Studies on Concrete using Fly Ash, Rice Husk Ash and Egg ... ?· Studies on Concrete using Fly Ash,…

  • Published on
    25-Jun-2018

  • View
    212

  • Download
    0

Embed Size (px)

Transcript

<ul><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>362</p><p>StudiesonConcreteusingFlyAsh,RiceHuskAshandEggShellPowder</p><p>Jayasankar.R1,Mahindran.N2,Ilangovan.R31.Postgraduatestudent,Departmentof Civil Engg,AUT, Tiruchirappalli,2.ProfessorandHead,DepartmentofCivilEngg,PSNACET,Dindigul.3.AssistantProfessor,DepartmentofCivilEngg,AUT,Trichirappalli</p><p>jayasankarrenu@yahoo.com</p><p>ABSTRACT</p><p>Throughouttheworld,concreteisbeingwidelyusedfortheconstructionofmostofthebuildings, bridges etc. Hence, it has been properly labeled as the backbone to theinfrastructuredevelopmentofanation.Currently,ourcountryistakingmajorinitiativesto improve and develop its infrastructure by constructing express highways, powerprojectsand industrial structurestoemergeasamajoreconomicpowerand ithasbeenestimatedthattheinfrastructuresegmentinourcountryisexpectedtoseeinvestmentstothe tune of Rs.4356 billion by the year 2009. To meet out this rapid infrastructuredevelopment a huge quantity of concrete is required. Unfortunately, India is not selfsufficient in theproductionofcement, themain ingredientofconcreteand thedemandfor exceeds the supply and makes the construction activities very costlier. Hence,currently,theentireconstructionindustryisinsearchofasuitableandeffectivethewasteproductthatwouldconsiderablyminimizetheuseofcementandultimatelyreducetheconstructioncost.FewofsuchproductshavealreadybeenidentifiedlikeRiceHuskAsh(RHA),FlyAsh,SilicaFumes,Eggshelletc.AmongsttheseRHAandEggshellsareknowntohavegoodprospectsinminimizingtheusageofcement.Keywords: Concrete, characterization, eggshell power (ESP),RiceHuskAsh (RHA),</p><p>FlyAsh(FA).</p><p>1.Introduction</p><p>Flyashiscomprisedofthenoncombustiblemineralportionofcoalconsumedinacoalfueled power plant. Fly ash particles are glassy, spherical shaped ball bearings typically finer thancementparticles thatarecollected from thecombustionairsteamexitingthepowerplant.Ricehuskashglobally,approximately600milliontonnesofricepaddy isproducedevery year.Onanaverage20%of the ricepaddy is husk,givinganannualtotalproductionof120milliontonnes.Inthemajorityofriceproducingcountriesmuchof the husk produced from theprocessing of rice is either burntor dumped as awaste.Thetreatmentofricehuskasaresourceforenergyproductionisadeparturefromthe perception that husks present disposal problems. The concept of generating energyfrom rice husk has great potential, particularly in those countries that are primarilydependent on imported oil for their energy needs. Rice husks are one of the largestreadily available but most underutilized biomass resources, being an ideal fuel forelectricity generation. In recent years, special attention has been devoted to industrial</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>363</p><p>sectors that are sources of pollution of the environment the industry produces largevolumes of solid wastes, which can end up in rivers, lakes, and coastal waters. Thedisposal of these wastes is a very important problem, which can cause risk to publichealth,contaminationofwaterresourcesandpollutingtheenvironment. Alargenumberof foodplantsareconstantlyaccumulatingsubstantialquantitiesofeggshellwaste.Thisnaturalsolidwaste,althoughnonhazardous,isdirectlydisposedintheenvironment.Asaconsequence,ahugeproblemofpollutionisgenerated.Inaddition,itcanattractratsandwormsduetheorganicproteinmatrix,resultinginaproblem ofpublichealth.Thestudieshave been already made in this area by using egg shell powerWall tile is a ceramicmaterial primarily composed of clays, carbonates, and quartz. The aim of the currentstudywastocharacterizeaneggshellwastesample,determiningchemicalcompositionsandphysicalcharacteristics.Thepotentialuseof thiswasteasacementingmaterial forconcretewasalsoexamined.