17

TBHR-PAC10AEC-C31-001 REV 02 Process Calculation for HP Separator

Embed Size (px)

DESCRIPTION

fasdfda

Citation preview

FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 2 of 17 Table of Contents 1. Introduction ...................................................................................... 32. Process Internals Overview ................................................................ 33. Process Description ............................................................................ 43.1 Evenflow HE Inlet Device ................................................................. 43.2 Mesh Pad Demister ......................................................................... 53.3 Distribution Baffles .......................................................................... 64. Process Flow Information ................................................................... 75. Vessel Summary ................................................................................ 96. Nozzle Schedule ................................................................................ 97. Liquid Levels ................................................................................... 108. Internal Details ................................................................................ 118.1 Evenflow HE ................................................................................. 118.2 Perforated Distribution Baffles ....................................................... 118.3 Mesh Pad Demister ....................................................................... 118.4 Weir Plate..................................................................................... 128.5 Accessibility .................................................................................. 139. Process Guarantee ........................................................................... 1410. Detailed Vessel Sizing Sheet ............................................................. 15 FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 3 of 17 1.Introduction This document is intended to describe the process design for the HP Separator V-401.

2.Process Internals Overview The following process internals have been selected in the process design for this vessel. Evenflow HE Perforated Distribution Baffles Mesh Pad Demister Weir Plate (design only) Notes: 1.Material of construction: Type 316 / 316L stainless steel. 2.Material of construction for bolting and nuts: Type 316 stainless steel 3.Material of gaskets: Expanded PTFE. 4.No welding to the vessel wall is permitted for the installation of the internals.5.MaterialcertificatesshallbeinaccordancewithEN102043.1forbasematerialwiththe exception of bolting and gaskets that are to be in accordance with EN 10204 2.1. 6.All internals in FMC supply will be pickled and passivated. 7.All items in FMC supply will be made removable through the vessel manway. Client scope of work Welded supports inside vessel for fixation of the internals Outlet Gas Box Inlet Bend Weir Plate Vortex Breakers Installation of internals (under FMC supervision) FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 4 of 17 3.Process Description Further details of the internals are given below: 3.1Evenflow HE Inlet Device Withover1500unitssoldsince1996,theproprietaryEvenflowHEInletDeviceisawellproven technology.Developedwiththebenefitofextensivein-housetesting,thedesignhasbeen continually optimized with the CFD and the benefit of decades of field experience. TheEvenflowHEInletdevicereceivestheincomingprocessstreamdivertingthefluidsthrough thedistributionvanes.Inspreadingthehighmomentumflowoverawiderareafillingthecross