20
Teaching About Energy Transparencies

Teaching About Energy

Embed Size (px)

DESCRIPTION

Teaching About Energy. Transparencies. Activity 1. Roller coaster brainstorming: Factors to consider Go up slowly and up a gentle incline to enhance anticipation. Go up fast to provide thrills from the start. Make first incline steep to reduce land area needed. - PowerPoint PPT Presentation

Citation preview

Page 1: Teaching About Energy

Teaching About Energy

Transparencies

Page 2: Teaching About Energy

Activity 1Roller coaster brainstorming:Factors to consider• Go up slowly and up a gentle incline to enhance anticipation.• Go up fast to provide thrills from the start.• Make first incline steep to reduce land area needed.• Make first incline gentle to reduce force required to pull cars

up the hill.• Make first hill high enough for the roller coaster to reach

the end.• Keep safety in mind at all times.

Page 3: Teaching About Energy

Designing a roller coaster:How to reach the top of the first hill?

• Measure the force needed to pull a cart up each slope.• Measure the distance the cart travels each slope.• How are the forces and distances related?

Activity 1

Page 4: Teaching About Energy

“Up the Hill” Results:How are the forces and distances related?

• Force times distance for each slope is the same.• We call the product of force and distance “work”:

Work = Force x distance• Work done to lift an object directly upward through distance

H is said to increase gravitational potential energy:• mgH = increase in gravitational potential energy

Activity 1

Page 5: Teaching About Energy

What happens when the coaster rollsdown the hill?

• How does the decrease in gravitational potential energy depend on speed?

• Measure the speed of the cart at different heights above the table.

• Calculate the decrease in gravitational potential energy at each point.

• Make a graph of decrease in gravitational potential energy vs. speed.

Activity 2

Page 6: Teaching About Energy

“Down the Hill” Results:How does the decrease in gravitational potential energy depend on speed?

• Decrease in gravitational potential energy varies as the square of the speed.

• The graph of decrease in gravitational potential energy vs. square of speed is a straight line through the origin with a slope of half the mass.

• Decrease of gravitational potential energy = increase in mv2/2.• mv2/2 is called Kinetic Energy (Energy of Motion).• Decrease of gravitational potential energy = increase of

kinetic energy.

Activity 2

Page 7: Teaching About Energy

Elastic Potential Energy:How does the potential energy of a spring depend on how much it is stretched?

• Use Hooke’s Law to measure the spring constant (k).• Allow the spring (with mass m) to oscillate above a

motion detector.• Calculate the KE of the mass at each time.• Consider the maximum KE to be the total energy of the

oscillating mass (PE = 0 at this point).• Subtract the KE from E (total energy) at each point to

determine PE.• Consider the position of the mass to represent zero displacement

when KE = maximum. Subtract this value from positions at other times to determine the spring’s displacement.

• Make a graph of PE vs. spring displacement.

Activity 3

Page 8: Teaching About Energy

Elastic Potential Energy Results:How does the potential energy of a spring depend on how much it is stretched?

• Potential energy varies as the square of the displacement of the spring.

• The graph of potential energy vs. square of displacement is a straight line through the origin with a slope of half the spring constant (k). (Even if the straight line doesn’t pass through the origin, the y-intercept represents a constant, which is arbitrary for defining PE.)

• The expression for elastic potential energy is ky2/2, where y = displacement from equilibrium.

Activity 3

Page 9: Teaching About Energy

Elastic Potential Energy Results:(continued)

• Since the equilibrium point for a mass m on the spring is mg/k lower than that of the bottom of the spring in a zero gravity environment, the expression for PE relative to the equilibrium point in zero gravity (y′ = y – mg/k) is

(1/2)ky2 = (1/2)k(y′ + mg/k)2 =

(1/2)ky′2 + mgy′ + (1/2)m2g2/k.

• Thus, the quadratic dependence on displacement about equilibrium point (y = 0 or y′ = -mg/k) includes both elastic and gravitational potential energy.

Activity 3

Page 10: Teaching About Energy

GPE to Thermal Energy:How is temperature increase related to decrease of gravitational potential energy?

• Insert temperature probe into container of metal shot. Record initial temperature.

