. 11. Rfrcli. G4 (1984) 8, 363 -364 S. SCHAIBLE Simultaneous Optimization of Absolute and Relative Terms The optimization of a weighted sum of an absolute and a relative term is considered. Conditions for the functions defining these goals are derived that ensure one of the following properties of these nonconvex programs: a local maximum is a global one or an optimal solution is attained at an extreme point. In many applications of operations research relative rather than absolute terms are to be optimized giving rise to a fractional program [9, 16, 21, 22, 23, 241. Recently some authors have discussed the simultaneous optimization of two or more relative goals. The objective function then becomes a weighted sum of ratios [2,4,8,27]. Of particular interest is the special case where a compromise between an absolute and a relative goal is sought [l, 5-7, 10-15, 17, 18, 20, 25, 261. This may give rise to one of the following models: X€S or X€S Here the functions fi, ge may represent cost, revenue, profit, capital, risk, time etc. [21, 241. The real numbers 1 and p are parameters that express the relative importance of the absolute versus the relative goal. An example of model (1) would be t.he simultaneous maximization of profit and return on investment (profit per unit capital). Model (2) arises for example when a weighted sum of risk and expected return/risk is to be maximized (p < 0). Without loss of generality we can assume that the optimiza- tion problems are maximiza.tion problems and that the denomi- natorsf, and g1 are positive on S. Let us suppose that S is a con- vex set in Rn. We recall that if the objective function F (or G) is semistrictly quasiconcave I) on S then a local maximum in (1) (or (2)) is a global one [3]. Also, if F (or G) is quasiconvex on S an optimal solution of (1) (or (2)) is attained at an extreme point of S if S is compact. These features of an optimal solution me very valuable when a solution is to be calculated. In this note we derive conditions on fi, gi that ensure semi- strict quasiconcavity or quasiconvexity of F, G. For the sake of convenience we IISC the following abbrevia- tions : qcv = semistrictly quasiconcavc qcz = semistrictly quasiconvex. For definitions and characterizations of generalized conca.vefunc- tions the reader is refered to [3]. The concavity and/or convexity properties of fi, gr below ensure continuity on the relative interior of S. In the following we assume that these functions are continuous on all of 8. First we focus on the objective function P in (1). We can write F as a composite function F(z; A) = h( fl(r), f2(z) ; 1) where M ~ X ~(r; 1)= ~ ( x ) + .f,(x)/m) , Max ‘3%; id) = /vl(4 + &9/gl(4 , 3, z 0, (1) 11 f 0 . (2) h(y,, ~ 2; -A) + Y~/Y, 9 ~1 6 R 9 YZ > 0 * Furt,hormore NY~, Y~; -A) = Yl/k(YZ; 1) where k(y,;l) = y2/(1y2 + 1) for y2 > 0, . y2 # -1p. Here k(yz;-A) is either concave or convex depending on the signof-Aandwhethery,< -l/Aor yz> -l/ilincase1<O.Henceh is the ratio of a linear function and a concave or convex function. Such a ratio is either qcz or qcv; see for example [19J As a result we find: 1) According to [3] a function f is semistrictlv quasiconcave in S if for all x, FE Ssuch that f(z) # f(z weliave f(ti + (I - t);) > Min(f(%), f(=Z))for all 1 E (0,l). 363 ~ ~ ~- ~~ for -A > 0 h is qcx if y, 2 0 and qcv if y1 5 0, and for-A<0 hisqcvify,20andy2S --1/1ory,~O and y2 2 -111, and h is qcx if yl 2 0 and y2 2 -111 or y1 5 0 and ye 5 -111. From a criterion for the generalized concavity of monotone compositions of convex and/or concave functions [19] we find for F(x; A) the following properties that are summarized in the tables 1, 2 below: Table 1 a>o f, >O, concave fi 20 P qex convex 50 P qcv conrave Table 2 R<O - fz 5 -ua, 2 -I/& fi convex concave 20 qm F qcx concave 50 F qex B qcu convex In [20] such properties were discovered for the special case of linear functions j,, .f,. The foregoing shows that under rather general assumptions on ft the objective function F in (1) still has valuable generalized concavity properties. Remark: Accidently in [20] the bound --A instead of -1/-A appears in case 1 < 0. Let us now turn to the function G in (2). We can write G(x; P) = m(g,(x), g,M; cl) where m(Y19 Y2; = PYI + Y~/YI 1 YI > 0 9 E R . m(y1, Y2; Then = (clY;” + Y2)/Yl which is qcx if p > 0 it‘nd qcv if p < 0. Furthermore, m is increasing in yl if y, 5 py: and decreasing in y1 if y, 2 py?, and m is increasing in y2. Applying a criterion for the generalized concavity of composite functions [19] we find that G(r; p) has the properties summarized in the tables 3,4: Table 3 P>O Table 4 lr<O g, convex 9s concave 91 91 147: L 9, G qcx P!?? 2 9. G qcv convex concave . s ; 5 8% a qcx Pg: 592 G qcv concave convex ____- For linear functions gl, g2 these properties were shown in [ZO]. There the condition pgi: 2 g, or pg; 5 g, is not needed. This is still true if only g1 is linear. Indeed we have in this case: for p > 0 G is qcx if g2 is convex, and for p < 0 G is qcv if g, is concave. Like F the function G still possesses valuable generalized concavity properties under rather general assumptions. These will be useful when an optimal solution is calculated. References 1 AUQARWAL, S. P.; SAXENA, P. C., The deconiposition method for linear pro- gramming problems with linear and fractional target fnnctions, Przeglad Statyst ‘LS, 211 -219 (1976). 2 ALMOUY, Y.; LEVIN. O., A class offractional programming problems, Opera- tions Research 19, 57 -67 (1971). 3 AVRIEL, M.; DIEWERT, W. E.; SCHAIBLE, S.; ZIEMBA, W. T., Introduction to concave and generalized concave fnnctions. in SCHAIBLE. 5. and W. T. ZIEMBA (eds.),-Generalized Concavity in Optimization and Ehonomics, Aca- demic Press, New York 1981, 21 -50. 4 CABOT, A. V., Maximizing the sum of certain quasiconcave functions using generalized Benders decomposition, Naval Res. Logist. Quart. 26, 473 - 482 1191Qj \_”. -,. 5 CHADHA, S. S., Duality theorem for a generalized linear and linear fractional program, Cahiers Centre d’Etud. Rech. OpBrat. 16, 167 -173, (1873). 6 CPADHA, 9.5.; GUPTA, J. M., Sensitivity analysis of the solution of a genera- lized linear and piecewise linear program, Cahiers Centre d’Etud. Rech. OpBrat. 18, 309-321 (1976). 7 CHADHA, 9. 9.; SHIVPWI, S., Parametrization of a generalized linear and piece-wise linear programming problem. Trabajos Estadist., Investigacion Operat. 28, 151-160 (1877).

