32
Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction Ju-Yueh Lee 1 Yu Hu 1 Rupak Majumdar 2 Lei He 1 1. Department of Electrical Engineering 2. Department of Computer Science University of California Los Angeles (This research is partially supported by the NSF and Actel.) International Symposium on Quality Electronic Design, 2009

Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Simultaneous Test Pattern Compaction, Orderingand X-Filling for Testing Power Reduction

Ju-Yueh Lee1 Yu Hu1 Rupak Majumdar2 Lei He1

1. Department of Electrical Engineering2. Department of Computer ScienceUniversity of California Los Angeles

(This research is partially supported by the NSF and Actel.)

International Symposium on Quality Electronic Design, 2009

Page 2: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Outline

Introduction

Preliminaries

Problem Formulation and Algorithms

Experimental Results

Conclusions and Future Work

Page 3: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Scan-Based Testing

������������

���

����

���

���

�������

�������������

�������

�������

��

��������

��

����������

��

��

���

���

��

��

�����������

��� �������� ���������������������

������� �����������������

��������������� ��������������������������

��������������� �������

���� �� ���� � � �� ���

� �� �

Page 4: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Increasing Testing Power Concerns

1. Testing power is several times higher than normal mode power

I Requirements of test time reductionI Increasing test concurrency (Test multiple modules

simultaneously)I Increasing frequency of scan shift

I Requirements of test data volume reductionI Compression and compaction techniques elevate circuit

switching

I Various stressful conditions (voltage and temperature)I Redundant switching in circuit logic during scan shift

Page 5: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Increasing Testing Power Concerns

1. Testing power is several times higher than normal mode power

I Requirements of test time reductionI Increasing test concurrency (Test multiple modules

simultaneously)I Increasing frequency of scan shift

I Requirements of test data volume reductionI Compression and compaction techniques elevate circuit

switching

I Various stressful conditions (voltage and temperature)I Redundant switching in circuit logic during scan shift

2. Excessive testing power causesI Low reliabilityI Structural damage to the silicon or packageI Large voltage drop, leading to erroneous data

Page 6: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Test Power Breakdown

1. Average power vs. peak powerI Average power: reliability (temperature, EM)I Peak power: packaging issues, IR drop

Page 7: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Test Power Breakdown

1. Average power vs. peak powerI Average power: reliability (temperature, EM)I Peak power: packaging issues, IR drop

2. Shift power vs. capture powerI Low Frequency Shifts: Average Shift power may be a concernI High Frequency Shifts: Peak and Average power becomes a

concernI Capture power: Fast capture pulses in transition patterns

cause Peak power (IR drop) issues

Page 8: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Test Power Breakdown

1. Average power vs. peak powerI Average power: reliability (temperature, EM)I Peak power: packaging issues, IR drop

2. Shift power vs. capture powerI Low Frequency Shifts: Average Shift power may be a concernI High Frequency Shifts: Peak and Average power becomes a

concernI Capture power: Fast capture pulses in transition patterns

cause Peak power (IR drop) issues

3. Our approachI considers both shift and capture powerI can be applied to both average and peak power

Page 9: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Existing Techniques for Testing Power Reduction

1. Design For Test (DFT)

Page 10: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Existing Techniques for Testing Power Reduction

1. Design For Test (DFT)

2. Automatic Test Pattern Generation (ATPG)I Test patterns consist of care bits and don’t-care bits, e.g., a

pattern (0XXX1XX) has 5 don’t care bits and 2 care bitsI ATPG decides both fill of don’t-care bits and the order of a

sequence of test vectors

Page 11: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Existing Techniques for Testing Power Reduction

1. Design For Test (DFT)

2. Automatic Test Pattern Generation (ATPG)I Test patterns consist of care bits and don’t-care bits, e.g., a

pattern (0XXX1XX) has 5 don’t care bits and 2 care bitsI ATPG decides both fill of don’t-care bits and the order of a

sequence of test vectors

3. Three major techniques for power-aware ATPG have beenproposed, i.e., compaction, ordering and X-filling

Page 12: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Existing Techniques for Testing Power Reduction

1. Design For Test (DFT)

2. Automatic Test Pattern Generation (ATPG)I Test patterns consist of care bits and don’t-care bits, e.g., a

pattern (0XXX1XX) has 5 don’t care bits and 2 care bitsI ATPG decides both fill of don’t-care bits and the order of a

sequence of test vectors

3. Three major techniques for power-aware ATPG have beenproposed, i.e., compaction, ordering and X-filling

4. However, most previous researches perform the threeoptimizations sequentially, which may cause loss of optimality

Page 13: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Major Contributions

1. Propose an optimal formulationfor simultaneous test patterncompaction, ordering and X-fillingfor test mode power minimization.

I A uniform pseudo Boolean(PB)-based algorithm,applicable to both average andpeak power minimization.

I Reduce power dissipation by47%, compared to sequentialapproach.