sectionalareaofthevessel,significantlyreducesthemomentumofthefluidenteringthe separatorinletzone.TheEvenflowHEinletdevicehastwokeybenefitstoimproveseparation. Firstly, by dissipating the momentum as early as possible in the inlet zone, reduces turbulence in theinletzoneanddownstreaminthevessel.Secondly,creatinganevendistributionoftheinlet stream utilizes the full vessel volume improving residence time. ThedesignoftheEvenflowachievestheseimprovementsintheinletzonewithoutimpactingor breaking up liquid droplets. This reduces the presence of small entrained oil droplets carried over to downstream demisting device and reduces gas entrainment in the liquid phase. TheEvenflowHEinletdevicehasbeendevelopedandrefinedextensivelythroughthecombined findingsofCFDsimulationandsuccessfulcasestudiesandhasbeenappliedtoawiderangeof applicationsforhorizontalandverticalseparators.Replacinganexistinginletdevicewithan EvenflowHEcanenabletheexistingprocessvesseltoeffectivelyhandlethehigherinlet momentums andchanged production profile ensuring economical process performance for future flow rates. Key benefits: Robust technology applied over decadesProven performance optimized by CFD Robust design with mechanical strength verified by FEA Resistant to fouling and blocking Effectively dissipates inlet momentum Maximizes gravity separation Evenly distributes fluid flow to utilize full vessel volume. FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 5 of 17 3.2Mesh Pad Demister The mesh pad demister is a well-established design for dealing with liquid droplets entrained in the gasphase.Thistypeofdemisterischaracterizedbyaverylowpressuredropandhighcontact area for fine liquid droplets. A lattice is woven from fine wire creating a mesh and supported within anopenframeformechanicalstrength.Themeshprovidesahighnetfreeareawithahigh surface area for contact with fine liquid droplets. As the droplets make contact with the mesh, they coalesce and grow in size. As the droplets coalesce and grow, a critical mass is reached when they fall under gravity from the bottom of the mesh. The mesh can be mounted horizontally or vertically in two or three phase separators. In Summary, Mesh Pad demisters are: Resistant to erosion and degradation Highly efficient, with a wide turn down and operating range Robust technology applied over decadesProven performance optimized by CFD Robust design with mechanical strength verified by FEA Low cost and weight FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 6 of 17 3.3Distribution Baffles Perforated baffles are positioned in horizontal separators to achieve a number of process benefits:The effects of high inlet momentum of incoming fluids are contained within the inlet zone Distribute pressure drop across the vessel diameter creating plug flow Resulting pressure drop promotes gas break out earlier in the separation zone.Reduces impact of fluid volume surges from fluctuating process conditions.Createscalmseparationconditionstomaximizethevolumeinthedownstreamquiescent zone.Reduce gas layer velocities, allowing for drop out of liquid droplets. In floating applications, correct placement of baffles provides effective sloshing mitigation The inlet momentum of multiphase fluid entering a separator vessel must be effectively contained withintheinletzonewhileminimizingturbulenceandshearing.Mostofthemomentumwillbe dispersed by the inlet device ensuring gooddistribution of fluid flow across the inlet zone. When fluctuating flow is experienced, changing velocities, phase ratios and slugging has the potential to agitatetheinletzone.Bafflespositioneddownstreamoftheinletdeviceservetocontainsurges within the separator inlet zone. Perforated baffles are designed with an open area between 20-40% creating