</p><p>1.TheoreticalBackgroundoftheStudy</p><p>Earlierworksonthecombinationconcreteconductedbyscholarshaveledustothepointthattheeggshellpowdercanbeusedasasupplementforindustriallime.IntheirarticleEffectofEggshell powder on theStabilizingPotential ofLimeon anExpansiveClaySoil by O. O. Amu, A. B. Fajobi and B.O. Oke Department of Civil Engineering,ObafemiAwolowoUniversity,Ileife,Nigeriahavecometotheconclusionthatthe4%ESP+3%limeastheoptimalpercentageoflimeEggshellPowderCombination.TherewerealsostudiesonusingEggShellPowderinwalltilematerials. EggShellPowderisrich inCaCo3. BasedontheresearchesconductedbyM.N.Freire,J.N.F.Holanda intheirarticleCharacterizationofavianeggshellwasteaimingitsuseinaceramicwalltilepaste.OpinethattheeggshellrichinCaCo3 canbeusedasanalternativerawmaterialintheproductionofwalltilematerial.Worldover500millionstonsofriceisharvested.Ofwhich20%isricehuskwhichisathreattotheenvironment.To reducethepollutionvarioustestsareconductedtofindoutwhetherthesematterscanbeconvertedintosomeusefulmaterial. FengQingfe et al in their article ConcretewithHighlyActiveRiceHuskAshhavestudiedthestrength,porevolumeandporedistributionof theconcreteusingRiceHuskAsh.</p><p>TheseStudiespromptstothinkandinvestigatethepossibilityofusingEggShellPowder,RiceHuskAshandFlyAshaspartialreplacementintheconventionalConcrete.</p><p>3.ResearchMethodology</p><p>3.1 Materialsforconcretecasting</p><p>Ordinary Portland cement Conforming to IS: 8112, 43 grade,Dalmia brandwas used.Screenedriversandwithfinenessmodulusequalto2.6conformingtogradingzoneIIIofIS:3831970wasused.Wellgradedbluegranitestoneaggregatepassingthrough12mmandretainedin4.75mmsievewithfinenessmodulusof7.48wasused.FlyashprocuredfromNeyveli LigniteCorporation,Neyveli, Tamil nadu Indiawas sieved before used.</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>364</p><p>Eggshellsprocuredfrom localcenterswasgrinded,sievedbeforeused.RiceHuskAshprocured from local agricultural lands and flower mills was incinerated, cleaned andsievedbeforeused.</p><p>3.2AnalysisandInterpretation</p><p>3.2.1 ChemicalAnalysisTable1:RiceHuskAsh</p><p>SiO2 92.99Fe2O3 0.43Al2O3 0.18CaO 1.03MgO 0.35SO3 0.1Al2O3+Fe2O3 0.61Na2O 3.56K2O 0.72</p><p>Table2:ChemicalAnalysisforFlyAsh</p><p>Lossonignition 4.5S1O2 56.65Al2O3 27.35Fe2O3 4.79CaO 2.19MgO 0.57SolubleS1O2 3.95</p><p>Table3:ChemicalAnalysisforEggShellPowder</p><p>CaO 50.7SiO2 0.09Al2O3 0.03MgO 0.01Fe2O3 0.02Na2O 0.19P2O5 0.24SrO 0.13NiO 0.001SO3 0.57Cl 0.219</p><p>3.3CompressiveStrengthTest</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>365</p><p>Thecompressivestrengthofconcreteisoneofthemostimportantpropertiesofconcrete.Concretespecimensof150x150x150mmcubeswerecastwithdifferentproportionsofconcrete.After24hoursthespecimensaredemouldedandsubjectedtocuring,thecubesarethenallowedtobecomedryforsomehours,foreachproportionstriplicatespecimenswerecast.Thecubesaretestedinthecompressivetestingmachine.Theloadwasappliedattherateof140KN/min.Theultimateloadatwhichthecubefailswastaken.