27
8/11/2019 Spring Damper http://slidepdf.com/reader/full/spring-damper 1/27 1 THE VIBRATION RESPONSE OF SOME SPRING-DAMPER SYSTEMS WITH AND WITHOUT MASSES By Tom Irvine Email: [email protected] April 26, 2012 Introduction Consider the single-degree-of-freedom system subjected to an applied force in Figure 1. Figure 1. where Summation of forces in the vertical direction yields the equation of motion. ) t ( F kx x c    (1) Derive the transfer function by taking the Laplace transform. ) t ( F L kx x c L    (2) F(t) = Applied force c = viscous damping coefficient k = stiffness x = displacement  c ) t ( F  x 

Spring Damper

Embed Size (px)

Citation preview

Page 1: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 1/27

1

THE VIBRATION RESPONSE OF SOME SPRING-DAMPER SYSTEMS

WITH AND WITHOUT MASSES

By Tom IrvineEmail: [email protected]

April 26, 2012

Introduction

Consider the single-degree-of-freedom system subjected to an applied force in Figure 1.

Figure 1.

where

Summation of forces in the vertical direction yields the equation of motion.

)t(Fkxxc     (1)

Derive the transfer function by taking the Laplace transform.

)t(FLkxxcL     (2)

F(t) = Applied force

c = viscous damping coefficient

k = stiffness

x = displacement

k   c 

)t(F  

Page 2: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 2/27

2

)s(F)s(Xk )0(xc)s(Xsc     (3)

  )0(xc)s(F)s(Xk sc     (4)

k sc

)0(xc)s(F)s(X

  (5)

 Now assume that the initial displacement is zero.

k sc

)s(F

)s(X   (6)

k sc

1

)s(F

)s(X

  (7)

The dynamic stiffness in the Laplace domain is

k sc)s(X

)s(F

 

(7)

The dynamic stiffness in the frequency domain is

c jk 

)(X

)(F  (8)

The initial value problem for the free response is

k sc

)0(xc)s(X

  (9)

Page 3: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 3/27

3

c/k s

)0(x)s(X

  (10)

The inverse Laplace transform yields the time domain response.

tc/k exp)0(x)t(x     (11)

APPENDIX A

Consider the single-degree-of-freedom system subjected to an applied force.

Figure A-1.

The equation of motion is

)t(Fkxxcxm       (A-1)

Derive the transfer function by taking the Laplace transform.

)t(FLkxxcxmL       (A-2)

)s(F)s(Xk )0(xc)s(Xsc)0(msx)0(xm)s(Xms2     (A-3) 

k   c 

)t(F  

x m 

Page 4: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 4/27

4

)0(msx)0(xm)0(xc)s(F)s(Xk scms2     (A-4) 

k scms

)0(msx)0(xm)0(xc)s(F)s(X

2     (A-5) 

 Now assume that the initial displacement is zero.

k scms

)s(F)s(X

2   (A-6)

k scms

1

)s(F

)s(X

2   (A-7)

The dynamic stiffness in the Laplace domain is

k scms)s(X

)s(F   2   (A-8)

The dynamic stiffness in the frequency domain is

c jmk 

)(X

)(F   2  (A-9)

The mechanical impedance in the frequency domain is

 j

c jmk 

)(V

)(F   2

  (A-10)

Page 5: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 5/27

5

m

k  jc

)(V

)(F  (A-11)

The apparent mass in the frequency domain is

 j

mk 

 jc

)(A

)(F  (A-12)

  c

 j

m)(A

)(F

(A-13)

m

c j

m

k 1m

)(A

)(F

2  (A-14)

 Note that

m

k n     (A-15)

m2c n   (A-16)

  2   (A-17)

Page 6: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 6/27

6

By substitution,

  n

2

2n   2

 j1m)(A

)(F  (A-18)

  n2

2n  j1m

)(A

)(F  (A-19)

Page 7: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 7/27

7

APPENDIX B

Consider the following two-degree-of-freedom system subjected to an applied force.

