20
System Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

System Architectures Using OIF CEI-56G · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Embed Size (px)

Citation preview

Page 1: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

System Architectures Using OIF CEI-56G Interfaces

Nathan TracyTechnologist, TE Connectivity

Technical Committee Chair, OIF

Page 2: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Agenda

� OIF History of Common Electrical Interface (CEI)� Identification of CEI-56Gb/s Requirements� Typical Architectures for 56Gb/s Applications� 56Gb/s Technology and Architecture Considerations� Channel Improvements to Enable Architectures� Summary

1

Page 3: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

2

� Notice: This contribution has been created to assist the Optical Internetworking Forum (OIF). This document is offered to the OIF solely as a basis for discussion and is not a binding proposal on the companies listed as resources above. Each company in the source list, and the OIF, reserves the rights to at any time to add, amend, or withdraw statements contained herein.

� This Working Text represents work in progress by the OIF, and must not be construed as an official OIF Technical Report. Nothing in this document is in any way binding on the OIF or any of its members. The document is offered as a basis for discussion and communication, both within and without the OIF.

� For additional information contact:� The Optical Internetworking Forum, 48377 Fremont Blvd,

� Suite 117, Fremont, CA 94538� 510-492-4040 phone � [email protected]

� © 2015 Optical Internetworking Forum

Page 4: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

3

OIF Common Electrical Interface (CEI)Electrical Implementation Agreements

CEI IA (Common Electrical Interface) is a clause-based format supporting publication of new clauses over time: CEI-1.0: included CEI-6G-SR, CEI-6G-LR, and CEI-11G-SR clauses. CEI-2.0: added CEI-11G-LR clause CEI-3.0: added work from CEI-25G-LR, CEI-28G-SR CEI-3.1: includes CEI-28G-MR and CEI-28G-VSR

CEI-11G and -28G specifications have been used as a basis for specifications developed in IEEE 802.3, ANSI/INCITS T11, and IBTA.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014SxI-5 CEI-1.0 CEI-2.0 CEI-3.0

3G6G

11G 25G & 28G56G

CEI-3.1

Page 5: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

4

CEI-25G Application Space

Chip-to-Chip (300 mm)

Chip-to-Optics

Chip Chip

Chip Optics

CEI

-28G

-VSR

Published in CEI 3.0:� LR: Backplane, passive

copper cable.� SR: Chip-to-chip, and

chip-to-module.Published in CEI 3.1:� MR: Chip-to-chip, and

low loss backplane.� VSR: Chip-to-module

(fully retimed optics)

Optics Chip

Low loss Backplane (500 mm)

Chip Chip

CEI

-28G

-MR

Backplane (700 mm) orPassive Copper Cable

Chip Chip

CEI

-25G

-LR

CEI

-28G

-SR

Page 6: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

5

CEI Application Space is Evolving The “OIF Next Generation Interconnect Framework” white

paper lays out a roadmap for CEI-56G serial links. 2.5D and 3D applications are becoming increasingly relevant. High function ASICs (such as switch chips) are driving

requirements for higher I/O density and lower interface power.

Emerging trends Pin density is not increasing

fast enough for high density ASICs.

Power reduction of 30% from one generation to next is not good enough.

Page 7: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

6

CEI-56G Application Spaces

Chip-to-Chip & Midplane

Chip-to-Module

Chip Pluggable Optics

CEI-56G-USR USR: 2.5D/3D applications

1 cm, no connectors, no packages

XSR: Chip to nearby optics engine

5 cm, no connectors 5-10 dB loss @28 GHz

VSR: Chip-to-module 10 cm, 1 connector 10-20 dB loss @28 GHz

MR: Interfaces for chip to chip and midrange backplane

50 cm, 1 connector 15-25 dB loss @14 GHz 20-50 dB loss @28 GHz

LR: Interface for chip to chip over a backplane

100cm, 2 connectors 35dB at 14Ghz

Chip Chip

Backplane or Passive Copper Cable

Chip Chip

3D Stack

CEI-56G-XSR

CEI-56G-VSR

2.5D Chip-to-OE

Optics Chip

Chip to Nearby OE

CEI-56G-MR

CEI-56G-LR

Ultra short reach

Extra short reach

Very short reach

Medium reach

Long reach

Page 8: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

7

Optical Line Card Evolution� Today’s 100G based optical system based on 28G

electrical interconnects

� These 100G systems could eventually increase density by migrating to 2x50G optical modules leveraging the OIF’s 56G-VSR specification