</p><p>Table4:Strength calculationswithvaryingcontent</p><p>AllstrengthinN/mm2 M20 M25 M30 TOTALControlConcrete 9 9 9 27Cement+flyashCement+RHA*Cement+ESP**</p><p>36 36 36 108</p><p>Cement+flyash+RHACement+flyash+ESPCement+RHA+ESP</p><p>36 36 36 108</p><p>Cement+flyash+RHA+ESP 12 12 12 36</p><p>*RiceHuskAsh**EggShellPowder</p><p>Table5:AdoptedMixProportion</p><p>Cement FineAggregate</p><p>CoarseAggregate Water</p><p>M20 1 1.5 3.43 0.5M25 1 1.21 2.97 0.43M30 1 1.05 2.64 0.39</p><p>4.Recommendation/Suggestion/Findings</p><p>The effect of FA, RHA, and ESP as cement replacement material on compressivestrength ofM20,M25,M30Grade concreteswas presented inTables the compressivestrengthvariationwithrespecttothepercentageofreplacementofcementbyFA,RHA,andESPand14dayscuringwereshowninFigure</p><p>4.1CompressionTestResults(N/mm2)</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>366</p><p>Table6: Cement+Flyash,Cement+RHA,Cement+ESP</p><p>M20 M25 M305% 10% 15</p><p>%20% 5% 10% 15% 20% 5% 10% 15% 20%</p><p>ESP 29.79</p><p>27.26</p><p>24 21.48</p><p>33.72</p><p>31.11</p><p>28.50</p><p>24.89</p><p>35.02</p><p>32.15</p><p>28.50</p><p>25.63</p><p>FA 33.52</p><p>28.59</p><p>23 18.07</p><p>34.35</p><p>32.15</p><p>29.90</p><p>27.70</p><p>30.98</p><p>30.67</p><p>29.50</p><p>29.19</p><p>RHA</p><p>32.11</p><p>29.04</p><p>25 21.93</p><p>33.39</p><p>31.11</p><p>28.50</p><p>26.22</p><p>32.88</p><p>29.19</p><p>25.50</p><p>21.63</p><p>Table7: Cement+Flyash +RHA,Cement+flyash +ESP,Cement+RHA +ESP</p><p>M20 M25 M305% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%</p><p>E+F 22.83</p><p>22.81</p><p>22.50</p><p>22.52</p><p>29.17</p><p>28.63</p><p>27.50</p><p>26.96</p><p>30.87</p><p>29.93</p><p>28.50</p><p>27.56</p><p>F+R 24.58</p><p>24.19</p><p>23.20</p><p>22.81</p><p>27.74</p><p>27.41</p><p>26.70</p><p>26.37</p><p>30.27</p><p>29.48</p><p>29.20</p><p>28.89</p><p>R+E 20.88</p><p>20.44</p><p>20 19.48</p><p>28.56</p><p>27.41</p><p>26 24.85</p><p>27.37</p><p>27.26</p><p>27.20</p><p>27.11</p><p>Table8: Cement+flyash +RHA +ESP</p><p>M20 M25 M305% 10% 15</p><p>%20% 5% 10% 15% 20% 5% 10% 15% 20%FA+</p><p>RHA+ESP</p><p>21.29</p><p>21.18</p><p>21 20.89</p><p>25.89</p><p>25.63</p><p>25.30</p><p>25.04</p><p>29.68</p><p>28.89</p><p>27.90</p><p>27.11</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>367</p><p>Table9: SplitTensileStrengthat28DaysinN/mm2</p><p>Mix/MixRatios M20 M25 M30</p><p>Control.Conc 1.9 2.35 2.8</p><p>5% 1.25 1.6 1.6310% 1.21 1.58 1.615% 1.17 1.57 1.5720% 1.13 1.55 1.54</p><p>4.2Comparisonofvariousresultsobtained</p><p>4.2.1 Cement+ Flyash,Cement+ RHA,Cement+ESP</p><p>MIXCOMPARISION(M20)</p><p>0510152025303540</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>ESPFARHA</p><p>Figure1:Comparisonof14dayscompressivestrength(M20)</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>368</p><p>MIXCOMPARISION(M20)</p><p>222324252627282930</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>ESPFARHA</p><p>Figure2:Comparisonof14dayscompressivestrength(M25)</p><p>MIXCOMPARISION(M20)</p><p>0510152025303540</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>ESPFARHA</p><p>Figure3:Comparisonof14dayscompressivestrength(M30)</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>369</p><p>4.2.2 Cement+ Flyash+ RHA,Cement+ Flyash+ ESP,Cement+ RHA+ ESP</p><p>MIXCOMPARISION(M25)</p><p>0</p><p>5</p><p>10</p><p>15</p><p>20</p><p>25</p><p>30</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>ESP+FAFA+RHARHA+ESP</p><p>Figure4: Comparisonof14dayscompressivestrength(M20)</p><p>MIXCOMPARISION(M25)</p><p>222324252627282930</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>ESP+FAFA+RHARHA+ESP</p><p>Figure5: Comparisonof14dayscompressivestrength(M25)</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>370</p><p>MIXCOMPARISION(M25)</p><p>25</p><p>26</p><p>27</p><p>28</p><p>29</p><p>30</p><p>31</p><p>32</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>ESP+FAFA+RHARHA+ESP</p><p>Figure6:Comparisonof14dayscompressivestrength(M30)</p><p>4.2.3 