����

�������

������ �

������� �

����

��������

�������� ��������

������ ����

������� �

������ �� �

������� �

�����

������������

� �����

Page 14: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Pseudo-Boolean (PB) Problem

I Pseudo-Boolean (PB) Constraint is an inequality

C0p0 + C1p1 + · · · + Cn−1pn−1 ≥ Cn,

where pi is a literal and Ci is an integer coefficient for each i .

I An objective function is a sum of weighted literals on thesame form as PB constraints.

I The Pseudo-Boolean Constraint Problem is to find asatisfying assignment to a set of PB-constraints thatminimizes a given objective function.

I PB Problem can be solved byI A generic 0-1 ILP solver, e.g., mosekI A specialized SAT-based solver, e.g., minisat+

Page 15: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Test Power Modeling

I Scan energy for the test vectors, −→s1 , · · · ,

−→sn is

Ereg (−→s1 , · · · ,

−→sm) =

m∑

i=1

K−1∑

j=1

wij · |s ji − s j+1

i |,

where wij is the weight to characterize the loading capacitanceof the scan-chain registers and the weighted transition count(WTC), which has been normalized based on the K .

Page 16: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Test Power Modeling

I Scan energy for the test vectors, −→s1 , · · · ,

−→sn is

Ereg (−→s1 , · · · ,

−→sm) =

m∑

i=1

K−1∑

j=1

wij · |sji − s j+1

i |,

I Capture energy due to the switch of two test vectors,−→si → −−→si+1, is

Ecap(−→si → −−→si+1) =∑

g∈G

Cg · | vg (−→si ) − vg (−−→si+1)|

where Cg is the loading capacitance of gate or register g inthe circuit which is calculated based on Weighted SwitchingActivity (WSA). vg (−→si ) is the logic value at gate g under testvector −→si .

Page 17: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Test Power Modeling

I Average test power for test vectors, −→s1 , · · · ,

−→sm̂, is

P(−→s , m̂) =Ereg (−→s1 , · · · ,

−→sm̂) +∑m̂−1

i=1 Ecap(−→si → −−→si+1)

m̂.

I Peak test power for test vectors, −→s1 , · · · ,

−→sm̂, is

P(−→s ) = max(maxi

(

K−1∑

j=1

wij ·|sji −s j+1

i |),maxi

(Cg ·|vg (−→si )−vg (−−→si+1)|))

Page 18: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Problem Formulation: simultaneous test pattern

compaction, ordering and X-filling (COX) for test powerminimization

Given a set of test patterns−→t1 , · · ·

−→tm, find an ordered set of test

vectors −→s1 , · · · −→sm̂ such that

I each −→si ∈ {0, 1}K (i.e., contains no don’t-care terms),

I m̂ ≤ m,

I fault coverage is preserved (i.e., for each−→ti there is some −→sj

such that −→sj a−→ti ),

I the testing power dissipation objective (either overalldissipation or peak dissipation) is minimized.

Page 19: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

PB Formulation for COX Problem

COX problem

I the testing powerdissipation objective isminimized.

I fault coverage is preserved,

I test vectors contain nodon’t-care terms,

I m̂ ≤ m,

PB-based formulation

minimize P(−→s , m̂)subject toCNFG (−→si ) for i = [1,m],∨m̂

j=1(−→sj a

−→ti ) for i = [1,m],

s ji ∈ {0, 1} fori = [1,m],

j = [1,K ],

Page 20: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Example

��

��

������ �����

������

������ �����

������

������ �����

������

������ �����

������

��

����������

I Nine 0-1 variables (literals) areneeded:

−→s1 = (s11 , s2

1 , s31 ) ∈ {0, 1}3

−→s2 = (s12 , s2

2 , s32 ) ∈ {0, 1}3

−→s3 = (s13 , s2

3 , s33 ) ∈ {0, 1}3

I the objective function is

Ereg =P3

i=1

P2j=1 |s

ji− s

j+1i

|

Ecap =P2

i=1

P

g∈G Cg · |vg (−→si ) − vg (−−→si+1)|,

where G = {z1, z2, z3, f }.

I |x1 − x2| = x1 ⊕ x2 can berewritten in CNF:

(¬x1 ∨ ¬x2 ∨ y) ∧ (x1 ∨ x2 ∨ y)∧(¬x1 ∨ x2 ∨ ¬y) ∧ (x1 ∨ ¬x2 ∨ ¬y).

Page 21: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Example

��

��

������ �����

������

������ �����

������

������ �����

������

������ �����

������

��

����������

The logic value constraints

CNFG (−→si ), for i = [1,m],

are as follows.