Simultaneous Optimization of Absolute and Relative Terms

Embed Size (px)

Citation preview

Page 1: Simultaneous Optimization of Absolute and Relative Terms

Kleine Mitteilungen ____. ~__.____. ~~

KLEINE MITTEILUNGEN

ZAMM . Z . Angcw. Math. 11. Rfrcli. G4 (1984) 8, 363 -364

S. SCHAIBLE

Simultaneous Optimization of Absolute and Relative Terms

The optimization of a weighted sum of an absolute and a relative term is considered. Conditions for the functions defining these goals are derived that ensure one of the following properties of these nonconvex programs: a local maximum is a global one or an optimal solution is attained a t a n extreme point.

I n many applications of operations research relative rather than absolute terms are to be optimized giving rise to a fractional program [9, 16, 21, 22, 23, 241. Recently some authors have discussed the simultaneous optimization of two or more relative goals. The objective function then becomes a weighted sum of ratios [2,4,8,27]. Of particular interest is the special case where a compromise between an absolute and a relative goal is sought [l, 5-7, 10-15, 17, 18, 20, 25, 261. This may give rise to one of the following models :

X€S

or

X € S

Here the functions fi, ge may represent cost, revenue, profit, capital, risk, time etc. [21, 241. The real numbers 1 and p are parameters that express the relative importance of the absolute versus the relative goal.

