27
Slater’s condition: proof p* = inf x f(x) s.t. Ax = b, g(x) 0 e.g., inf x 2 s.t. e x+2 – 3 0 A = e.g., A =

Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Slater’s condition: proof

• p* = infx f(x) s.t. Ax = b, g(x) ≤ 0e.g., inf x2 s.t. ex+2 – 3 ≤ 0

• A =

e.g., A =

Page 2: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Picture of set AL(y,z) =

Page 3: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Nonconvex example

Page 4: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Interpretations

L(x, y, z) = f(x) + yT(Ax–b) + zTg(x)

• Prices or sensitivity analysis

• Certificate of optimality

Page 5: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Optimality conditions

• L(x, y, z) = f(x) + yT(Ax–b) + zTg(x)• Suppose strong duality, (x, y, z) optimal

Page 6: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Optimality conditions

• L(x, y, z) = f(x) + yT(Ax–b) + zTg(x)• Suppose (x, y, z) satisfy KKT:

Ax = b g(x) ≤ 0z ≥ 0 zTg(x) = 00 ∈ ∂f(x) + ATy + ∑i zi ∂gi(x)

Page 7: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Using KKT

• Can often use KKT to go from primal todual optimum (or vice versa)

• E.g., in SVM:αi > 0 <==> yi(xi

Tw + b) = 1• Means b = yi – xi

Tw for any such i– typically, average a few in case of roundoff

Page 8: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Set duality• Let C be a set with 0 ∈ conv(C)• C* = { y | xTy ≤ 1 for all x ∈ C }• Let K = { (x, s) | x ∈ sC }• K* = { (y, t) | xTy + st ≥ 0 for all X ∈ K }

Page 9: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

What is set duality good for?

• Related to norm duality• Useful for helping visualize cones

Page 10: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Duality of norms

• Dual norm definition||y||* = max

• Motivation: Holder’s inequalityxTy ≤ ||x|| ||y||*

Page 11: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Dual norm examples

Page 12: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Dual norm examples

Page 13: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Dual norm examples

Page 14: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Cuboctahedron

Page 15: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

||y||* is a norm

• ||y||* ≥ 0:

• ||ky||* = |k| ||y||*:

• ||y||* = 0 iff y = 0:

• ||y1+y2||* ≤ ||y1||* + ||y2||*

Page 16: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Dual-norm balls

• { y | ||y||* ≤ 1 } =

• Duality of norms:

Page 17: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Visualizing cones

• Suppose we have some weird cone inhigh dimensions (say, K = S+)

• Often easy to get a vector u in K ∩ K*– e.g., I ∈ S+, I ∈ S+* = S+

• Plot K ∩ { uTx = 1 } and K* ∩ { uTx = 1 }instead of K, K*– saves a dimension

Page 18: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Visualizing S+

• Say, 2 x 2 symmetric matrices• Add constraint tr(XTI) = 1• Result: a 2D set

Page 19: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =
Page 20: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

What about 3 x 3?

• 6 parameters in raw form• Still 5 after tr(X)=1• Try setting entire diagonal to 1/3

– plot off-diagonal elements

Page 21: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =
Page 22: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Visualizing 3*3symmetric semidefinite

matrices

Page 23: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Multi-criterion optimization

• Ordinary feasible region

• Indecisive optimizer: wants all of

Page 24: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Buying the perfect car $K 0-60 MPG

Page 25: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Pareto optimalityx* Pareto optimal =

Page 26: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Pareto examples

Page 27: Slater’s condition: proof - Carnegie Mellon School of Computer …ggordon/10725/10725-S08/slides/... · 2009. 4. 16. · Slater’s condition: proof •p* = inf x f(x) s.t. Ax =

Scalarization

• To find Pareto optima of convex problem: