132
UNIVERSIDADE FEDERAL DO CEARÁ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA DA REDE NORDESTE DE BIOTECNOLOGIA RAQUELL DE CASTRO CHAVES EFEITO ANTIDEPRESSIVO DA RIPARINA IV SOBRE PADRÕES COMPORTAMENTAIS E NEUROQUÍMICOS DE CAMUNDONGOS EXPOSTOS AO MODELO DE ESTRESSE CRÔNICO INDUZIDO PELA ADMINISTRAÇÃO DE CORTICOSTERONA FORTALEZA 2019

Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

UNIVERSIDADE FEDERAL DO CEARÁ

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA DA REDE

NORDESTE DE BIOTECNOLOGIA

RAQUELL DE CASTRO CHAVES

EFEITO ANTIDEPRESSIVO DA RIPARINA IV SOBRE PADRÕES

COMPORTAMENTAIS E NEUROQUÍMICOS DE CAMUNDONGOS EXPOSTOS

AO MODELO DE ESTRESSE CRÔNICO INDUZIDO PELA ADMINISTRAÇÃO DE

CORTICOSTERONA

FORTALEZA

2019

Page 2: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

RAQUELL DE CASTRO CHAVES

EFEITO ANTIDEPRESSIVO DA RIPARINA IV SOBRE PADRÕES

COMPORTAMENTAIS E NEUROQUÍMICOS DE CAMUNDONGOS EXPOSTOS AO

MODELO DE ESTRESSE CRÔNICO INDUZIDO PELA ADMINISTRAÇÃO DE

CORTICOSTERONA

Tese apresentada ao Programa de Pós-Graduação em Biotecnologia da Rede Nordeste em Biotecnologia – RENORBIO, da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Doutor em Biotecnologia. Área de concentração: Biotecnologia em Saúde. Orientadora: Profa. Dra. Francisca Cléa Florenço de Sousa. Coorientadora: Profa. Dra. Alyne Mara Rodrigues de Carvalho

FORTALEZA

2019

Page 3: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará

Biblioteca UniversitáriaGerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

C439e Chaves, Raquell de Castro. Efeito antidepressivo da Riparina IV sobre padrões comportamentais e neuroquímicos de camundongosexpostos ao modelo de estresse crônico induzido pela administração de corticosterona / Raquell de CastroChaves. – 2019. 130 f. : il. color.

Tese (doutorado) – Universidade Federal do Ceará, Pró-Reitoria de Pesquisa e Pós-Graduação, Programade Pós-Graduação em Biotecnologia (Rede Nordeste de Biotecnologia), Fortaleza, 2019. Orientação: Profa. Dra. Francisca Cléa Florenço de Sousa. Coorientação: Profa. Dra. Alyne Mara Rodrigues de Carvalho.

1. Depressão. 2. Corticosterona. 3. Citocinas. 4. Estresse oxidativo . 5. Riparina. I. Título. CDD 660.6

Page 4: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

RAQUELL DE CASTRO CHAVES

EFEITO ANTIDEPRESSIVO DA RIPARINA IV SOBRE PADRÕES

COMPORTAMENTAIS E NEUROQUÍMICOS DE CAMUNDONGOS EXPOSTOS AO

MODELO DE ESTRESSE CRÔNICO INDUZIDO PELA ADMINISTRAÇÃO DE

CORTICOSTERONA

Tese apresentada ao Programa de Pós-Graduação em Biotecnologia da Rede Nordeste em Biotecnologia – RENORBIO, da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Doutor em Biotecnologia. Área de concentração: Biotecnologia em Saúde.

Aprovada em: 28 / 01 / 2019.

BANCA EXAMINADORA

________________________________________ Profa. Dra. Francisca Cléa Florenço de Sousa (Orientador)

Universidade Federal do Ceará (UFC)

________________________________________

Profa. Dra. Alyne Mara Rodrigues de Carvalho (Coorientador) Universidade Federal do Ceará (UFC)

________________________________________

Profa. Dra. Marta Maria de França Fonteles Universidade Federal do Ceará (UFC)

________________________________________

Profa. Dra. Mirna Marques Bezerra Universidade Federal do Ceará (UFC)

________________________________________

Profa. Dra. Kelly Rose Tavares Neves Universidade Federal do Ceará (UFC)

________________________________________

Prof. Dr. José Eduardo Honório Júnior Faculdade UniChristus

Page 5: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

AGRADECIMENTOS

Nenhuma batalha é vencida sozinha. O sucesso destes anos de trabalho é de todas

as pessoas que estiveram ao meu lado estimulando para que hoje se tornasse uma conquista.

A Deus, por sempre me guiar segundo a tua vontade, me iluminar nos momentos

mais sombrios e me dar tranquilidade para seguir em frente com os meus objetivos e não

desanimar com as dificuldades.