An e x a m p l e of m o d e l (1) would be t.he simultaneous maximization of profit and return on investment (profit per unit capital). Model (2) arises for example when a weighted sum of risk and expected return/risk is to be maximized (p < 0).

Without loss of generality we can assume that the optimiza- tion problems are maximiza.tion problems and that the denomi- natorsf, and g1 are positive on S. Let us suppose that S is a con- vex set in Rn. We recall that if the objective function F (or G) is semistrictly quasiconcave I ) on S then a local maximum in (1) (or (2)) is a global one [3]. Also, if F (or G) is quasiconvex on S an optimal solution of (1) (or (2)) is attained a t an extreme point of S if S is compact. These features of an optimal solution me very valuable when a solution is to be calculated.

I n this note we derive conditions on fi, g i that ensure semi- strict quasiconcavity or quasiconvexity of F , G .

For the sake of convenience we IISC the following abbrevia- tions :

qcv = semistrictly quasiconcavc qcz = semistrictly quasiconvex.

For definitions and characterizations of generalized conca.ve func- tions the reader is refered to [3].

The concavity and/or convexity properties of f i , gr below ensure continuity on the relative interior of S. I n the following we assume that these functions are continuous on all of 8.

First we focus on the objective function P in (1) . We can write F as a composite function F ( z ; A) = h( fl(r), f2(z) ; 1) where

M ~ X ~ ( r ; 1) = ~ ( x ) + .f,(x)/m) ,

Max ‘3%; i d ) = / v l ( 4 + & 9 / g l ( 4 ,

3, z 0, (1)

11 f 0 . (2)

h(y,, ~ 2 ; -A) + Y~/Y, 9 ~1 6 R 9 YZ > 0 *

Furt,hormore

N Y ~ , Y ~ ; -A) = Yl/k(YZ; 1) where

k(y,;l) = y2/(1y2 + 1) for y2 > 0 , . y2 # -1p. Here k(yz;-A) is either concave or convex depending on the signof-Aandwhethery,< -l/Aor yz> -l/ilincase1<O.Henceh is the ratio of a linear function and a concave or convex function. Such a ratio is either qcz or qcv; see for example [19J As a result we find:

1) According to [3] a function f is semistrictlv quasiconcave in S if for all x , FE Ssuch that f(z) # f(z weliave f ( t i + (I - t ) ; ) > Min(f(%), f(=Z))for all 1 E (0,l).

363 ~ ~ ~- ~~

for -A > 0 h is qcx if y, 2 0 and qcv if y1 5 0, and for-A<0 h i s q c v i f y , 2 0 a n d y 2 S - - 1 / 1 o r y , ~ O

and y2 2 -111, and h is qcx if yl 2 0 and y2 2 -111 or y1 5 0 and ye 5 -111.

From a criterion for the generalized concavity of monotone compositions of convex and/or concave functions [19] we find for F(x; A ) the following properties that are summarized in the tables 1, 2 below:

Table 1 a > o

f, > O , concave fi 2 0 P qex convex 5 0 P qcv conrave

Table 2 R < O

- f z 5 -ua, 2 -I/&

fi convex concave

2 0 qm F qcx concave

5 0 F qex B qcu convex

I n [20] such properties were discovered for the special case of linear functions j , , .f,. The foregoing shows that under rather general assumptions on f t the objective function F in (1) still has valuable generalized concavity properties.

R e m a r k : Accidently in [20] the bound --A instead of -1/-A appears in case 1 < 0.

