25
Solid state physics N. Witkowski

Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

Embed Size (px)

Citation preview

Page 1: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

Solid state physics

N. Witkowski

Page 2: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson http://www.teknik.uu.se/ftf/education/ftf1/FTFI_forsta_sidan.html 40h Lessons with N. Witkowski

house 4, level 0, office 60111, e-mail:[email protected]

6 laboratory courses (6x3h): 1 extended report + 4 limited reports Semiconductor physics Specific heat Superconductivity Magnetic susceptibility X-ray diffraction Band structure calculation

Evaluation : written examination 13 march (to be confirmed) 5 hours, 6 problems document authorized « Physics handbook for science and engineering» Carl

Nordling, Jonny Osterman Calculator authorized Second chance in june

Introduction

Given between 23rd feb-6th marchRegistration : from 9th feb on board F and Q House 4 ground level

Info comes later

Home work

Page 3: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

What is solid state ?

Single crystals

Polycristalline crystals

Amorphous materials

Quasicrystals Long range order no no 3D translational periodicity

Long range order and 3D translational periodicity

Single crystals assembly

Disordered or random atomic structure

4 nmx4nm1.2 mmgraphite

diamond

Al72Ni20Co8

silicon

Page 4: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

Outline

[1] Crystal structure 1 [2] Reciprocal lattice 2 [3] Diffraction 2 [4] Crystal binding no lecture 3 [5] Lattice vibrations 4 [6] Thermal properties 5 [7] Free electron model 6 [8] Energy band 7,9 [9] Electron movement in crystals 8

Metals and Fermi surfaces 9 [10] Semiconductors 8 [11] Superconductivity 10 [12] Magnetism 11

Corresponding chapter in Kittel book

Page 5: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

Chap.1Crystal structure

Page 6: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

Introduction

Aim : A : defining concepts and definitions B : describing the lattice types C : giving a description of crystal structures

Page 7: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

A. Concepts, definitions A1. Definitions

Crystal : 3 dimensional periodic arrangments of atomes in space. Description using a mathematical abstraction : the lattice

Lattice : infinite periodic array of points in space, invariant under translation symmetry.

Basis : atoms or group of atoms attached to every lattice point

Crystal = basis+lattice

Page 8: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

A. Concepts, definitions

Translation vector : arrangement of atoms looks the same from r or r’ point

r’=r+u1a1+u2a2+u3a3 : u1, u2 and u3 integers = lattice constant

a1, a2, a3 primitive translation vectors

T=u1a1+u2a2+u3a3 translation vector

r = a1+2a2

r’= 2a1- a2

T=r’-r=a1-3a2

Page 9: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

A. Concepts, definitions

A2.Primitive cell Standard model

volume associated with one lattice point

Parallelepiped with lattice points in the corner

Each lattice point shared among 8 cells

Number of lattice point/cell=8x1/8=1

Vc= |a1.(a2xa3)|

Page 10: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

A. Concepts, definitions

Wigner-Seitz cell planes bisecting the lines

drawn from a lattice point to its neighbors

Page 11: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

A. Concepts, definitions

A3.Crystallographic unit cell larger cell used to display

the symmetries of the cristal Not primitive

Page 12: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types

B1. Symmetries :

Translations

Rotation : 1,2,3,4 and 6 (no 5 or 7)

Mirror reflection : reflection about a plane through a lattice point

Inversion operation (r -> -r)

three 4-fold axes of a cube

four 3-foldaxes of a cube

six 2-fold axes of a cube

planes of symmetry parallel in a cube

Page 13: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types

B2. Bravais lattices in 2D

5 types

general case : oblique lattice |a1|≠|a2| , (a1,a2)=φ

special cases : square lattice: |a1|=|a2| , φ= 90° hexagonal lattice: |a1|=|a2| , φ= 120° rectangular lattice: |a1|≠|a2| , φ= 90° centered rectangular lattice: |a1|≠|

a2| , φ= 90°

Page 14: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B3. Bravais lattices in 3D : 14

systemNumber of lattices

Cell axes and angles

Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ

Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β

Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90°

Tetragonal 2 |a1|=|a2|≠|a3| , α=β=γ=90°

Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90°

Trigonal 1 |a1|=|a2|=|a3| , α=β=γ<120°≠90°

Hexagonal 1 |a1|=|a2|≠|a3| , α=β=90° γ=120°

Page 15: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B3. Bravais lattices in 3D : 14

systemNumber of lattices

Cell axes and angles

Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ

Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β

Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90°

Tetragonal 2 |a1|=|a2|≠|a3| , α=β=γ=90°

Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90°

Trigonal 1 |a1|=|a2|=|a3| , α=β=γ<120°≠90°

Hexagonal 1 |a1|=|a2|≠|a3| , α=β=90° γ=120° Base centeredmonoclinic

Page 16: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B3. Bravais lattices in 3D : 14

systemNumber of lattices

Cell axes and angles

Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ

Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β

Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90°

Tetragonal 2 |a1|=|a2|≠|a3| , α=β=γ=90°

Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90°

Trigonal 1 |a1|=|a2|=|a3| , α=β=γ<120°≠90°

Hexagonal 1 |a1|=|a2|≠|a3| , α=β=90° γ=120° Body centeredorthorhombic

Face centeredorthorhombic

Base centeredorthorhombic

Page 17: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B3. Bravais lattices in 3D : 14

systemNumber of lattices

Cell axes and angles

Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ

Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β

Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90°

Tetragonal 2 |a1|=|a2|≠|a3| , α=β=γ=90°

Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90°

Trigonal 1 |a1|=|a2|=|a3| , α=β=γ<120°≠90°

Hexagonal 1 |a1|=|a2|≠|a3| , α=β=90° γ=120°

Body centered tetragonal

Page 18: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B3. Bravais lattices in 3D : 14

systemNumber of lattices

Cell axes and angles

Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ

Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β

Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90°

Tetragonal 2 |a1|=|a2|≠|a3| , α=β=γ=90°

Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90°

Trigonal 1 |a1|=|a2|=|a3| , α=β=γ<120°≠90°

Hexagonal 1 |a1|=|a2|≠|a3| , α=β=90° γ=120°

Simple cubic sc

Body centered cubic bcc

Face centered cubic fcc

Page 19: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B3. Bravais lattices in 3D : 14

systemNumber of lattices

Cell axes and angles

Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ

Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β

Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90°

Tetragonal 2 |a1|=|a2|≠|a3| , α=β=γ=90°

Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90°

Trigonal 1 |a1|=|a2|=|a3| , α=β=γ<120°≠90°

Hexagonal 1 |a1|=|a2|≠|a3| , α=β=90° γ=120°

Page 20: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B3. Bravais lattices in 3D : 14

systemNumber of lattices

Cell axes and angles

Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ

Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β

Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90°

Tetragonal 2 |a1|=|a2|≠|a3| , α=β=γ=90°

Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90°

Trigonal 1 |a1|=|a2|=|a3| , α=β=γ<120°≠90°

Hexagonal 1 |a1|=|a2|≠|a3| , α=β=90° γ=120°

Page 21: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B4. Examples : bcc

Bcc cell : a, 90°, 2 atoms/cell

Primitive cell : ai vectors from the origin to lattice point at body centers

Rhombohedron : a1= ½ a(x+y-z), a2= ½ a(-x+y+z), a3= ½ a(x-y+z), edge ½ a

Wigner-Seitz cell

xy

z

a1

a2a3

3

Page 22: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B5. Examples : fcc

fcc cell : a, 90°, 4 atoms/cell

Primitive cell : ai vectors from the origin to lattice point at face centers

Rhombohedron : a1= ½ a(x+y), a2= ½ a(y+z), a3= ½ a(x+z), edge ½ a

Wigner-Seitz cell

xy

z

2

Page 23: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

B. Lattice types B6. Examples : fcc - hcp

different way of stacking the close-packed planes

Spheres touching each other about 74% of the space occupied

B7. Example : diamond structure fcc structure

4 atoms in tetraedric position

Diamond, silicon

fcc : 3 planes A B C hcp : 2 planes A B

Page 24: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

C. Crystal structures C1. Miller index

lattice described by set of parallel planes

usefull for cristallographic interpretation

In 2D, 3 sets of planes

Miller index Interception between plane and lattice axis a,

b, c Reducing 1/a,1/b,1/c to obtain the smallest

intergers labelled h,k,l (h,k,l) index of the plan, {h,k,l} serie of

planes, [u,v,w] or <u,v,w> direction

http://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_index.php

Page 25: Solid state physics N. Witkowski. Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson

C. Crystal structures C2. Miller index : example

plane intercepts axis : 3a1 , 2a2, 2a3

inverses : 1/3 , 1/2 , 1/2

integers : 2, 3, 3

h=2 , k=3 , l=3

Index of planes : (2,3,3)