Author
others
View
4
Download
0
Embed Size (px)
1Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Statistische Methoden der Datenanalyse
Kapitel 1: Fundamentale Konzepte
Professor Markus Schumacher
Freiburg / Sommersemester 2009
2Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Data analysis in particle physics
Observe events of a certain type
Measure characteristics of each event (particle momenta,number of muons, energy of jets,...)
Theories (e.g. SM) predict distributions of these propertiesup to free parameters, e.g., a, GF, MZ, as, mH, ...
Some tasks of data analysis:
Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;
Test the extent to which the predictions of a theoryare in agreement with the data.
Prof. Markus Schumacher Prediscussion for Lecture on
3Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 3
Dealing with uncertainty
In particle physics there are various elements of uncertainty:
theory is not deterministic
quantum mechanics
random measurement errors
present even without quantum effects
things we could know in principle but don‟t
e.g. from limitations of cost, time, ...
We can quantify the uncertainty using PROBABILITY
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
4Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 4
A definition of probability
Consider a set S with subsets A, B, ...
Kolmogorovaxioms (1933)
From these axioms we can derive further properties, e.g.
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
5Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 5
Conditional probability, independence
Also define conditional probability of A given B (with P(B) ≠ 0):
E.g. rolling dice:
Subsets A, B independent if:
If A, B independent,
N.B. do not confuse with disjoint subsets, i.e.,
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
6Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 6
Interpretation of probability
I. Relative frequencyA, B, ... are outcomes of a repeatable experiment
cf. quantum mechanics, particle scattering, radioactive decay...
II. Subjective probabilityA, B, ... are hypotheses (statements that are true or false)
• Both interpretations consistent with Kolmogorov axioms.• In particle physics frequency interpretation often most useful,
but subjective probability can provide more natural treatment of non-repeatable phenomena:
systematic uncertainties, probability that Higgs boson exists,...
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
7Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 7
Bayes’ theorem
From the definition of conditional probability we have,
and
but , so
Bayes‟ theorem
First published (posthumously) by theReverend Thomas Bayes (1702−1761)
An essay towards solving a problem in thedoctrine of chances, Philos. Trans. R. Soc. 53(1763) 370; reprinted in Biometrika, 45 (1958) 293.
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
8Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 8
The law of total probability
Consider a subset B of the sample space S,
B ∩ Ai
Ai
B
S
divided into disjoint subsets Ai
such that [i Ai = S,
→
→
→ law of total probability
Bayes‟ theorem becomes
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
9Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 9
An example using Bayes’ theorem
Suppose the probability (for anyone) to have AIDS is:
← prior probabilities, i.e.,before any test carried out
Consider an AIDS test: result is + or -
← probabilities to (in)correctlyidentify an infected person
← probabilities to (in)correctlyidentify an uninfected person
Suppose your result is +. How worried should you be?
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
10Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 10
Bayes’ theorem example (cont.)
The probability to have AIDS given a + result is
i.e. you‟re probably OK!
Your viewpoint: my degree of belief that I have AIDS is 3.2%
Your doctor‟s viewpoint: 3.2% of people like this will have AIDS
← posterior probability
Prof. Markus Schumacher Prediscussion for Lecture on Statistical Data Analysis Uni. Siegen / SS08
11Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Frequentist Statistics − general philosophy
In frequentist statistics, probabilities are associated only withthe data, i.e., outcomes of repeatable observations (shorthand: ).
Probability = limiting frequency
Probabilities such as
P (Higgs boson exists), P (0.117 < as < 0.121),
etc. are either 0 or 1, but we don‟t know which.
The tools of frequentist statistics tell us what to expect, underthe assumption of certain probabilities, about hypothetical
repeated observations.
The preferred theories (models, hypotheses, ...) are those for which our observations would be considered „usual‟.
12Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 12
Bayesian Statistics − general philosophy
In Bayesian statistics, use subjective probability for hypotheses:
posterior probability, i.e., after seeing the data
prior probability, i.e.,before seeing the data
probability of the data assuming hypothesis H (the likelihood)
normalization involves sum over all possible hypotheses
Bayes‟ theorem has an “if-then” character: If your priorprobabilities were p (H), then it says how these probabilities
should change in the light of the data.