the desired level of pressuredrop.Bycreatingthepressuredropacrossthewidthofthevesselprovidestwodirect benefits to separation efficiency:1.Ensuringplugflow.Usingthefullwidthofthevesselpreventsjettingorshortcutting downstream towards the outlet nozzles 2.Gas phase hold up. Reduce gas phase velocity and liquid droplet entrainment towards the downstream demisting devices. ThemechanicaldesignofFMCSeparationSystemsperforatedbafflesischaracterizedbya distinctiveconicalarrangement.Significantstrengthimprovementsaregainedandlargesupport beamsremoved.Easeoffabricationandinstallationisimprovedwithcostreductionsoverflat baffle designs. FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 7 of 17 4.Process Flow Information 1)TheproposeddesignisbasedonthefollowingprocessdatafromDoc.No. 135355-04-DAS-04-019 rev.C2 dated 14-04-14. Process Data Operating ConditionsUnits Case 1 Max Gas Case 2 Max Oil Case 3 Max WaterTemperatureC29.016.625.54 PressurekPa-a1501.333321.331881 Gas Flowkg/hr50352.0427128.7447580 Molecular weight19.2119.4618.67 Densitykg/m11.9831.5716.18 ViscositycP0.0120.01200.0111 HC Liquid Flowkg/hr490.421402.531318 Densitykg/m 687.20 633.53 685.3 ViscositycP 0.443 0.277 0.438 Gas / Oil Interfacial Tensiondyne/cm 18.03 13.67 17.94 Water Flowkg/hr601.2360.961725 Densitykg/m1004.801022.121022 ViscositycP0.8141.4311.477 Gas / Water Interfacial Tensiondyne/cm71.4075.2275.43 Additional requirements Slug Volume Requirement (NLL HLL)84 m3 FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 8 of 17 2)Additional Process Data from: 135355-01-REP-06-001_Process Simulation Report_Rev C0, 135355-01-REP-06-004-FlowAssuranceStudyReport-C0 and 135355-01-PFD-06-001 Heat and Material Balance Operating ConditionsUnitsCase 1Case 2Case 3Case 4Case 5 TemperatureC36.525.375.434.726.62 PressurekPa-a15013407339115013321 Gas FlowMMSCFD19.72319.49218.43228.36727.935 Molecular weight18.65418.29617.52019.93219.461 ViscositycP 0.012 0.011 0.0110.0120.012HC Liquid Flowm/hr 0.468 1.237 0.9530.5982.214Densitykg/m688.994658.636690.985682.086633.533 ViscositycP0.4680.3550.5010.4270.277 Gas / Oil Interfacial Tensiondyne/cm18.20115.23517.48717.44513.674 Water Flowm/hr0.1630.2281.2200.2700.353 Densitykg/m999.0811022.979 1022.9041000.480 1022.166 ViscositycP0.6971.4851.4830.7231.431 Gas / Water Interfacial Tensiondyne/cm70.09675.45975.45770.40475.224 Operating ConditionsUnitsCase 6Case 7Case 8Case 9 TemperatureC 6.6 29.01 5.055.54PressurekPa-a 3251 1501 17511881Gas FlowMMSCFD26.91652.53552.18251.079 Molecular weight19.02019.20718.95418.868 ViscositycP0.0120.0120.0110.011 HC Liquid Flowm/hr1.7440.7142.0351.924 Densitykg/m656.992687.197678.336685.270 ViscositycP0.3430.4430.4050.438 Gas / Oil Interfacial Tensiondyne/cm14.99118.03117.58317.944 Water Flowm/hr1.3460.5980.6931.687 Densitykg/m 1022.158 1004.797 1022.7531022.436ViscositycP 1.432 0.814 1.4991.477Gas / Oil Interfacial Tensiondyne/cm 75.229 71.396 75.51275.427 FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 9 of 17 5.Vessel Summary Number of vessels1 Horizontal or VerticalHorizontal Vessel internal diameter (mm)3800 Tan to Tan Length (mm)9000 Head typeElliptical 6.Nozzle Schedule NozzleSize ()/ I D (mm)LocationDescription Notes N118 / 387.4 mm+1800 mm 1Inlet FluidInlet Bend N312 / 304.8 mm+8700 mm 1Gas Outlet Gas Box N123 / 47.8 mm+7300 mm 1Liquid OutletVortex Breaker N132 / 38.2 mm+8800 mm 1 Condensate Outlet Vortex Breaker M124 / 531.8 mmOn upstream headManway M224 / 531.8 mm +6950 mm 1 on top of vessel Manway 1. Location is taken from upstream tan line of vessel 9000 03800ID18008700880073007500HIL+520HHLL+3000EvenflowHEMesh77002200FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 10 of 17 7.Liquid Levels LevelElevation1 (mm) HHLL3000 HLL2900 NLL620 LLL500 LLLL375 Weir620 HIL520 NIL420 LIL320 LLIL220 1. From bottom of vessel FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 11 of 17 8.Internal Details 8.1Evenflow HE Vane Type Inlet Device TypeEvenflow HE Vane Radius (mm)150Number of Vane Ladders per Side1 Number of Vanes per Vane Ladder6 Min. Evenflow Centre Line Elevation 1+3342.8 1. Elevation is taken from bottom of vessel 8.2Perforated Distribution Baffles Perforated Distribution Baffles#1#2 Full or Part Diameter BaffleFull1Full 1Height of Part Diameter Baffle (mm)31003100 Perforation (% Net Free Area)3621 Diameter holes (mm)3030 Location of baffle (mm)122002700 1. Full diameter baffle with cut-outs 2. Location is taken from upstream tan line of vessel 8.3Mesh Pad Demister Mesh Pad Demister Type412 Mesh Thickness (mm)150 Mesh Bottom Elevation (mm)13050 Location of Mesh (mm) 27700 1. Elevation is taken from bottom of vessel 2. Location is taken from upstream tan line of vessel FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 12 of 17 8.4 Weir Plate Weir Plate Height of Weir (mm)1620 Location of Weir (mm)275001. Elevation is taken from bottom of vessel 2. Location is taken from upstream tan line of vessel FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 13 of 17 8.5 Accessibility Allinternalsareinstallableandremovableviathemanway.ClientisrequestedtoinformFMC about the available space around the separator and accessibility to the manway. Obstructions near thevesselandmanwaymustbeclearlyindicatedpriortodesign.Thisinordertopreventthat parts of the internals will not be able to enter the vessel. FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 14 of 17 9.Process Guarantee Based on the equipment being stored, erected and operated in accordance with FMC instructions we guarantee the following. Liquid Entrainment in Gas The overall liquid carryover at high-high liquid level, neglecting the effect of condensation across the vessel due to pressure drop, will not exceed 1% vol. The liquid droplet removal shall equal or exceed 99% of droplets greater than 100 microns. Water Entrainment in Oil The amount of free water entrained in the oil will not exceed 1% v/v. This does not apply to water absorbed in the oil nor that contained in an emulsion. Oil Entrainment in Water The amount of free oil entrained in the water will not exceed 2000 ppm v/v. This does not apply to oil absorbed in the water nor that contained in an emulsion. InordertoconfirmtheaboveProcessGuaranteeandtoassurethattheinternalsdesignis adequate, the following upstream piping requirements apply: 1.The same ID as the inlet nozzle ID; 2.Straight pipe length of 10 times the inlet nozzle ID with no major disturbances or pressure drops within this straight pipe run; 3.All bends within 10D of the inlet nozzle in the vertical plane. Bends in horizontal plane shall be avoided. Iftheupstreampipingdoesnotmatchtheaboverequirementsclientisexpectedtoprovidethe actual layout for our further evaluation. FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 15 of 17 10. Detailed Vessel Sizing Sheet 1)Key Design Summary Tan to Weir Length7500mm ParametersUnitsCase 1 Case 2Case 3 Inlet nozzle momentum (v2)kg/ms21202138828 Overall maximum pressure dropmbar15210 Gas k-factor at HHLLm/s0.090.0310.073 Gas outlet nozzle momentumkg/ms230673382028 HC Liquid Residence time (NIL NLL)min351.2113.2130.3 Oil outlet velocitym/s0.1730.5380.467 Water Residence time (BV NIL)min538.5912.4190.9 Water outlet velocitym/s0.0930.0550.262 The following requirements shall be met according to FMC standard design: Inlet momentum 8000 kg/ms2 Gas outlet momentum 3750 kg/ms2 Oil outlet velocity 2 m/s Water outlet velocity 2 