120
Copyright © Syed Ali Khayam 2009 EE 801 – Analysis of Stochastic Systems Multiple Random Variables Muhammad Usman Ilyas School of Electrical Engineering & Computer Science National University of Sciences & Technology (NUST) Pakistan

Stochastic lecture 5

  • Upload
    musama

  • View
    68

  • Download
    5

Embed Size (px)

DESCRIPTION

Stochastic lecture 5

Citation preview

Page 1: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

EE 801 – Analysis of Stochastic Systems

Multiple Random Variables

Muhammad Usman IlyasSchool of Electrical Engineering & Computer ScienceNational University of Sciences & Technology (NUST)Pakistan

Page 2: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

In this lecture, we will cover: Joint Distributions of Multiple Random Variables Functions of Multiple Random Variables Moments of Multiple Random Variables Jointly Normal Random Variables Sums of Random Variables

What will we cover in this lecture?

Page 3: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Vector Random VariablesPairs of Random Variables

3

Page 4: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Definition of a Jointly Distributed Random Variable A vector random variable is a mapping from an outcome s of a 

random experiment to a vector

: nXZ S S Ì

domain Range or image of X

4

Page 5: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Definition of a Jointly Distributed Random Variable

Random Experiment SX

X, Y(x, y)

2,: X YZ S S Ì

Image courtesy of www.buzzle.com/

1

2

3

4

5

6

654321

SY

5

Page 6: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distributions The joint cumulative distribution function (cdf) of a pair of rvs X 

and Y is defined as:

Joint distributions are also called compound distributions

{ }{ }

, ( , ) Pr

Pr , , ,

X YF a b X a Y b

X a Y b a b

= £ £

= £ £ -¥ < < ¥ -¥ < < ¥

6

Page 7: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Examples of Joint Distributions: Throwing Two Dice Experiment

x

y

pX,Y(x,y)

(1,1)

(6,6)

7

Page 8: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Examples of Joint Distributions: A Joint Gaussian Distribution

8

Page 9: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distributions

Y

Xb

X≤b

Y≤d

d

9

Page 10: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distributions

b

X≤b

Y≤d

d

,Integrating shaded region gives ( , )X YF b d

Y

X

10

Page 11: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs F1:

F2:

F3: If X and Y are continuous rvs then FX,Y(a,b) is also continuous

( ),0 , 1, ,X YF a b a b£ £ -¥ < < ¥

( ) ( )1 2 1 2 , 1 1 , 2 2 and , ,X Y X Ya a b b F a b F a b£ £ £

11

Page 12: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs F4:   ( )

( )

and

,

or

,

, 1

, 0

a b

X Y

a b

X Y

F a b

F a b

¥

¾¾¾¾¾

¾¾¾¾¾

a

b

,Integrating shaded region gives ( , )X YF a b

Y

X

12

Page 13: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

( )and

, , 1a b

X YF a b¥

¾¾¾¾¾

a→∞

bb→∞

Y

X

13

Page 14: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

( )and

, , 1a b

X YF a b¥

¾¾¾¾¾

a→∞

b

b→∞ Y

X

14

Page 15: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

( )and

, , 1a b

X YF a b¥

¾¾¾¾¾

a→∞

b→∞Y

X

15

Page 16: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

F5:  ( ) ( ), , a

X Y YF a b F b¥¾¾¾¾

b

These distributions are called marginal distributions

a→∞

( ) ( ), , bX Y XF a b F a¥¾¾¾

Y

X

16

Page 17: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

( ) { }{ }{ } { }

{ } ( )

,lim , Pr

Pr

Pr Pr

Pr

a X Y

Y

F a b X Y b

X Y b

Y b X X

Y b F b

¥ = £ ¥ £

= -¥ £ £ ¥ -¥ £ £

= -¥ £ £ -¥ £ £ ¥ -¥ £ £ ¥

= -¥ £ £ =

17

Page 18: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

( ) { } { } ( ),lim , Pr Pra X Y YF a b X Y b Y b F b¥ = £ ¥ £ = £ =

b

a→∞

Y

X

18

Page 19: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

( ) { } { } ( ),lim , Pr Pra X Y YF a b X Y b Y b F b¥ = £ ¥ £ = £ =

b

a→∞

Y

X

19

Page 20: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

a→∞

( ) { } { } ( ),lim , Pr Pra X Y YF a b X Y b Y b F b¥ = £ ¥ £ = £ =Y

X

20

Page 21: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

F6:  