Aos meus pais, Isabel, Paulo, Fernando e Ethel, por sempre, e principalmente nas

dificuldades, me mostrarem que eu não estou sozinha. Agradeço por não medirem esforços para

que meus sonhos se tornem realidade.

Aos meus irmãos, por compreenderem minhas ausências e me ajudarem quando

surgia um pedido de “me ajuda a corrigir aqui?” (Caio).

Ao meu esposo, Fellipe, que me acompanhou durante toda essa trajetória, por todo

o apoio para seguir em frente, dia após dia. Agradeço toda a parceria, força, abdicações e

paciência com as minhas angústias. Obrigada por ser plateia, mesmo sem entender nada do

assunto. Sem você, eu não estaria aqui.

Às minhas maravilhosas Cobras, presente que a faculdade me deu, Vív, Auri, Bela,

Naty, Mile e Pri, por me estimularem a buscar sempre mais. Uma amizade que vai além do

acadêmico e se torna essencialmente parte de quem eu sou hoje.

À minha orientadora, Profa. Cléa, por me inspirar e acreditar em mim durante todo

esse tempo e, com seu imenso coração, se tornar minha amiga e mãezona. Agradeço por

compreender minhas dificuldades, angústias, inseguranças e sempre acreditar no meu potencial.

À minha amiga e coorientadora, Alyne Mara, por ser extremamente disponível para

me ajudar todas as vezes que eu precisei (que não foram poucas!).

À maravilhosa banca de professores, Marta Fonteles, Mirna Bezerra, Kelly Neves,

Renata Alves e Eduardo Honório, por disponibilizarem seu precioso tempo para agregarem a

este trabalho.

Aos colegas do Lab Neuro, em especial a Iris, Victor, Daniel, Tiago, Iardja,

Marianas, Dana, Lara, Gabriel, Ricardo, Samily, Otoni, por permitirem que esse trabalho se

concretizasse. Agradeço por todos os fins de semana e feriados perdidos em tratamento de

animais. Em especial à Auriana por ter dividido comigo todas as angústias desse tratamento

crônico, com a sua companhia ficou mais fácil continuar. Aos outros que não puderam

participar dos experimentos, agradeço a troca de experiências nos seminários e a amizade do

dia a dia.

Page 6: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

Agradeço aos encontros nos cafés, com as “riparianas”, reuniões regadas a muitas

trocas de informações que engrandeceram este trabalho.

À minha nova família, pelo acolhimento, em especial a minha sogra, Anna Sophia,

por todo apoio de sempre, principalmente me socorrer nas impressões. Agradeço aos meus

cunhados, Marcelo e Henrique, pelas dúvidas e revisão do inglês.

Às técnicas do laboratório de Neurofarmacologia, Lena e Vilani, que sempre

fizeram o seu melhor para manter o laboratório funcionando, sempre disponível para ajudar.

Aos meus colegas e amigos, Emiliano, Joyce, Malena, Carlos Renato e Leo, por

todo o apoio nessa difícil jornada.

Aos meus alunos, por me mostrarem o amor pela docência e a vontade de mudar o

mundo. Com vocês eu aprendi mais que ensinei!

Aos professores José Barbosa Filho e Stanley Gutierrez, pela síntese e

disponibilização da riparina IV sempre que foi necessário.

À Renorbio, através do Prof. Ivanildo, que nessa reta final se mostrou extremamente

acessível e empenhado na resolução de todos os problemas, e ao Adil, que sempre se

disponibilizou para auxiliar em todos os “perrengues”.

À Unidade Multiusuário do Núcleo de Pesquisa e Desenvolvimento de

Medicamentos – NPDM, UFC, em nome da Giovanna Barbosa, pelo apoio técnico na

utilização do Citômetro de fluxo.

À FUNCAP, CAPES e CNPq pelo apoio financeiro e viabilização deste projeto.

Page 7: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

“If you focus on what you left behind, you will

never see what lies ahead.” – Ratatouille.

Page 8: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

RESUMO

Os transtornos mentais têm etiologia multifatorial e o estresse apresenta-se como um dos fatores

causais. Na depressão, sugere-se que a alta concentração de cortisol contribui diretamente para

a patologia desta doença. Com base nisso, o presente estudo tem como objetivo avaliar o

potencial efeito antidepressivo da Riparina IV (Rip IV) em camundongos submetidos ao

modelo de estresse crônico por administração repetida de corticosterona. Camundongos Swiss

fêmeas foram divididos em quatro grupos: controle (Controle), corticosterona (Cort), Riparina

IV (Cort + Rip IV) e fluvoxamina (Cort + Flu). Três grupos receberam corticosterona (20

mg/kg, por via subcutânea) durante vinte e um dias, enquanto o grupo controle recebeu apenas

veículo salina. Após o décimo quarto dia, foram administrados aos grupos as drogas testes:

Riparina IV (50 mg/kg), fluvoxamina (50 mg/kg) ou água destilada, por gavagem, uma hora

após as injeções subcutâneas. No final do esquema de dosagem, foram realizados testes

neurocomportamentais, como o teste de nado forçado (FST), suspensão da cauda (TST), campo

aberto (OFT), labirinto em cruz elevado (EPM), preferência pela solução de sacarose ( SPT),

labirinto em Y (YMT), esquiva passiva (SDIT), interação social (SIT) e o teste de inibição de

pré-pulso (PPI). Os testes comportamentais foram acompanhados por avaliação de

neuroinflamação, através da avaliação dos parâmetros do estresse oxidativo (níveis de

malondialdeído, de nitrito/nitrato e de glutationa reduzida, atividade da superóxido dismutase

e da catalase) e perfil de citocinas (TNF-a, IFN-g, IL-2, IL-4, IL-6 e IL-10) e neuroplasticidade

(níveis de fator neurotrófico derivado do cérebro - BDNF) por meio de análises bioquímicas no

córtex pré-frontal, no estriado e no hipocampo. Os testes comportamentais revelaram o

desenvolvimento do comportamento ansioso/ depressivo e déficit cognitivo em camundongos

do grupo Cort em comparação ao controle. O tratamento com a Cort também induziu ao estresse

oxidativo e neuroinflamação, levando à diminuição do BDNF e morte celular neuronal. O

tratamento com a Rip IV, de forma semelhante ao antidepressivo Flu, mostrou um efeito

antidepressivo com melhora da função cognitiva, revelando o seu efeito neuroprotetor sobre o

estresse oxidativo, a neurogênese e perfil de citocinas pro-inflamatórias e anti-inflamatórias.

Este efeito antioxidante e anti-inflamatório observado coloca a Riparina IV como um possível

medicamento no tratamento antidepressivo de pacientes não-responsivos relacionados a

sintomas graves e cognitivos.

Palavras-chave: Depressão. Corticosterona. Citocinas. estresse oxidativo. Riparina.

Page 9: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

ABSTRACT

Mental disorders have a multifactorial etiology and stress presents as one of the causal factors.

In depression, it is suggested that high cortisol concentration contributes directly to the

pathology of this disease. Based on these findings, the study aimed to investigate the potential

antidepressant effect of Riparin IV (Rip IV) in mice submitted to chronic stress model by

repeated corticosterone administration. Female Swiss mice were divided into four groups:

control (Control), corticosterone (Cort), Riparin IV (Cort + Rip IV) and fluvoxamine (Cort +

Flu). Three groups were administrated with corticosterone (20 mg/kg, subcutaneous) during the

21-day study, while the control group received only saline vehicle. After the 14th day, the

groups were administrated the following tested drugs: Riparin IV (50 mg/kg), fluvoxamine (50

mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the

end of dosing schedule, neurobehavioral tests were conducted such as the forced swimming test

(FST), the tail suspension test (TST), the open field test (OFT), the elevated plus maze (EPM),

the sucrose preference test (SPT), the Y-maze test (YMT), the step-down inhibitory avoidance

test (SDIT), the social interaction test (SIT), and the prepulse inhibition test (PPI). Behavioral

tests were followed by neuroinflammation, through oxidative stress (malondialdehyde,

nitrite/nitrate and reduced glutathione levels, and superoxide dismutase and catalase activities)

and cytokine content (TNF-a, IFN-g, IL-2, IL-4, IL-6 e IL-10), and neuroplasticity (brain-

derived neurotrophic factor – BDNF - levels) evaluation through biochemical analysis in the

prefrontal cortex, the striatum and the hippocampus. Behavioral tests revealed the development

of anxiety/depressive-like behavior with an cognitive deficit in Cort mice as compared to the

control. Cort treatment also induced to oxidative stress and neuroinflammation, leading to a

decrease of brain-derived neurotrophic factor (BDNF) and neuronal cell death. Rip IV

treatment, in a similar manner to the antidepressant Flu, showed an antidepressant-like effect

improving cognitive function, reveling its neuroprotective effect regarding oxidative stress,

neurogenesis and pro-inflammatory and anti-inflammatory cytokine profile. This antioxidant

and anti-inflammatory effect observed indicates Riparin IV as a possible drug in the

antidepressant treatment of non-responsive patients related to severe and cognitive symptoms.

Keywords: Depression. Corticosterone. Cytokines. Oxidative stress. Riparin.