(s1i ∨ ¬v i

z1) ∧ (s2

i ∨ ¬v iz1

) ∧ (¬s1i ∨ ¬s2

i ∨ v iz1

) ∧

(s3i ∨ ¬v i

z2) ∧ (s2

i ∨ ¬v iz2

) ∧ (¬s3i ∨ ¬s2

i ∨ v iz2

) ∧

(¬v iz1

∨ v iz3

) ∧ (¬v iz2

∨ v iz3

) ∧ (v iz1

∨ v iz2

∨ ¬v iz3

) ∧

(¬v iz3

∨ ¬v iz4

) ∧ (v iz3

∨ v iz4

)

where v ig denotes vg (−→si ), and the above four

constraints represents the characteristic functionto compute the logic value of AND gates z1 and z2,OR gate z3 and INV gate f , respectively, under testvector −→si , for i = 1, · · · , 3.

Page 22: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Example

��

��

������ �����

������

������ �����

������

������ �����

������

������ �����

������

��

����������

To cover all faults, we have

((s11 ∧ ¬s2

1 ) ∨ (s12 ∧ ¬s2

2 ) ∨ (s13 ∧ ¬s2

3 ))∧((¬s2

1 ∧ s31 ) ∨ (¬s2

2 ∧ s32 ) ∨ (¬s2

3 ∧ s33 ))∧

((¬s11 ∧ ¬s2

1 ) ∨ (¬s12 ∧ ¬s2

2 ) ∨ (¬s13 ∧ ¬s2

3 ))∧((s1

1 ∧ s21 ) ∨ (s1

2 ∧ s22 ) ∨ (s1

3 ∧ s23 ))

Page 23: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Example

��

��

������ �����

������

������ �����

������

������ �����

������

������ �����

������

��

����������

After solving the above PB constraintproblem, the optimal solution returnedby PB solver is

−→s1 = (0, 0, 1)−→s2 = (1, 1, 1)−→s3 = (1, 0, 0)

Page 24: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Peak Power Minimization

Original formulation

minimize P(−→s ) = max(maxi ,j(wij · |sji − s j+1

i |),maxi(Cg · |vg (−→si ) − vg (−−→si+1)|))

subject to all constraints from average power minimization

PB-based formulation

minimize t

subject to∑K−1

j=1 wij · |sji − s j+1

i | ≤ t

Cg · |vg (−→si ) − vg (−−→si+1)| ≤ tall other constraints from average power minimization

Can be solved by the binary search of t.

Page 25: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Speedup By Slicing Window

Page 26: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Experimental Settings

I ISCAD’89 benchmark circuits

I Test pattern generated by ATALANTA

I PB problem solved by minisat+

I Baseline sequential algorithm (“seq”)I Compacted by ATALANTAI X-filled by repeated filling [Costa, IWLS’98]I Ordered by a TSP-based algorithm [Costa, IWLS’98]

Page 27: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Optimal vs. Slicing Window (SW)-Based Heuristic

��

���

����

�����

������

��� ���� �� ���

�� ������

������������ �����

������� �� ��!"#����#I Due to the capability of

PB solver, four smallcircuits (s27, s298, s344,s349) are tested using 20test patterns

I The same results areobtained by the twoapproaches.

I SW is three orders ofmagnitude faster.

Page 28: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Convergency Slicing Window

050

100150200250300350

1 51 101 151 201 251 301 351 401Iterations of slicing windows

# of

rem

aine

d te

st v

ecto

rs

Convergent point

I Window size 4

I Benchmark: s298

I SW converges when 150windows are passed, i.e. 4iterations

Page 29: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Power Dissipation Comparisons

��

��

��

��

#�

$�

��$

���%�

�&�

���

���

���

��&

���

#�$

#�$�

���

���

#��

���

���

���

$��

������ ��'������ ��� ���� ������!����� �������� �����(��)�� ������������"

�����!������������� ���

�)�� ������������ � ����� �������� � ����� ��������

Page 30: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Test Set Size Comparisons

��

��

��

��

���

���

���

���

����

����

����

����

����

����

������

����

����

����

����

����

����

�����

����

����

����

��� �� ���� �� ����

����� ��!���� ����������� �������"�����#������� �$

%�������� ���

��"�����#������� � & �� �& ���'��(�� & �� �& ���'��(��

Page 31: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Runtime Comparisons

���� �������� �� ������� �� ����������������������������������� ������������������� �����������������������������

��

���

����

�����

������

� !�

��"!

���!#�

���!

����

� !�

����

�$���

�$��

� ��

�$��

� �"

����

����

������ %�� �����&� ����������� �����������������������'

�������&�����'

�������������� ��������������

Page 32: Simultaneous Test Pattern Compaction, Ordering and X ...eda.ee.ucla.edu/pub/C128_ppt.pdf · Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Conclusions and Future Work

I A uniformed formulation for the problem of simultaneouslycompacting, ordering, and Xfilling to minimize powerdissipation is proposed

I Our proposed approach reduces average power by 47%compared to the conventional sequential approach

I In the future, we willI conduct experiments on average power minimization under

peak power constraintI futhere improve the efficiency of the proposed algorithm