{ } , , , ,Pr and c ( , ) ( , ) ( , ) ( , )X Y X Y X Y X Ya X b Y d F b d F a d F b c F a c< £ < £ = - - +

21

Page 22: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

Y

X

22

Page 23: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

,Integrating shaded region gives ( , )X YF b d

Y

X

23

Page 24: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

c

a

{ }We want Pr ca X b Y d< £ < £

Y

X

24

Page 25: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

c

aIntegrating the entire region gives FX,Y(b,d)

Y

X

25

Page 26: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

c

a

Firs

t sub

tract

F(a

,d)

from

FX

,Y (b

,d)

Y

X

26

Page 27: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

c

a

Then subtract FX,Y (b,c) from FX,Y (b,d)-FX,Y (a,d)

Y

X

27

Page 28: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

c

a

Finally add FX,Y (a,c) to FX,Y (b,d)-FX,Y (a,d)-FX,Y (b,c)

{ } , , , ,Pr and c ( , ) ( , ) ( , ) ( , )X Y X Y X Y X Ya X b Y d F b d F a d F b c F a c< £ < £ = - - +

Y

X

28

Page 29: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Probability Density Function The joint probability density function is defined as:

Alternatively:

2

, ,( , ) ( , )X Y X Yf x y F x yx y¶

=¶ ¶

, ,( , ) ( , )yx

X Y X YF x y f a b dadb-¥ -¥

= ò ò

29

Page 30: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

X≤b

Y≤d

d

c

a

{ } ,Pr c ( , )b d

X Y

a c

a X b Y d f x y dydx< £ < £ = ò ò

Y

X

30

Page 31: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Probability Density Function The joint probability density function must satisfy the following 

property:

Moreover:

, ( , ) 1X Yf x y dxdy¥ ¥

-¥ -¥

=ò ò

,

,

( ) ( , )

( ) ( , )

X X Y

Y X Y

f x f x y dy

f y f x y dx

¥

-¥¥

=

=

ò

ò

31

Page 32: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Homework Reading Assignment: Examples 4.1 to 4.9 in the book

Homework Problem 4.3 in the textbook Problem 4.9 in the textbook

32

Page 33: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Independent Random Variables Two random variables X and Y are independent if

Or:

, ( , ) ( ) ( )X Y X YF x y F x F y=

,

,

( , ) ( ) ( ) for discrete rvs

( , ) ( ) ( ) for continuous rvs

X Y X Y

X Y X Y

p x y p x p y

f x y f x f y

=

=

33

Page 34: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables Conditional probability is an important tool when analyzing 

random variables

In general, we are interested in finding the probability that a random variable Y takes on a certain value (or a range of values) given that another random variable X has already taken some value

Conditional probability can be expressed in terms of the joint and marginal probabilities

34

Page 35: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables

Random Experiment

What is the probability that the sum of the two dice is odd given that X=2?

X

Y

35

Page 36: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables We can extend the definition of conditional probability to 

random variables

( | ) Pr{( ) | ( )}

Pr{ }

Pr{ }

YF y x Y y X x

Y y X x

X x

= £ =

£ ==

=

36

Page 37: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables We can extend the definition of conditional probability to 

random variables

What’s wrong with this definition?

( | ) Pr{( ) | ( )}

Pr{( ) ( )}

Pr{ }

YF y x Y y X x

Y y X x

X x

= £ =

£ ==

=

37

Page 38: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables

What’s wrong with this definition?

This definition will only work for discrete rvs because Pr{X=a}=0for continuous rvs

Therefore, we need to generalize this definition to encompass continuous rvs

Pr{( ) ( )}( | )

Pr{ }Y

Y y X xF y x

X x

£ ==

=

38

Page 39: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Properties of Joint CDFs

b

0

Pr{( ) ( )}( | ) lim

Pr{ }Y h

Y y x X x hF y x

x X x h

£ < £ +=

< £ +

a

hY

X

39

Page 40: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables We need to generalize the definition of conditional probability 

to encompass both discrete and continuous rvs

( )

( )

( )

( )

( )

( )

0

, ,

,

Pr{( ) ( )}( | ) lim

Pr{ }

, ,

,

Y h

y yx h

X Y X Y

xx h

XX

xy

X Y

X

Y y x X x hF y x

x X x h

f x y dx dy hf x y dy

hf xf x dx

f x y dy

f x

+

-¥ -¥+

£ < £ +=

< £ +

¢ ¢ ¢ ¢ ¢ ¢

=

¢ ¢

¢ ¢

=

ò ò ò

ò

ò

40

Page 41: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables

We can differentiate the conditional CDF to obtain the conditional pdf

( )