• Invert container 100 times and remeasure temperature.• Repeat this four more times (at intervals of 100

inversions for a total of 500).• Make a graph of temperature vs. number of inversions.

What relationship does this indicate between the temperature increase and the number of inversions?

• Determine the temperature increase for one inversion.

Activity 4

Page 11: Teaching About Energy

GPE to Thermal Energy:(continued)

• Calculate the gravitational potential energy decrease for one inversion. Divide this by the mass of the metal shot to calculate the gravitational potential energy decrease per unit mass for a single inversion.

• If the decrease in gravitational potential energy is considered to equal the increase in thermal energy, what is the thermal energy increase per unit mass for each inversion?

• Divide the thermal energy increase per unit mass for one inversion by the temperature increase for one inversion. This is known as the specific heat.

Activity 4

Page 12: Teaching About Energy

Power of a Student:At what rate can you do work while climbing stairs?

• Walk or run up the stairs and measure the time for each trial.

• Determine the work done by calculating the change in gravitational potential energy.

• Find the power, or rate of doing work, by dividing the work done by the time.

• Convert to kJ/min and Cal/min.

Activity 5

Page 13: Teaching About Energy

Electrical to Thermal Energy:What variables determine the temperature increase of water?

• First, heat 200 g water for different amounts of time (< 3 minutes).

• Make a graph of temperature change vs. energy input.

• Heat different amounts of water (< 225 g) for the same amount of time (2 minutes).

• Make a graph of temperature change vs. mass of water.

Activity 6

Page 14: Teaching About Energy

Electrical to Thermal Energy:How does temperature change depend on energy input and mass?

• The graph of temperature increase vs. energy input is linear.

• The graph of temperature increase vs. mass shows an inverse relationship.

• Therefore ΔT = constant x energy input/m,orenergy input = (new) constant x m x ΔT

The (new) constant is known as the specific heat.

Activity 6

Page 15: Teaching About Energy

Energy from Chemical Fuels:How do you measure the energy released by burning a given amount of a chemical fuel?

• Measure the mass of a candle both before and after using it to heat 100 g water so that its temperature increases by about 30oC.

• Calculate the increased thermal energy of the water.• Calculate the amount of thermal energy input to the

water, and divide this by the mass of the candle that burned. This will give the number of kJ per gram.

• Compare this with the accepted value of 47 kJ/g.• How can you explain differences between your result

and the accepted value?

Activity 7

Page 16: Teaching About Energy

Efficiency of Energy Conversion:What percentage of the electrical energy input to a light bulb is converted into light energy?

• Measure the intensity of light (in W/m2)at different distances from a 40-W light bulb.

• Multiply the intensity of light by the area of a sphere equal to the distance from the light bulb to find the rate at which light is emitted from the bulb (“light power”).

• Calculate the ratio

Light Power/Electrical Power (40 W)

to find the efficiency with which the light bulb converts electrical energy to light.

Activity 8

Page 17: Teaching About Energy

Energy is neither produced nor used: it is transformed!

Energy “sources”: “more useful” forms of energy, to be transformed to meet our needs

Energy “production”: transformation of “more useful” forms of energy into a form that meets our needs

Energy “use”: transformation of energy in a form that met our needs into “less useful” forms

Energy “conservation”: “using” the least amount of a “more useful” form of energy to accomplish a given task

Activity 8

Page 18: Teaching About Energy

US Fossil Fuel Use (1949-2001)

0

10

20

30

40

50

60

70

80

90

1940 1950 1960 1970 1980 1990 2000 2010

year

nu

mb

er o

f Q

uad

s/yr

Coal

Natural gas

Petroleum

Total fossil

Page 19: Teaching About Energy

US Renewable Energy Use (1949-2001)

0

1

2

3

4

5

6

7

8

1940 1960 1980 2000 2020

year

num

ber

of Q

uads

/yr Conv. Hydro

Biomass

Geothermal

Solar

Total renewable

Page 20: Teaching About Energy

Total US Energy Use (1949-2001)

0

20

40

60

80

100

120

1940 1960 1980 2000 2020

year

nu

mb

er o

f Q

uad

s/yr

total fossil

nuclear

total renewable

total