Figure B-1.

The free-body diagrams are

Figure B-2.

k  

)t(F  

x1 

x2 

k(x2-x1) 

k(x1-x2) 

)t(F  

x2 

1xc  

Page 8: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 8/27

8

The equations of motion are

0)t(F)x-k(x 21     (B-1)

)t(F)x-k(x 12     (B-2)

0)x-k(xxc 211     (B-3)

Solve for 2x  using Equation (B-2).

12   xk 

)t(Fx     (B-4)

By substitution,

0)x-k(xxc 211     (B-5)

0xk 

)t(F

-xk xc 111    

 

 

 

 

(B-6)

0k 

)t(F-k xc 1  

 

  

    (B-7)

)t(Fxc 1    (B-8)

Take the Laplace transform.

)t(FLxcL 1     (B-9)

Page 9: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 9/27

9

)s(F)0(xc)s(Xsc 11     (B-10)

)0(xc)s(F)s(Xsc 11     (B-11)

sc

)0(xc)s(F)s(X   1

1

  (B-12)

Recall

)t(F)x-k(x 12     (B-13)

Take the Laplace transform.

)t(FL)x-k(xL 12     (B-14)

)s(F)s(Xk )s(Xk  12     (B-15)

)s(Xk )s(F)s(Xk  12     (B-16)

 

sc

)0(xc)s(Fk )s(F)s(Xk    1

2   (B-17)

)0(xs

sc

k 1)s(F)s(Xk  12  

  (B-18)

)0(xs

1

sc

1

1)s(F)s(X 12  

  (B-19)

Page 10: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 10/27

10

 Now assume the initial displacement is zero.

sc

1

1)s(F)s(X2   (B-20)

 

sk c

k cs)s(F)s(X2   (B-21)

The receptance in the Laplace domain is

sk c

k cs

)s(F

)s(X2  

  (B-22)

The dynamic stiffness in the Laplace domain is

k cs

sk c

)s(X

)s(F

2     (B-22)

The dynamic stiffness in the frequency domain is

c jk 

k c j

)(X

)(F

2

  (B-22)

The initial value problem for the free response is

)0(xs

1)s(X 12     (B-23) 

Page 11: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 11/27

11

The inverse Laplace transform yields the time domain response in terms of the unit step

function u(t).

)t(u)0(x)t(x 12     (B-24)

This can be simplified as

)0(x)t(x 12     (B-25)

Likewise

)0(x)t(x 11     (B-26)

Page 12: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 12/27

12

APPENDIX C

Consider the following two-degree-of-freedom system subjected to an applied force.

Figure C-1.

Figure C-2.

k 1 (x2-x1) 

k 1(x1-x2) 

)t(F  

x2 

)t(F  

k 1 

x1 

x2 

k 2 

-k 2 x2 

1xc  

Page 13: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 13/27

13

The equations of motion are

0)t(Fxk )x-(xk  22211     (C-1)

  )t(Fxk xk k  11221     (C-2)

0)x-(xk xc 2111     (C-3)

Solve for 2x  using Equation (C-2).

121

1

212   x

k k k 

k k )t(Fx

  (C-4)

By substitution,

0)x-(xk xc 2111     (C-5)

0xk k 

k k k )t(F-xk xc 1

21

1

21111  

  

  

  (C-6)

0)t(Fk k 

k -x

k k 

k 1k xc

21

11

21

111  

 

  

 

 

  

 

  (C-7)

0)t(Fk k 

k -xk k 

k k k k xc21

11

21

12111  

  

  

  

  

  (C-8)

Page 14: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 14/27

Page 15: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 15/27

Page 16: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 16/27

16

 

 

 

 

 

 

 

 

21

21

1

21

1

21

2121

1

212

k k 

k k sc

)0(xc

k k 

k )s(F

k k 

k k sc

1

k k 

k k 

1)s(X  

(C-21)

 

 

 

 

 

 

 

 

21

21

1

21

1

21

21

1

212

k k 

k k 

sc

)0(xc

k k 

k )s(F

k k 

k k 

sc

k 1

k k 

1)s(X  

(C-22)

 Now assume the initial displacement is zero.