( )

, ,

( | )

y

X Y

YX

f x y dy

F y xf x

¢ ¢

41

( )( )

, ,( | ) ( | ) X Y

Y YX

f x ydf y x F y x

dy f x= =

Page 42: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Probability for Random Variables In other words, a joint pdf can be written as a product of 

conditional and marginal pdfs:

For a discrete rv, the same condition can be stated as:

42

( ) ( ), , ( | )X Y Y Xf x y f y x f x=

( ) { } ( ), , Pr , ( | )X Y Y Xp x y X x Y y p y x p x= = = =

Page 43: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditional Expectation Expectation of a conditional joint distribution is defined as

43

{ }( | ) continuous rvs

|

( | ) discrete rvs

Y

Yy

yf y x dy

E Y x

yp y x

¥

ìïïïïïï= íïïïïïïî

ò

å

Page 44: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Useful Properties of Conditional Expectation

P1:

P2: For a function h(Y):

The k‐th moment of Y is given by

44

{ }{ } { }|E E Y x E Y=

{ } { }{ }( ) ( ) |E h Y E E h Y x=

{ } { }{ }|k kE Y E E Y x=

Page 45: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Homework Reading Assignment

Example 4.15 to 4.26 in the textbook

45

Page 46: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Vector Random VariablesMultiple Random Variables

46

Page 47: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Most of the ideas that we have studied so far can be directly 

extended to more than two jointly‐distributed random variables

Joint pmf of n discrete random variables is:

Conditional pmfs are obtained as

47

( ) { }1 2, , , 1 2 1 1 2 2, , , Pr , , ,

nX X X n n np x x x X x X x X x= = = =

( )( )( )

1 2

1 2 1

, , , 1 2 11 2 1

, , , 1 2 1

, , , ,| , , ,

, , ,n

n

n

X X X n nX n n

X X X n

p x x x xp x x x x

p x x x-

--

-

=

Page 48: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Most of the ideas that we have studied so far can be directly 

extended to more than two jointly‐distributed random variables

Joint pmf of n discrete random variables is:

Conditional pmfs are obtained as

48

( ) { }1 2, , , 1 2 1 1 2 2, , , Pr , , ,

nX X X n n np x x x X x X x X x= = = =

( )( )( )

1 2

1 2 1

, , , 1 2 11 2 1

, , , 1 2 1

, , , ,| , , ,

, , ,n

n

n

X X X n nX n n

X X X n

p x x x xp x x x x

p x x x-

--

-

=

Page 49: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditinal Distribution of Multiple rvs Conditional pdf of a joint pdf is:

Repeatedly applying this expression gives:

49

( )( )( )

1 2

1, 2 1

, , , 1

1 1

, , 1 1

, ,| , ,

, ,n

n

n

X X X n

X n n

X X X n

f x xf x x x

f x x-

-

-

=

( )

( ) ( ) ( ) ( )1 2

1 2 1

, , , 1

1 1 1 1 2 2 1 1

, ,

| , , | , , |

n

n n

X X X n

X n n X n n X X

f x x

f x x x f x x x f x x f x-- - -=

Page 50: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Conditinal Distribution of Multiple rvs Conditional pdf of a joint pdf is:

Repeatedly applying this expression gives:

50

( )( )( )

1 2

1, 2 1

, , , 11 1

, , 1 1

, ,| , ,

, ,n

n

n

X X X nX n n

X X X n

f x xf x x x

f x x-

--

=

( )

( ) ( ) ( ) ( )1 2

1 2 1

, , , 1

1 1 1 1 2 2 1 1

, ,

| , , | , , |

n

n n

X X X n

X n n X n n X X

f x x

f x x x f x x x f x x f x-- - -=

Page 51: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Marginal pmf of one rv is obtained by summing over the images 

of all other rvs

51

( ) { }

( )1

1 2

2

1 1 1

, , , 1 2

Pr

, , ,n

n

X

X X X nx x

p x X x

p x x x

= =

=å å

Page 52: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Marginal pmf of one rv is obtained by summing over the images 

of all other rvs

52

( ) { }

( )1

1 2

2

1 1 1

, , , 1 2

Pr

, , ,n

n

X

X X X nx x

p x X x

p x x x

= =

=å å

Page 53: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Joint CDF of n continuous random variables is:

Joint pdf is then obtained as

53

( )

( )