ComparisonofCement+ Flyash+ RHA+ ESP</p><p>ESP+FA+RHA</p><p>0</p><p>5</p><p>10</p><p>15</p><p>20</p><p>25</p><p>30</p><p>35</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>M20M25M30</p><p>Figure7: Comparisonof14dayscompressivestrengthSpecialMix</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>371</p><p>4.2.4 ComparisonofCement+Flyash+RHA+ESP(splittensileTest)</p><p>ESP+FA+RHA</p><p>0</p><p>0.5</p><p>1</p><p>1.5</p><p>2</p><p>2.5</p><p>3</p><p>5 10 15 20</p><p>PERCENTAGE</p><p>STRENGTH</p><p>M20</p><p>M25</p><p>M30</p><p>Figure8:Comparisonof28dayssplittensilestrength</p><p>5.Findings</p><p>When20%ofspecialmixedconcreteistestedintheM20andM25gradeconcretethereisnochangeinthestrengthlevel.WhereaswhenthesamemixistestedattheM30gradethereisslightdecreaseinthestrengthlevelinrespectofcompressivestrength</p><p>6.Conclusion</p><p>Based on the results of these works it can be concluded that RHA, Fly ash and ESPmixed cubes has equal strength with that of conventional concrete cubes in certaincategories.M20andM25cubestakesequalloadcomparedtoconventionalconcrete.AndM30grade concretes load carrying capacity is slightly decreased.There fore it can beconcluded thatRHA,FlyashandESPmixedcubeswhenaddedwith thegradesaboveM25may results in thedecreaseof thestrength level.Hencea researchstudyhasbeenproposedtoinvestigatethestrengthofgradesM40,M50andabovegradesusingRHA,Fly ash and ESP to minimized the usage of cement in concrete and also identify thepropertiesofabovementioned.</p><p>7.References</p><p>1. Amu O.O. et al., 2005: Effect of Eggshell Powder on the stabilizingPotential of Lime on an Expansive Clay Soil. In Research Journal ofAgricultureandBiologicalSciences1(1):pp8084.</p></li><li><p>INTERNATIONALJOURNALOF CIVILANDSTRUCTURALENGINEERINGVolume1,No 3,2010</p><p>Copyright2010AllrightsreservedIntegratedPublishingservicesReviewarticle ISSN0976 4399</p><p>372</p><p>2. Beaudoin J. J. et al., 1979: Partial replacement of cement by fly ash inautoclavedproductstheoryandpractice.Int. JournalofMaterialsScience14,pp1681 1693.</p><p>3. FreireM.N.etal.,2006:Characterizationofavianeggshellwasteaimingitsuseinaceramicwalltilepaste.InJournalofCeramica52,pp240244.</p><p>4. FENG Qingge et al., 2004: Concrete with Highly Active Rice Husk Ash.HachinoheInstituteofTechnology.</p><p>5. HabeebG.A.etal.,2009:RiceHuskAshConcrete:theEffectofRHAAverageParticle Size on Mechanical Properties and Drying Shrinkage. In AustralianJournalofBasicandAppliedSciences,3(3):pp16161622</p><p>6. MahmudHB.,MajuarE.andHamid,N.B.A.A.(2002)MechanicalPropertiesandDurabilityofHighStrengthConcreteContainingriceHuskAsh,ACI22146,pp750 766.</p><p>7. Mazlum. F., and M. Uyan (1992). Strength of Mortar made with cementcontainingRicehuskAshandcuredinSodiumSulphatesolution,ACISP13229,pp513531.</p><p>8. Mehta,P.K.(1977).Propertiesof BlendedCementsMadeFromRiceHuskAsh,Journal of AmericanConcreteInstitute, 74(9),pp 440442.</p><p>9. RamaRao,G.V.andM.V.SeshagiriRao (2003).HighPerformanceconcretewithRiceHuskAshasMineralAdmixture, IndianConcrete Institute Journal,pp1721.</p><p>10. Ramasamy.V et al., 2008: Performance of Rice Husk Ash Concrete withSuperplasticizer.InICIJournal,IndianConcreteInstitute,9 (1),pp28 32.</p><p>11. Ramasamy.Vetal.,2008:MechanicalPropertiesandDurabilityofRiceHuskAshConcrete.InInternationalJournalofAppliedEngineeringResearch,3(12),pp17991811</p><p>12. Shantharaju.KandChandrashekaraiah (1995).Studiesonpartial replacementofcementusingricehusk incementmortar,Proc.of theNationalConferenceonCivilEngineeringMaterialsandStructures, India,pp6569.</p><p>13. Shetty.M.S.(1982)Concretetechnology,SultanChandPublication,2ndedition.</p></li></ul>