  )s(F

k k 

k k sc

k 1

k k 

1)s(X

21

21

1

212

 

  

 

  (C-23)

The receptance in the Laplace domain is

 

  

 

21

21

1

21

2

k k 

k k sc

k 1

k k 

1

)s(F

)s(X  (C-24)

Page 17: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 17/27

17

2121

1

21

2

k k sk k c

k k 

1

)s(F

)s(X  (C-25)

21212

21

21121212

k k k k sk k c

k k k k k sk k c

)s(F

)s(X

  (C-26)

2121

2

21

211212

k k k k sk k c

k 2k k sk k c

)s(F

)s(X

  (C-27)

The dynamic stiffness in the Laplace domain is

21121

21212

21

2   k 2k k sk k c

k k k k sk k c

)s(X

)s(F

  (C-28)

The initial value problem for the free response is

 

  

 

21

21

1

21

12

k k 

k k sc

)0(xc

k k 

k )s(X   (C-29) 

 

  

 

21

21

1

21

12

k k 

k k 

c

1s

)0(x

k k 

k )s(X   (C-30) 

Page 18: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 18/27

18

The inverse Laplace transform yields the time domain response.

 

  

 

  t

k k 

k k 

c

1exp

k k 

k )0(x)t(x

21

21

21

112   (C-31)

  0xk xk k  11221     (C-32)

  22111   xk k xk      (C-33) 

21

211   x

k k x

    (C-34) 

 

  

 

  t

k k 

k k 

c

1exp)0(x)t(x

21

2111   (C-35) 

Page 19: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 19/27

19

APPENDIX D

Consider the following two-degree-of-freedom system subjected to an applied force.

Figure D-1.

Figure D-2.

k 1 (x2-x1) 

1xc  

k 1 

x1 

x2 

k 2 

F t  

k 1(x1-x2) 

x2 

-k 2 x2 

F(t) 

Page 20: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 20/27

20

The equations of motion are

222112   xk )x-(xk )t(Fxm     (D-1)

  )t(Fxk xk k xm 112212     (D-2)

0)x-(xk xc 2111     (D-3)

Take the Laplace transform of equation (D-2).

)t(FLxk xk k xmL 112212     (D-4)

  )s(F)s(Xk )s(Xk k )0(xsm)0(xm)s(Xsm 112212222     (D-5) 

  )0(xsm)0(xm)s(F)s(Xk )s(Xk k sm 22112212     (D-6) 

Take the Laplace transform of equation (D-3).

  0)x-(xk xcL 2111     (D-7) 

0)s(Xk )s(Xk )0(xc)s(Xsc 221111     (D-8)

  )0(xc)s(Xk )s(Xk sc 12211     (D-9) 

Consider equations (D-6) and (D-9) for the case of zero initial conditions.

  )s(F)s(Xk )s(Xk k sm 112212   (D-10) 

Page 21: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 21/27

21

  0)s(Xk )s(Xk sc 2211     (D-11) 

  )s(Xk )s(Xk sc 2211     (D-12) 

)s(Xk sc

k )s(X 2

1

21  

  (D-13) 

  )s(F)s(Xk sc

k k )s(Xk k sm 2

1

21221

2

  (D-14) 

  )s(F)s(Xk sc

k k k k sm 21

2121

2

  (D-15) 

 

1

2121

22

k sc

k k k k sm

)s(F)s(X   (D-16) 

The receptance in the Laplace domain is

 

1

2121

2

2

k sc

k k k k sm

1

)s(F

)s(X  (D-17) 

The initial value problem for the free response is

  0xk xk k xm 112212     (D-18)