1 2

1 2

1 2

, , , 1 2

, , , 1 2 1

, , ,

, , ,

n

n

n

X X X n

x x x

X X X n n

F x x x

f x x x dx dx-¥ -¥ -¥

¢ ¢ ¢ ¢ ¢= ò ò ò

( ) ( )1 2 1 2, , , 1 2 , , , 1 2

1

, , , , , ,n n

n

X X X n X X X nn

f x x x F x x xx x

¶=

¶ ¶

Page 54: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Joint CDF of n continuous random variables is:

Joint pdf is then obtained as

54

( )

( )

1 2

1 2

1 2

, , , 1 2

, , , 1 2 1

, , ,

, , ,

n

n

n

X X X n

x x x

X X X n n

F x x x

f x x x dx dx-¥ -¥ -¥

¢ ¢ ¢ ¢ ¢= ò ò ò

( ) ( )1 2 1 2, , , 1 2 , , , 1 2

1

, , , , , ,n n

n

X X X n X X X nn

f x x x F x x xx x

¶=

¶ ¶

Page 55: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Joint CDF of n continuous random variables is:

Joint pdf is then obtained as

55

( )

( )

1 2

1 2

1 2

, , , 1 2

, , , 1 2 1

, , ,

, , ,

n

n

n

X X X n

x x x

X X X n n

F x x x

f x x x dx dx-¥ -¥ -¥

¢ ¢ ¢ ¢ ¢= ò ò ò

( ) ( )1 2 1 2, , , 1 2 , , , 1 2

1

, , , , , ,n n

n

X X X n X X X nn

f x x x F x x xx x

¶=

¶ ¶

Page 56: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs Joint CDF of n continuous random variables is:

Joint pdf is then obtained as

56

( )

( )

1 2

1 2

1 2

, , , 1 2

, , , 1 2 1

, , ,

, , ,

n

n

n

X X X n

x x x

X X X n n

F x x x

f x x x dx dx-¥ -¥ -¥

¢ ¢ ¢ ¢ ¢= ò ò ò

( ) ( )1 2 1 2, , , 1 2 , , , 1 2

1

, , , , , ,n n

n

X X X n X X X nn

f x x x F x x xx x

¶=

¶ ¶

Page 57: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs A single marginal pdf can be obtained as:

Also, a marginal pdf for a sub‐vector rv can be obtained as:

57

( ) ( )1 1 21 , , , 1 2 2, , ,

nX X X X n nf x f x x x dx dx¥ ¥

-¥ -¥

¢ ¢ ¢ ¢= ò ò

( ) ( )1 1 1 2, , 1 1 , , , 1 2 1, , , , , ,

n nX X n X X X n n nf x x f x x x x dx-

¥

- -

¢ ¢= ò

Page 58: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs A single marginal pdf can be obtained as:

Also, a marginal pdf for a sub‐vector rv can be obtained as:

58

( ) ( )1 1 21 , , , 1 2 2, , ,

nX X X X n nf x f x x x dx dx¥ ¥

-¥ -¥

¢ ¢ ¢ ¢= ò ò

( ) ( )1 1 1 2, , 1 1 , , , 1 2 1, , , , , ,

n nX X n X X X n n nf x x f x x x x dx-

¥

- -

¢ ¢= ò

Page 59: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs A single marginal pdf can be obtained as:

Also, a marginal pdf for a sub‐vector rv can be obtained as:

59

( ) ( )1 1 21 , , , 1 2 2, , ,

nX X X X n nf x f x x x dx dx¥ ¥

-¥ -¥

¢ ¢ ¢ ¢= ò ò

( ) ( )1 1 1 2, , 1 1 , , , 1 2 1, , , , , ,

n nX X n X X X n n nf x x f x x x x dx-

¥

- -

¢ ¢= ò

Page 60: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Distribution of Multiple rvs A single marginal pdf can be obtained as:

Also, a marginal pdf for a sub‐vector rv can be obtained as:

60

( ) ( )1 1 21 , , , 1 2 2, , ,

nX X X X n nf x f x x x dx dx¥ ¥

-¥ -¥

¢ ¢ ¢ ¢= ò ò

( ) ( )1 1 1 2, , 1 1 , , , 1 2 1, , , , , ,

n nX X n X X X n n nf x x f x x x x dx-

¥

- -

¢ ¢= ò

Page 61: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Summary A vector rv is a mapping from outcomes of a random 

experiment to a vector

Joint density and distribution functions of a vector rv are:

Marginal densities can be obtained as:

61

: nXZ S S Ì

2

, ,( , ) ( , ),X Y X Yf x y F x yx y¶

=¶ ¶ , ,( , ) ( , )

yx

X Y X YF x y f a b dadb-¥ -¥

= ò ò

( ) ( ), , aX Y YF a b F b¥¾¾¾¾

( ) ( ), , bX Y XF a b F a¥¾¾¾

Page 62: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Summary A vector rv is a mapping from outcomes of a random 

experiment to a vector

Joint density and distribution functions of a vector rv are:

Marginal densities can be obtained as:

62

: nXZ S S Ì

2

, ,( , ) ( , ),X Y X Yf x y F x yx y¶

=¶ ¶ , ,( , ) ( , )

yx

X Y X YF x y f a b dadb-¥ -¥

= ò ò

( ) ( ), , aX Y YF a b F b¥¾¾¾¾

( ) ( ), , bX Y XF a b F a¥¾¾¾

Page 63: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Summary A vector rv is a mapping from outcomes of a random 

experiment to a vector

Joint density and distribution functions of a vector rv are:

Marginal densities can be obtained as:

63

: nXZ S S Ì

2

, ,( , ) ( , ),X Y X Yf x y F x yx y¶

=¶ ¶ , ,( , ) ( , )

yx

X Y X YF x y f a b dadb-¥ -¥

= ò ò

( ) ( ), , aX Y YF a b F b¥¾¾¾¾

( ) ( ), , bX Y XF a b F a¥¾¾¾

Page 64: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Summary Conditional density is defined as:

For independent rvs, we have:

64

( ) ( ), , ( | )X Y Y Xf x y f y x f x=

, ( , ) ( ) ( )X Y X YF x y F x F y=

,

,

( , ) ( ) ( ) for discrete rvs

( , ) ( ) ( ) for continuous rvs

X Y X Y

X Y X Y

p x y p x p y

f x y f x f y

=

=

Page 65: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Summary Conditional density is defined as:

For independent rvs, we have:

65

( ) ( ), , ( | )X Y Y Xf x y f y x f x=

, ( , ) ( ) ( )X Y X YF x y F x F y=

,

,

( , ) ( ) ( ) for discrete rvs

( , ) ( ) ( ) for continuous rvs

X Y X Y

X Y X Y

p x y p x p y

f x y f x f y

=

=

Page 66: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Homework Reading Assignment

Example 4.28, 4.29, 4.30 in the textbook

66

Page 67: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Functions of Multiple Random Variables

67

Page 68: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Functions of Multiple Random Variables If we have a function of two discrete random variables, Z=g(X, 

Y), we can write its pmf as:

68

( ) ( ){ } { } { }

( ) ( ) ( )

Pr ( , ) Pr ( , ) | Pr ,

for all

( , ) |

Z

Z Y Xx

p z y z x X x y z x X x X x

x

p z p y z x x p x

= Ç = = = =

= å

Page 69: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Functions of Multiple Random Variables If we have a function of two random variables, Z=g(X, Y), we can 

write it in terms of the joint pdf and pmf as:

69

( ) ( ) ( ) ( ) ( )( , ) | ( , ) |Z Y X X Yf z f y z x x f x dx f x z y y f y dy¥ ¥

-¥ -¥

= =ò ò

Page 70: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example: Z=X+Y Let Z = g(X, Y) = X+Y If Z is discrete, we can find its pmf as:

Or:

70

( ) { } { }

{ } { }

( ) ( )

Pr Pr

Pr | Pr

Z

x

Y Xx

p z Z z X Y z

Y z x X x X x

p z x p x

= = = + =

= = - = =

= -

å

å

( ) ( ) ( )Z X Yy

p z p z y p y= -å

Page 71: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example: Z=X+Y Let Z = g(X, Y) = X+Y If Z is continuous, we have:

The same pdf can also be written as:

71

( ) ( ) ( )Z Y Xf z f z x f x dx

¥

= -ò

( ) ( ) ( )Z X Yf z f z y f y dy¥

= -ò

Page 72: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example: Z=X+Y Let Z = g(X, Y) = X+Y

PDF of the sum of two continuous random variables is equal to their convolution

72

( ) ( ) ( )Z Y Xf z f z x f x dx

¥

= -ò

( ) ( ) ( )Z X Yf z f z y f y dy¥

= -ò

Convolution integral

Page 73: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example2: Z=X+Y Let Z = g(X, Y) = X+Y Let X and Y be the packet processing time taken at two routers 

connected in series

X and Y are identically‐distributed exponential random variables with parameters λ

Find the pdf of Z. 