Line Card CFP4/QSFP28 100G Module

Tx/Rx Optics

RetimerRetimer

BackplaneSwitch Card

Retimer ASICASIC

4x 25GNx 25GNx 25GNx25G

(CEI-25G-LR, 100GBASE-KR4)

(CEI-28G-SR/MR,CAUI-4 c2c)

(CEI-28G-VSR,CAUI-4 c2m)

(CEI-28G-SR/MR)

4x 25G

10-12 dB chip-to-module interface35dB 100GBASE-KR4

backplane interface15-20 dB

chip-to-chip interface

Source: Semtech

Page 9: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

8

200G/400G Optical Line Card� Possible long term 4x/8x 50G optical system

� 56G-VSR enables higher density 200G/400G optical line card

� Note that 56G PAM4 max interconnect losses reflect those of 28G NRZ allowing for similar component placement to today’s 100G line card!

Line Card

400G Module

Tx/Rx Optics

Retimer

Retimer

BackplaneSwitch Card

Retimer ASICASIC

8x 56G

Nx 56GNx 56GNx56G

(CEI-56G-LR-PAM4) (CEI-56G-MR-PAM4,CDAUI-8 c2c)

(CEI-56G-VSR-PAM4,CDAUI-8 c2m)

8x 56G

10dB PAM4 chip-to-module interface

35dB PAM4 backplane interface

15-20 dB PAM4chip-to-chip interface

(CEI-56G-MR-PAM4,CDAUI-8 c2c)

200G Module

Tx/Rx Optics

Retimer4x 56G

4x 56G

Source: Semtech

Note: PAM4 examples shown, could also be NRZ

Page 10: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

9

56G PAM-4 IC Technology Selection� CMOS/SiGe implementation tradeoffs

� CMOS suitable for Line Card SerDes� Potentially SiGe or CMOS for Module Retimer depending

upon IC functionality & complexity

Factor CMOS SiGe BiCMOS Notes

Analog Performance Favors SiGe

SiGe analog performance typically better (jitter, NF, etc)

Digital Complexity Favors CMOS Functions such as FEC

challenging in SiGe

Cost Favors SiGe NRZ likely to require more complex equalization

Equalization Options

AnalogADC/DSP Analog

PAM-4 lends itself to DAC/ADC approach though analog approaches still feasible

pJ/bit efficiency

Expect comparable transceiver efficiencies

Source: Semtech

Page 11: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Cable Backplane Demo50G NRZ Eval

Board (Tx)

Cable Backplane• 46” total channel length

• 40” copper backplane (30 gauge)

• Two STRADA Whisper connectors• Two break out cards (5” & 1”)

50G NRZ EvalBoard (Rx)

Cables Cables

Insertion Loss ~ 23dB at 25Ghz

Insertion Loss ~ 1.5dB at 25Ghz Insertion Loss ~ 1.5dB at 25Ghz

BER ~ 1e-12

50G NRZ Progress

Test board

Source: Credo10

Page 12: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

� Transitioning from 25Gb/s to 56Gb/s � Same number of IO� Core logic complexity scales to 4X

• 28nm to 16nm process node� But LR Serdes may hardly scale

• Limitations in die area and power density� USR and XSR may enable higher density

architectures by providing a low power interface

� Ability to escape to a SerDes which can support multiple applications (VSR, MR, LR)

11

45mm

45m

m

27mm

27m m

CoreLogic16nm

Serdes Serdes

Serdes Serdes

Serd

es

Serd

es

Serd

es

Serd

es

Package Ball View

Next Generation Switch Chip- Doubling the capacity

Source: Alcatel Lucent

Page 13: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

System OEM Perspective on 56Gb/s

• Product flexibility – must drive worst case Channel I/O will see

• VSR turns into MR or even LR(Lite) -> PAM4• Transistor BW/Nyquist Rate ratio varies greatly between

process technologies; 50GHZ power/performance is effected by process (CMOS, SiGe, etc.)

• Can’t just look at channel characteristics, must be IC/Channel optimized

• No errors after FEC (in large systems even 10^-18 BER have >1error/hr.; unacceptable)

• Need Low BER before FEC• Broadband effects (transient behavior vs. pure steady state)

• Eliminate as many broadband effects as possible• Broadband effects stress adaptation and reduce FEC

efficiency.