Let us now turn to the function G in (2). We can write

G(x; P ) = m(g,(x), g,M; cl)

where

m(Y19 Y2; = PYI + Y ~ / Y I 1 YI > 0 9 E R .

m(y1, Y2;

Then

= (clY;” + Y2)/Yl

which is qcx if p > 0 it‘nd qcv if p < 0. Furthermore, m is increasing in yl if y, 5 py: and decreasing in y1 if y, 2 py?, and m is increasing in y2. Applying a criterion for the generalized concavity of composite functions [19] we find that G ( r ; p) has the properties summarized in the tables 3,4:

Tab le 3

P > O

T a b l e 4 l r < O

g, convex 9 s concave 91 91

147: L 9, G qcx P!?? 2 9. G qcv convex concave

.s; 5 8% a qcx Pg: 5 9 2 G qcv concave convex

____-

For linear functions gl, g2 these properties were shown in [ZO]. There the condition pgi: 2 g, or pg; 5 g, is not needed. This is still true if only g1 is linear. Indeed we have in this case:

for p > 0 G i s qcx if g2 is convex, and for p < 0 G is qcv if g, is concave.

Like F the function G still possesses valuable generalized concavity properties under rather general assumptions. These will be useful when an optimal solution is calculated.

R e f e r e n c e s

1 AUQARWAL, S. P. ; SAXENA, P. C., The deconiposition method for linear pro- gramming problems with linear and fractional target fnnctions, Przeglad Statyst ‘LS, 211 -219 (1976).

2 ALMOUY, Y.; LEVIN. O., A class offractional programming problems, Opera- tions Research 19, 57 -67 (1971).

3 AVRIEL, M.; DIEWERT, W. E.; SCHAIBLE, S.; ZIEMBA, W. T., Introduction to concave and generalized concave fnnctions. in SCHAIBLE. 5. and W. T. ZIEMBA (eds.),-Generalized Concavity in Optimization and Ehonomics, Aca- demic Press, New York 1981, 21 -50.

4 CABOT, A. V., Maximizing the sum of certain quasiconcave functions using generalized Benders decomposition, Naval Res. Logist. Quart. 26, 473 - 482 1191Qj \_”. -,.

5 CHADHA, S. S., Duality theorem for a generalized linear and linear fractional program, Cahiers Centre d’Etud. Rech. OpBrat. 16, 167 -173, (1873).

6 CPADHA, 9.5.; GUPTA, J. M., Sensitivity analysis of the solution of a genera- lized linear and piecewise linear program, Cahiers Centre d’Etud. Rech. OpBrat. 18, 309-321 (1976).

7 CHADHA, 9. 9.; SHIVPWI, S., Parametrization of a generalized linear and piece-wise linear programming problem. Trabajos Estadist., Investigacion Operat. 28, 151-160 (1877).

Page 2: Simultaneous Optimization of Absolute and Relative Terms

___ -__- ~ _ _ _ 364 Kleine Mitteilungen

8 CHno, E. TJ., Multicriteria Linear Fractional l'rogramming, Ph. 1). Thesis,

9 CRAVEN, B. D., Mathematical Programming and Control Theory, (!Iiapmnn and Hall, London 1978.

1 0 HIRCHE, J., Zur Extremwertannahme und Dualitnt hei Optimiernngnpro- blemen mit linearem und gehrochen-Hnearem Zielfunktionsanteil, ZAMM 65, - -L 184 - 185 (1975).

1 1 HIXCHE, J . ; TAN, H. K., l!ber eine Xlasse nichtkonvexer Opt,imiernngspro- bleme, ZAMM 6'7, 247-253 (1977).

12 KANCHAN, P. R., Upper bounds in linear and piecewise linear programniing, Acta Ciencia Indica 5, 357-360 (1977).

niques in linear-plus-fractioiial programming, Cithicrs Cent,re cl'Etnii. JLecli. OpBrat. 25, No. 2 (1981).

1 4 LIJPBA, L., Sur l'nllure d'une classe d e fonctlons hyperboliques, Studia llniv. Babeg-Bolyiti, Matliematica 2% No. 2, 86-72 (1978).

15 MIBRA, S.; DAB, c, , The sum of a linear and linear fractjional function and a three dimensional transportation problem, Opaearch 18, 139-157 (1981).