73

Router 1(Time taken: X)

Router 2(Time taken: Y)

Page 74: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example2: Z=X+Y

Z=X+Y

The pdf of X is:

74

( )0

0 0

x

X

e xf x

x

ll -ìï ³ïï= íï <ïïî

Router 1(Time taken: X)

Router 2(Time taken: Y)

Page 75: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example2: Z=X+Y

Z=X+Y

The pdf of Y is:

75

( )0

0 0,

y

Y

e y z xf y

y y z x

ll -ìï £ £ -ïï= íï < > -ïïî

Router 1(Time taken: X)

Router 2(Time taken: Y)

Page 76: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example2: Z=X+Y

Z=X+Y

In other words, the pdf of Y is:

76

( )( ) 0,

0

z x

Y

e z x x zf y

x z

ll - -ìï - > <ïï= íï >ïïî

Router 1(Time taken: X)

Router 2(Time taken: Y)

Page 77: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Example2: Z=X+Y The pdf of Z is: 

77

( ) ( ) ( )

( ) 2

0 0

2

Z Y X

z zz x x z x x

z

f z f z x f x dx

e e dx e e e dx

ze

l l l l l

l

l l l

l

¥

- - - - -

-

= -

= =

=

ò

ò ò

This is a 2-stage Erlang PDF ( )1

( 1)!

r r t

R

t ef t

r

ll - -

=-

Page 78: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Homework Reading Assignment

Example 4.31‐4.34 in the textbook; special emphasis on Example 4.34

Homework Assignment Problem 4.31 in textbook Problem 4.38 in textbook Problem 4.41 in textbook

78

Page 79: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Moments of Functions of Multiple Random Variables

79

Page 80: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Expected Value of Functions of Multiple RVs The expected value of a function of multiple rvs, g(X, Y), is given 

as:

80

{ }( ) ( )

( ) ( )

,

,

, , , jointly continuous

, , , discrete

X Y

i n X Y i ni n

g x y f x y dxdy X YE Z

g x y p x y X Y

¥ ¥

-¥ -¥

ìïïïïïï= íïïïïïïî

ò ò

åå

Page 81: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Moments of Multiple RVs The jk‐th joint moment of two rvs, X and Y, is given as:

By setting j=0, we can obtain moments of Y Similarly, k=0 yields moments of X

The (j=1, k=1) moment, E{XY}, is generally called the correlation of X and Y

If E{XY}=0 => X and Y are orthogonal or uncorrelated

81

{ }( )

( )

,

,

, , jointly continuous

, , discrete

j kX Y

j k

j ki n X Y i n

i n

x y f x y dxdy X YE X Y

x y p x y X Y

¥ ¥

-¥ -¥

ìïïïïïï= íïïïïïïî

ò ò

åå

Page 82: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Joint Central Moments of Multiple RVs The jk‐th central moment of two rvs, X and Y, is:

By setting j=0 and k=2, gives the variance of Y Similarly, setting j=2 and k=0 gives the variance of X

The (j=1, k=1) central moment, E{(X‐E{X})(Y‐E{Y})}, is generally called the covariance of X and Y

A more convenient representation of COV(X,Y) is:

Independent rvs have zero covariance82

{ }( ) { }( ){ }j kE X E X Y E Y- -

{ } { }( ) { }( ){ },COV X Y E X E X Y E Y= - -

{ } { } { } { },COV X Y E XY E X E Y= -

Page 83: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient The correlation coefficient of X and Y is

It can be shown that

Thus correlation coefficient is a normalized measure that quantifies the amount of dependence between two random variables

83

{ } { } { } { },

,X Y

X Y X Y

COV X Y E XY E X E Yr

s s s s-

= =

,1 1X Yr- £ £

Page 84: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 85: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 86: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 87: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 88: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 89: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 90: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 91: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Correlation Coefficient

Source: Wikipedia – Pearson product‐moment correlation coefficient, http://en.wikipedia.org/wiki/Pearson_product‐moment_correlation_coefficient

Page 92: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Useful Properties of Moments of Multiple RVs P1:

If all X’s are independent:

92

{ } { } { } { }1 2 1 2n nE X X X E X E X E X+ + + = + + +

( ) ( ) ( ){ } ( ){ } ( ){ } ( ){ }1 2 1 2n nE g X g X g X E g X E g X E g X=

Page 93: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Reading Assignment Section 4.7 in the textbook

Examples 4.39‐4.42

93

Page 94: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal (Gaussian) Random Variables

94

Page 95: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables The multi‐variate Gaussian pdf has the following form:

Where

95

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

1

2

N

m

21 12 1

221 2 2

21 2

N

N

N N N

Page 96: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables The multi‐variate Gaussian pdf has the following form:

For the Bivariate case:

96

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

1

2

m

21 12

221 2

Page 97: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables The multi‐variate Gaussian pdf has the following form:

For the Bivariate case:

97

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

1

2

m

21 12

221 2

Page 98: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables The multi‐variate Gaussian pdf has the following form:

For the Bivariate case:

98

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

1

2

m

21 12

221 2

1 212

1 2

( , )Cov X X

1 2 12 12 1 2( , )Cov X X

Page 99: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables The multi‐variate Gaussian pdf has the following form:

For the Bivariate case:

99

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

1

2

m

21 12 1 2

221 2 1 2

1 212

1 2

( , )Cov X X

1 2 12 12 1 2( , )Cov X X 12 21

Page 100: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables The multi‐variate Gaussian pdf has the following form:

For the Bivariate case:

100

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

1

2

m

21 1 2

22 1 2

1 212

1 2

( , )Cov X X

1 2 12 12 1 2( , )Cov X X 12 21

Page 101: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables Two random variables X and Y are jointly normal if their pdf has 

the following form

101

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

21 12 1 2

221 2 1 2

121 2

2 2 2 2 21 1 221 2 1 22

2 1 2

21 2 1

Page 102: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables Two random variables X and Y are jointly normal if their pdf has 

the following form

102

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

21 12 1 2

221 2 1 2

121 2

2 2 2 2 21 1 221 2 1 22

2 1 2

21 2 1

Page 103: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables Two random variables X and Y are jointly normal if their pdf has 

the following form

103

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

21 1 21

2

22 1 2

11

11

21 12 1 2

221 2 1 2

121 2

2 2 2 2 21 1 221 2 1 22

2 1 2

21 2 1

Page 104: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables Two random variables X and Y are jointly normal if their pdf has 

the following form

104

( )( )

2 2

,2,

, 2,

1exp 2

2 1,

2 1

X X Y YX Y

X X Y YX Y

X Y

X Y X Y

x m x m y m y m

f x y

rs s s sr

ps s r

ì üé ùï ïæ ö æ öæ ö æ öï ï- - - -ê ú- ÷ ÷ ÷ ÷ç ç ç çï ï÷ ÷ ÷ ÷ç ç ç ç- +ê úí ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï÷ ÷ ÷ ÷ç ç ç çê ú- è ø è øè ø è øï ïê úï ïë ûî þ=-

11 2 1

2

1 1( , ,..., ) exp22

T

X Nf x x x x m x m

Page 105: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables

105Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

( )( )

2 2

,2,

, 2,

1exp 2

2 1,

2 1

X X Y YX Y

X X Y YX Y

X Y

X Y X Y

x m x m y m y m

f x y

rs s s sr

ps s r

ì üé ùï ïæ ö æ öæ ö æ öï ï- - - -ê ú- ÷ ÷ ÷ ÷ç ç ç çï ï÷ ÷ ÷ ÷ç ç ç ç- +ê úí ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï÷ ÷ ÷ ÷ç ç ç çê ú- è ø è øè ø è øï ïê úï ïë ûî þ=-

X

Y

Bivariate Gaussian PDF

-4 -2 0 2 4-4

-2

0

2

4

Page 106: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables

106Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

( )( )

2 2

,2,

, 2,

1exp 2

2 1,

2 1

X X Y YX Y

X X Y YX Y

X Y

X Y X Y

x m x m y m y m

f x y

rs s s sr

ps s r

ì üé ùï ïæ ö æ öæ ö æ öï ï- - - -ê ú- ÷ ÷ ÷ ÷ç ç ç çï ï÷ ÷ ÷ ÷ç ç ç ç- +ê úí ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï÷ ÷ ÷ ÷ç ç ç çê ú- è ø è øè ø è øï ïê úï ïë ûî þ=-

X

Y

Bivariate Gaussian PDF

-4 -2 0 2 4-4

-2

0

2

4

Page 107: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables

107Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

( )( )

2 2

,2,

, 2,

1exp 2

2 1,

2 1

X X Y YX Y

X X Y YX Y

X Y

X Y X Y

x m x m y m y m

f x y

rs s s sr

ps s r

ì üé ùï ïæ ö æ öæ ö æ öï ï- - - -ê ú- ÷ ÷ ÷ ÷ç ç ç çï ï÷ ÷ ÷ ÷ç ç ç ç- +ê úí ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï÷ ÷ ÷ ÷ç ç ç çê ú- è ø è øè ø è øï ïê úï ïë ûî þ=-