Source: Juniper Networks12

Page 14: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

ASIC used in various systems System MR Channel

System ChannelsSuck out rules out 56G NRZ

Source: Juniper Networks13

Page 15: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Orthogonal Backplane

Traditional Backplane

*

Backplane Trace

Full Power Serdes on IC capable of 35 dB channel Loss

without need for retimers

STRADA Whisperda

ught

er c

ard

Trac

e

daug

hter

car

d Tr

ace

IC

STRADAWhisper

Traditional Backplane and OrthogonalLR SERDES

POWERLR SERDES

POWER

Backplane Trace

IC

Source: TE Connectivity

Power56 Gbps Reach (PAM4)

Traditional PCB & STRADA Whisper Connector

100%(LR Serdes) 1m

14

Page 16: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Cabled Backplane Shuffle

Cabled Backplane

*

Full Power Serdes on Retimer capable of 35 dB channel

STRADAWhisper

Cabledaug

hter

car

d Tr

ace

daug

hter

car

d Tr

ace

IC

STRADAWhisper

Cable

Cable Backplanes:Margin/Thermal/Reach

LR/SR SERDESPOWER

LR/SR SERDESPOWER

IC

Source: TE Connectivity

Power56 GbpsReach (PAM4)

Traditional PCB & STRADA Whisper Connector

100%(LR Serdes) 1m

STRADA WhisperCable Backplane Connector

100%(LR Serdes) 3m

Traditional PCB & STRADA Whisper Connector With Retimers

150%(VSR + AEC) 1.5m

15

Page 17: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Insertion Loss

DAUGHTER CARD• Board Material = Megtron6 VLP

• Trace length = 5” • Trace geometry = Stripline

• Trace width = 6 mils• Differential trace spacing = 9 mils• PCB thickness = 110mils, 14 layers• Counterbored vias, 1 – 6mil stub

• Test Points = 2.4mm (included in data)

PCB BACKPLANE• Board Material = Megtron6 HVLP

• Trace length = 30” • Trace geometry = Stripline

• Trace width = 6 mils• Differential trace spacing = 9 mils

• PCB thickness = 200 mils, 20 layers• Counterbored vias, 1 – 6mil stub

• STRADA Whisper Vertical Header andRight Angled Receptacle

CABLED BACKPLANE• TE-Madison TurboTwin 40G Cable

• 30AWG, 1 meter [39.37”] • STRADA Whisper Cabled Header and

Right Angled Receptacle

5 10 15 20 25 30 350 40

-80

-60

-40

-20

-100

0

freq, GHz

16.9dB @12.89GHz

30dB @12.89GHz

Source: TE Connectivity

16

Page 18: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Mid Board Optics Switch

Optical Backplane System

½ Power Serdes + E/O + O/E Optical Power. 100M Reach including 2 Optical connectors

Optical BackplaneMBO MBOMXCMXC

Optical Backplanes:Density/Reach Extension

Source: TE Connectivity

Power56 GbpsReach (PAM4)

Traditional PCB & STRADA Whisper Connector

100%(LR Serdes) 1m

STRADA WhisperCable Backplane Connector

100%(LR Serdes) 3m

Traditional PCB & STRADA Whisper Connector With 

Retimers

150%(VSR + AEC) 1.5m

VCSEL Optical Backplane 150%(VSR + Optics) 100m

17

Page 19: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

Mid Board Optics for I/O

18Source: TE Connectivity

Power 56 GbpsReach (PAM4)

Traditional PCB w/ Direct Attach Passive Cable

100% Reference 3m

Traditional PCB w/ Pluggable VCSEL Optics 150% 100m

Traditional PCB w/ Power Retimers and Dirct Attach 

Passive Cable150% 5m

Mid Board VCSEL Optics 150% 100m

Page 20: System Architectures Using OIF CEI-56G  · PDF fileSystem Architectures Using OIF CEI-56G Interfaces Nathan Tracy Technologist, TE Connectivity Technical Committee Chair, OIF

19

Summary

� 56G systems require a balancing of requirements:• connector/channel demands• semiconductor demands• equipment demands

� New processing techniques can enable new architectures

� Higher performance channels can enable new architectures

� Integrated optics can enable new architectures� High performance systems based on 56Gb/s signaling

rates are being enabled by the OIF‘s CEI-56G projects� Come join the OIF!

www.oiforum.com