16 MJELUE, K. M., Methods of the Allocation of Limited Resources. J . Wiley and Sons, Chichester 1983.

17 RITTER, K., A parametric method for solving certain nonconcave maximiza- tion problems, J. of Computer and System Sciences 1, 4 4 - 5 4 (1967).

18 SAXENA, Y. C.; PATKAR, V.; PARKABH, O., A note on an algorithm for integer solution to linear and piecewise linear programs, Pure and Appl. Math. Soi. 9, 31-36: (1979). n n

19 SCHAIHLE, S., Quasironvex optimization in general real linenr spacw, %. filr Operations llesearclr 16, 205 -213 (1972). i - 1 j = 1 20 SCHAIBLE, S., A note on the sum of a linear and linear fractional fnnrtion, Naval Res. Logist. Quart. 94, 691 -693 (1977).

21 SCHAIRLE, S., Analyse und Anwendnngen von Quot.ientenprograinriiell, Hain-Verlag, Meinenheim 1978.

22 SCHAIHLE, S., A survey of fractional programming, in SCHAIHLE, S. and W. I!. ZIEMBA (eds.), Generalized Concavity in Optimization and Economics, Acade- mic Press, New York 1981, 417-440. C i j = z Z j , i,j=l, ..., n , 23 SCHATBLR, S., Bihliography in fractional programming, Z. fiir Operations Iles. 26, 211-241 (1982).

European J . of Operational Reiiearch 12, 325 - 338 (1983).

gramming, Acta Clencia Indica 4, 199-201 (1978).

ing, (Russian), Ekon. i. Mat. Net. 6 , 440--447 (1969); lhglish translation 5.. , J - l , - Z [ ; j = l , ( q . , . > O , i . j = l , ..., n,, (10)

[rniversity of British Columbia 1981.

wohei Y = (y,, y,, ... , ?/k) wiedcr spaltenorthogonal niit 11!/,11 2 lk/zll 2 ... k 11?/h'l1 ist. Wir norltlierell die ?/I, ... , It Ulld Cr-

ganzen dicse zu einer orthogonalen Matrix 1Jniversit.y of British Colnmbia (1980).

I k , xk:+i , ... , xn E R9t.n . (6) 1 ' - ( ~ ~ ~ 1 ~ ~ ' * * ' ' 1l!/k11

Dann 1iflt sic11 1imgpl<ehrt 1.' in ,Ier Form 1 3 KANCBAN, P. R.; HOLLAND, A. 8. B.; SAHNEY, B. N., Transportation tech- (Y, 0 ) = Zdl/? (7)

mit A = Diag (&,8,, ... , 8,)

= I l ~ i l l ~ = llzi1I2, i = 1, ... , k , i = k + 1, ... , n , b

darstellen. Es gilt dnnn auch 8, 2 8,z ... 2 6,. Damit l&Bt sich (5) nlit

s p S T A ~ ~ = R p ~ T A 1' = sp d1/2%TA%,l1/2 = 2 2' Ai+ij . (8)

Diesen Ausdriwk wollen mir iiber alle orthogonalen Matxizen Z nach oben scharf absrhatzcn h w . maximicren. Hirrzu fiihren wir die Variablen

= ( z i j ) i , j=l, 2, ,.,, writcr umrc.ctlncn,

(9) ein, welche linter al1einigr.r Bcriicksiclit'igung iler Zeilen- und Spaltennormicrung der ~rt~hogonnlen Matrix Z den Rcst,riktio- nen n

24 SL'HIIHLE, s,; IsARAKI, T,, Fractional programmi,lR (Invited review),

25 SHUKLA, D. P.; KANCHAN, P. K., Sum of linear and linear fractional pro-

26 TETRREV, A. G., On a generalization of linear and piecewi*e linear programm-

27 WARBURTON, A. R., Topics in Molticritrria Optimization, Pli. I). Tlieniq,

n

in Matekon, 246-258 (1970). i z. 1 j==1

geniigen. Wir maxiniieren nun (8) statt iiber alle orthogonalrn Matrizcn Z = (zij) iiber die [ij rnit den schwacheren Kestriktio- nen (10) und hoffen, dal3 sich dabei derselbe Maximalwert und damit eine scharfe Abschitzung fur (8) ergibt.