No general prescription for priors (subjective!)
13Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 13
Random variables and probability density functions
A random variable is a numerical characteristic assigned to an element of the sample space; can be discrete or continuous.
Suppose outcome of experiment is continuous value x
→ f(x) = probability density function (pdf)
Or for discrete outcome xi with e.g. i = 1, 2, ... we have
x must be somewhere
probability mass function
x must take on one of its possible values
14Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 14
Cumulative distribution function
Probability to have outcome less than or equal to x is
cumulative distribution function
Alternatively define pdf with
15Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Mean, median and mode
e.g.: Maxwells‟s velocity distribution
16Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Prof. Markus Schumacher Chapter 2: Fundamenal
Obtaining PDF from Histograms
pdf = histogram with
infinite data sample,
zero bin width,
normalized to unit area
17Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Multivariate distributions
Outcome of experiment charac-
terized by several values, e.g. an
n-component vector, (x1, ... xn)
joint pdf
Normalization:
18Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Marginal pdf
Sometimes we want only pdf of some (or one) of the components:
→ marginal pdf
x1, x2 independent if
i
19Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Lecture 1 page 19
Marginal pdf (2)
Marginal pdf ~ projection of joint pdf onto individual axes.
20Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Conditional pdf
Sometimes we want to consider some components of joint pdf as constant. Recall conditional probability:
→ conditional pdfs:
Bayes‟ theorem becomes:
Recall A, B independent if
→ x, y independent if
21Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Conditional pdfs (2)
E.g. joint pdf f(x,y) used to find conditional pdfs h(y|x1), h(y|x2):
Basically treat some of the r.v.s as constant, then divide the joint pdf by the marginal pdf of those variables being held constant so
that what is left has correct normalization, e.g.,
22Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
WDF für zwei Variablen mit Abhängigkeit
23Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Prof. Markus Schumacher Chapter 2: Fundamenal
2.4 Functions of a random variable
A function of a random variable is itself a random variable.
Suppose x follows a pdf f(x), consider a function a(x).
What is the pdf g(a)?
dS = region of x space for whicha is in [a, a+da].
For one-variable case with uniqueinverse this is simply
→
24Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Prof. Markus Schumacher Chapter 2: Fundamenal
Mapping the x and a spaces
probability in a-space g(a)da
equals one in x-space f(x)dS
figure from Lutz Feld
25Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Mapping the x and a spaces
26Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Mapping the x and a spaces: two „branches“
27Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Prof. Markus Schumacher Chapter 2: Fundamenal
Functions without unique inverse
If inverse of a(x) not unique, include all dx intervals in dSwhich correspond to da:
Example:
28Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Prof. Markus Schumacher Chapter 2: Fundamenal
Functions of more than one r.v.
Consider r.v.s and a function
dS = region of x-space between (hyper)surfaces defined by
29Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Functions of more than one r.v. (2)
Example: r.v.s x, y > 0 follow joint pdf f(x,y),
consider the function z = xy. What is g(z)?
→
(Mellin convolution)
30Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09Prof. Markus Schumacher Chapter 2: Fundamenal
More on transformation of variables
Consider a random vector with joint pdf
Form n linearly independent functions
for which the inverse functions exist.
Then the joint pdf of the vector of functions is
where J is the
Jacobian determinant:
For e.g. integrate over the unwanted components.
31Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09G. Cowan
Lectures on Statistical Data Analysis
Lecture 1 page 31
Expectation values
Consider continuous r.v. x with pdf f (x).
Define expectation (mean) value as
Notation (often): ~ “centre of gravity” of pdf.
For a function y(x) with pdf g(y),
(equivalent)
Variance:
Notation:
Standard deviation:
s ~ width of pdf, same units as x.
32Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Covariance and correlation
Define covariance cov[x,y] (also use matrix notation Vxy) as
Correlation coefficient (dimensionless) defined as
If x, y, independent, i.e.,
, then
→ x and y, „uncorrelated‟
N.B. converse not always true.
33Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Correlations
34Prof. M. Schumacher Stat Meth. der Datenanalyse Kapi,1: Fundamentale Konzepten Uni. Freiburg / SoSe09
Korrelationen