X

Y

Bivariate Gaussian PDF

-4 -2 0 2 4-4

-2

0

2

4

Page 108: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables

108

( )( )

2 2

,2,

, 2,

1exp 2

2 1,

2 1

X X Y YX Y

X X Y YX Y

X Y

X Y X Y

x m x m y m y m

f x y

rs s s sr

ps s r

ì üé ùï ïæ ö æ öæ ö æ öï ï- - - -ê ú- ÷ ÷ ÷ ÷ç ç ç çï ï÷ ÷ ÷ ÷ç ç ç ç- +ê úí ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï÷ ÷ ÷ ÷ç ç ç çê ú- è ø è øè ø è øï ïê úï ïë ûî þ=-

If we set the exponents involving x and y in the above expression to a constant K, we obtain the equation for an ellipse

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Page 109: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables

109

( )( )

2 2

,2,

, 2,

1exp 2

2 1,

2 1

X X Y YX Y

X X Y YX Y

X Y

X Y X Y

x m x m y m y m

f x y

rs s s sr

ps s r

ì üé ùï ïæ ö æ öæ ö æ öï ï- - - -ê ú- ÷ ÷ ÷ ÷ç ç ç çï ï÷ ÷ ÷ ÷ç ç ç ç- +ê úí ý÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ï ï÷ ÷ ÷ ÷ç ç ç çê ú- è ø è øè ø è øï ïê úï ïë ûî þ=-

If we set the exponents involving x and y in the above expression to a constant K, we obtain the equation for an ellipse

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

This is the equation for an ellipse

Page 110: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Jointly Normal Random Variables

110

The orientation of the ellipse depends on the value of correlation ρ

Page 111: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Jointly Normal Random Variables

111

The orientation of the ellipse depends on the value of correlation ρ

When ρ≠0, we have:

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

Page 112: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Jointly Normal Random Variables

112

The orientation of the ellipse depends on the value of correlation ρ

When ρ≠0, we have:

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

Page 113: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Jointly Normal Random Variables

113

The orientation of the ellipse depends on the value of correlation ρ

When ρ≠0, we have:

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

Page 114: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Jointly Normal Random Variables

114

When ρ=0 (i.e., X & Y are uncorrelated), we have:

The ellipses are parallel to the X and Y axis 

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

Page 115: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Jointly Normal Random Variables

115

When ρ=0 (i.e., X & Y are uncorrelated), we have:

The ellipses are parallel to the X and Y axis 

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

Page 116: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

( )( )2

,

, 2,

1exp

2 1,

2 1

X Y

X Y

X Y X Y

K

f x yr

ps s r

ì üï ïï ï-ï ïí ýï ï-ï ïï ïî þ=-

Jointly Normal Random Variables

116

When ρ=0 (i.e., X & Y are uncorrelated), we have:

The ellipses are parallel to the X and Y axis 

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

Page 117: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables

117

As ρ=0 increases towards 1, X and Y become more and more correlated and the ellipses become narrower

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

X

Y

Bivariate Gaussian PDF

-4 -2 0 2 4-4

-2

0

2

4

Page 118: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Jointly Normal Random Variables

118

As ρ=0 increases towards 1, X and Y become more and more correlated and the ellipses become narrower

Picture from Prof. Hayder Radha’s lecture notes of ECE863 course

XY

Bivariate Gaussian PDF

-4 -2 0 2 4-4

-2

0

2

4

Page 119: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

n Jointly Normal Random Variables Random variables X1, X2,…Xn are jointly normal if their pdf has 

the following form:

where:

119

( ) ( )( ) ( ){ }( )1 2

1

, , , 1 2 1/ 2/2

1exp

2, , ,2n

T

X X X nX n

x m K x mf x f x x x

Kp

--- -

=

{ } { } { }

{ } { } { }

{ } { } { }

1 2

1 2

1 1 2 1

2 1 1 2

1 2

var

var

var

n

n

n

n

n n n

x x x x

m m m m

X COV X X COV X X

COV X X X COV X XK

COV X X COV X X X

é ù= ê úë ûé ù= ê úë ûé ùê úê úê úê ú= ê úê úê úê úê úë û

Covariance matrix

Page 120: Stochastic lecture 5

Copyright © Syed Ali Khayam 2009

Reading Assignment Section 4.8 in the textbook

Examples 4.45‐4.48

120