m/s Liquid Level Settings I ntervalLevel Level (mm) Vessel fill (%) Net Vol (m3) Residence time (min) Case 1Case 2Case 3 HLL to HHLLHHLL3000 79 3.24 272.7 87.9101.2NLL to HLLHLL29007684.057066.22277.92622 LLL to NLLNLL620160.6655.117.820.4 LLLL to LLLLLL500130.650.316.218.7 Liquid outlet to LLLLLLLL375101.0689.528.833.2 HIL to WeirWeir620 16 2.18 218.5 370.277.5 NIL to HILHIL520142200.4339.571 LIL to NILNIL420 11 1.79 179.3 303.863.6 LLIL to LILLIL32081.54154.1261.154.6 BV to LLILLLIL22062.05205.1347.672.7 Liquid levels shall meet the following minimum requirements: 100 mm or 60 seconds between levels 5 min residence time oil 5 min residence time water A slug volume of 84m3 between NLL and HLL FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 16 of 17 2)Key Design Summary Tan to Weir Length7500mm ParametersUnitsCase 1 Case 2 Case 3Case 4Case 5Inlet nozzle momentum (v2)kg/ms21766963386157 Overall maximum pressure dropmbar21152 Gas k-factor at HHLLm/s0.0340.0220.020.0510.033 Gas outlet nozzle momentumkg/ms2447170146983382 HC Liquid Residence time (NIL NLL)min535.5202.6263419.1113.2 Oil outlet velocitym/s0.1140.30.2310.1450.538 Water Residence time (BV NIL)min 1976.8 1413.2 264.11193.4912.8Water outlet velocitym/s 0.025 0.035 0.1890.0420.055 The following requirements shall be met according to FMC standard design: Inlet momentum 8000 kg/ms2 Gas outlet momentum 3750 kg/ms2 Oil outlet velocity 2 m/s Water outlet velocity 2 m/s Liquid Level Settings IntervalLevel Level (mm) Vessel fill (%)Net Vol (m3)Residence time (min) Case 1Case 2Case 3Case 4Case 5 HLL to HHLLHHLL3000793.24415.8157.3204.2325.487.9 NLL to HLLHLL29007684.05 10775.24076.6 5291.58432.8 2277.7LLL to NLLNLL620160.668431.841.365.817.8 LLLL to LLLLLL500130.676.72937.760.116.2 Liquid outlet to LLLLLLLL375101.06136.551.667106.828.8 HIL to WeirWeir620162.18802.1573.4107.2484.2370.4 NIL to HILHIL52014 2 735.6 525.9 98.3444.1 339.6LIL to NILNIL420111.79658.1470.587.9397.3303.9 LLIL to LILLIL32081.54565.7404.475.6341.5261.2 BV to LLILLLIL22062.05753538.3100.6454.6347.7 Liquid levels shall meet the following minimum requirements: 100 mm or 60 seconds between levels 5 min residence time oil 5 min residence time water A slug volume of 84m3 between NLL and HLL FMC Project No.:P14-04027 FMC Doc. No. :P14-04027-PDC Revision : 2 Page 17 of 17 Key Design Summary Tan to Weir Length7500mm ParametersUnitsCase 6 Case 7 Case 8Case 9Inlet nozzle momentum (v2)kg/ms21501249980890 Overall maximum pressure dropmbar2161211 Gas k-factor at HHLLm/s0.0310.0910.0810.076 Gas outlet nozzle momentumkg/ms2354318924502179 HC Liquid Residence time (NIL NLL)min143.7351123.2130.3 Oil outlet velocitym/s0.4240.1730.4940.467 Water Residence time (BV NIL)min 239.4 538.8 465191Water outlet velocitym/s 0.209 0.093 0.1070.262 The following requirements shall be met according to FMC standard design: Inlet momentum 8000 kg/ms2 Gas outlet momentum 3750 kg/ms2 Oil outlet velocity 2 m/s Water outlet velocity 2 m/s Liquid Level Settings I ntervalLevel Level (mm) Vessel fill (%)Net Vol (m3)Residence time (min) Case 6Case 7Case 8Case 9 HLL to HHLLHHLL3000793.24111.6272.695.6101.1 NLL to HLLHLL29007684.052891.57062.824782621 LLL to NLLNLL620160.6622.655.119.320.4 LLLL to LLLLLL500130.620.650.317.718.7 Liquid outlet to LLLLLLLL375101.0636.689.431.433.2 HIL to WeirWeir620162.1897.1218.6188.777.5 NIL to HILHIL520 14 2 89.1 200.517371.1LIL to NILNIL420111.7979.7179.4154.863.6 LLIL to LILLIL32081.5468.5154.2133.154.7 BV to LLILLLIL22062.0591.2205.2177.172.8 Liquid levels shall meet the following minimum requirements: 100 mm or 60 seconds between levels 5 min residence time oil 5 min residence time water A slug volume of 84m3 between NLL and HLL