0)x-(xk xc 2111     (D-19)

Page 22: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 22/27

Page 23: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 23/27

23

  211212

1121212

k k k sck k sm

)0(xk c)0(xk scsm)0(xk scm)s(X

    (D-27)

    211212

212

11212

212

k k k k k smsck k sm

)0(xk c)0(xk smscm)0(xk mscm)s(X

    (D-28) 

  211212

1213 11212

2

2122k k k k k sk msk k cscm

)0(xk c)0(xk sm)0(xscm)0(xk m)0(xscm)s(X

 

 

(D-29) 

  2121

21

311212212

2

2k sk k csk mscm

)0(xk c)0(xk m)0(xscm)0(xk sm)0(xscm)s(X

   

(D-30) 

  2121

21

311212212

2

2k sk k csk mscm

)0(xk c)0(xk msm)0(xc)0(xk )0(xscm)s(X

 

 

(D-31) 

cm

k s

m

k k s

c

k s

)0(xm

1)0(x

c

1k s)0(x)0(x

c

k )0(xs

)s(X2121213

121221

22

2

 

 

(D-32) 

Page 24: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 24/27

24

APPENDIX E

Consider the following two-degree-of-freedom system subjected to base excitation.

Figure E-1.

Figure E-2.

k 1 (x2-x1) 

yxc 1      

k 1 

c x1 

x2 

k 2 

k 1(x1-x2) 

x2 

-k 2 (x2-y) 

Page 25: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 25/27

25

yxk )x-(xk xm 222112     (E-1)

  0yxk )x-(xk xm 221212     (E-2)

  0)x-(xk yxc 2111      (E-3)

Let

yxz 11     (E-4)

yxz 22     (E-5)

2121   x-xz-z     (E-6)

By substitution,

ymzk )z-(zk zm 221212       (E-7)

  ymzk -zk k zm 112212       (E-8)

0)z-(zk zc 2111     (E-9)

Take the Laplace transform of equation (E-2).

ymLzk zk k zmL 112212       (E-10)

  )s(Ym)s(XZ)s(Zk k )0(zsm)0(zm)s(Zsm 112212222     (E-11) 

  )0(zsm)0(zm)s(Zk )s(Zk k sm 2211221

2

 

  (E-12) 

Page 26: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 26/27

26

Take the Laplace transform of equation (E-3).

  0)z-(zk zcL 2111     (E-13) 

0)s(Zk )s(Zk )0(zc)s(Zsc 221111     (E-14)

  )0(zc)s(Zk )s(Zk sc 12211     (E-15) 

Consider equations (E-6) and (E-9) for the case of zero initial conditions.

  )s(Ym)s(Zk )s(Zk k sm 112212   (E-16) 

  0)s(Zk )s(Zk sc 2211     (E-17) 

  )s(Zk )s(Zk sc 2211     (E-18) 

)s(Zk sc

k )s(Z 2

121  

  (E-19) 

  )s(Ym)s(Zk sc

k k )s(Zk k sm 2

1

21221

2

  (E-20) 

  )s(Ym)s(Zk sc

k k k k sm 2

1

2121

2

  (E-21) 

Page 27: Spring Damper

8/11/2019 Spring Damper

http://slidepdf.com/reader/full/spring-damper 27/27

 

1

2121

22

k sc

k k k k sm

)s(Ym)s(Z   (E-22) 

The relative acceleration   )s(Z2  is

22

2   Zs)s(Z   (E-23) 

 

1

2121

2

2

2

k sc

k k k k sm

)s(Yˆ

sm)s(Z   (E-24) 

)s(Y

k sc

k k k k sm

)s(Ysm)s(X

1

2121

2

2

2  

  (E-25) 

)s(Y1

k sc

k k k k sm

sm)s(X

1

2121

2

2

2

  (E-26) 

  1

k sc

k k k k sm

sm

)s(Y

)s(X

1

2121

2

22   (E-27)