Wir betrachten also dns folgcndr %~~ordn~rngnprohlam mi t biproportionalr?n 'Tosten,

Received Sept,ember 22, 1982, revised version March 26, 1983

Address: Professor Dr. SIEGFRIED SCHAIBLE, Faculty of Business Administration and Commerce, University of n n

i = l j - 1 Alberta, Edmonton, Alberta T6G 2G1, Canada F = 2 2 L,Bj( i j = Max! (11)

fiber n n

i - 1 j- I

mit

z [ i j = l , X [ i j = l , [ijzo, i , . j = = l , ..., n ,

ZAMRI. Z. Angcw. Mntli. u. Mcch. 64 (1984) 8 ,361 - 3 6 5

J. FOCKE A, 2 a, 2 ... 2 A,, 8, 2 8, 2 ... 2 8,.

Diescs Problcm kann man iibcr die allgemeine Theorie dcs Zu- ordnungsproblcnis bzw. der linenren Optimierung hehandeln; es l i B t sich aber such als ein spezielles Transportproblem mit biproportionalen Kost,en element,ar liisen 131. Als Mnximalwcrt

>:he Abschltzung fur quadratisehe Formen Fiir quadratische Formen gilt die bekannte Abschitzung zTAx 1, l l ~ 1 ) ~ fur alle x E Rn (1) ergibt sich dnnn

dnrch den groaten Eigenwert 1, von A und die eiiklidische Norm Max F = 1.8, 4- -1- ... -C I.+,& . (12) I & , a * I , ,* ,. \ - - I yon x . Weniger bekannt, aber in den Anwendungen sehr niitz- ]ich, ist die in foIgelldem L~~~~ angegebene vera1lgemeinerung dieser Abschatzung, welche auch eine Verallgemeinerung der

Wir erlialten daniit fiir (8) unter Benrhtung von (7) die Ab- schatzung

Ungleichung von KY FAN [I] (vergl. auch [2],%. 77) darstullt. Sp X T A X 5 1161 + A,8, + ... 4- -1- &+I . 0 + ... + 1, . 0 5

X = (Pi, 22, ... 9 Xk) E Rn'k 9 llQlll 2 llzzll 2 ... 2 l l p k l l > 0 9

(2)

(3)

die scharfe Abschutzung

SpXTAs ~ ~ i ~ / ~ l ~ ~ z +&11x~11~ + .*. + & l I z k l / ' -

Das Gleichheitszeichen wird angenommen, wenn jedes xi ein zu Li zugekiiriger Eigenvektor von A ist.

Beweis: Wir transformieren A mittels der Matrix Q = = (q,, q,, ... , 9%) der orthonormierten Eigenvektoren auf Hauptachsengestalt *

Dann transformiert sich die Spur in (3).gemlB Q T A Q = A = Diag (AL, A,, ... ,A,) rnit Q T Q = I . (4)

Sp XTAX = Sp YTAY rnit Y = QTX, 16)

A n w e n d u n g auf e i n A n s g l e i c h s p r o b l e m

I n der Statistik, insbesondere bei der sog. Hauptkomponenten- methode der Faktoranalyse, spielt, das folgcnde Ansgleichspro- blem eine wichtige Rolle,

IIA - XXT112 = Miri! , X E Rn,fi, (14) wobei A eine symmetrischc n . n-Matrix und I I .. .I I die Quadrat- summen-Matrixnorm sind. Wir wollen dieses Problcm durch scharfes Abschatzen mittels unseres Lemmas losen, wobei sich zugleich die Existenz des Minimums ergibt. Da X nur iiber das Produkt X X T in die Zielfnnktion eingeht,, ist die Minimallosung nur bis auf Rotation im R k bestimnit, und wir kBnnen uns bei der Minimierung von (14) auf spaltenorthogonale X mit gemal3 (2) geordneten Spaltenvektoren z.~ beschrinken,