Page 10: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

LISTA DE ABREVIATURAS E SIGLAS

5-HT 5-hidroxitriptamina ou serotonina

5-HT1A Receptor de 5-hidroxitriptamina 1A

5-HT2 Receptor de 5-hidroxitriptamina 2

5-HTTLPR Polimorfismo no transportador de serotonina

ACTH Hormônio adrenocorticotrópico

AMPA α-amino-3-hidroxi-5-metil-4- isoxazolepropionato

BDNF Fator Neurotrófico Derivado do Cérebro

CA3 Corno de Amon 3

CAT Catalase

CNS Sistema nervoso central

Cort Corticosterona

CORT Corticosterona

CRF Fator de liberação da corticotropina

DSM Manual de Diagnóstico e Estatístico de Transtornos Mentais

DTNB ácido 5,5'-ditio-bis-(2-nitrobenzóico) ou Reagente de Ellman

EPM Labirinto em cruz elevado

EROS Espécies reativas de oxigênio

Flu Fluvoxamina

FST Teste do nado forçado

GABA Ácido gama-aminobutírico

GR Receptor glicocorticoide

GSH Glutationa reduzida

GSHPx Glutationa peroxidase

GSR Glutationa redutase

GSSG Glutationa dissulfeto

H2O2 Peróxido de hidrogênio

HC Hipocampo

HHA Hipotálamo-hipófise-adrenal

HPA Eixo hipotálamo-pituitária-adrenal

IDO Indoleamina-2,3-dioxigenase

Page 11: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

IFN-a Interferon alfa

IL-1b Interleucina-1 beta

IL-10 Interleucina-10

IL-2 Interleucina-2

IL-4 Interleucina-4

IL-6 Interleucina-6

INF-g Interferon gama

ISRN Inibidor seletivo da receptação de noradrenalina

ISRS Inibidor seletivo da recaptação de serotonina,

LTM Memória de longo prazo

LTP Long Term Potentiation

MAO Monoamino oxidase

MDA Malondialdeido

MDD Distúrbio Depressivo Maior

MR Receptor mineralocorticoide

NBT Nitroazul de tetrazólio

NMDA N- metil-D-aspartato

NMDAR Receptor de N- metil-D-aspartato

NO Óxido nítrico

NPV Núcleo paraventricular

O• Radical superóxido

OFT Teste do campo aberto

OG Oral Gavagem

OH• Radical hidroxila

OMS Organização Mundial de Saúde

ONOO Peroxinitrito

PFC Córtex pré-frontal

PPI Inibição pré-pulso

Rip IV Riparina IV

RNAm RNA Mensageiro

SC Subcutâneo

SDIT Esquiva passiva step-down

SDL Latência de descida

Page 12: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

SEM Desvio padrão da média

SIT Interação social

SNRI Inibidor seletivo de recaptação de serotonina e noradrenalina

SOD Superóxido dismutase

SPT Testes da preferência pela solução de sacarose

SSRI Inibidor seletivo de recaptação de serotonina

ST Corpo estriado

STM Memória de curto prazo

TBARS Substâncias reativas ao ácido tiobarbitúrico

TNF-a Fator de necrose tumoral alfa

TNFR-1 Receptor do fator de necrose tumoral tipo 1

TrkB Tirosina-quinase relacionado a tropomiosina do tipo B

TST Teste da suspensão da cauda

vitamina C Ácido ascórbico

vitamina E a-tocoferol

WHO World Health Organization

YMT Labirinto em Y

Page 13: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

SUMÁRIO

1 INTRODUÇÃO 12

2 REVISÃO DE LITERATURA 16

2.1 Estresse e depressão 16

2.1.1 Envolvimento do eixo hipotalâmico-hipofisário-adrenal (HHA) 16

2.1.2 Anormalidades funcionais e estruturais do cérebro 21

2.1.3 Processos cognitivos, memória e aprendizado 24

2.1.4 Plasticidade e sobrevivência neuronal 26

2.1.5 Envolvimento do sistema imunológico e o estresse oxidativo 27

2.1.6 Modelo da administração de corticosterona 33

2.2 Abordagens terapêuticas na depressão 36

2.3 Riparina IV 38

3 CAPÍTULOS 39

3.1 Capítulo I 40

3.2 Capítulo II 65

4 CONSIDERAÇÕES FINAIS 108

REFERÊNCIAS 109

ANEXO A – SUBMISSÃO DE ARTIGO CIENTÍFICO A REVISTA 130

Page 14: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

12

1 INTRODUÇÃO

Os distúrbios do humor relacionados ao estresse atingem aproximadamente 17% da

população mundial resultando em enorme sofrimento pessoal, sobrecarga econômica e social

(KESSLER et al., 2009). Um desses distúrbios é a depressão, uma doença de curso crônico e

recorrente, cuja neurobiologia ainda não foi completamente identificada, mas acredita-se que é

resultante de anormalidades celulares e moleculares que interagem com fatores genéticos e

ambientais (KRISHNAN; NESTLER, 2008).

De acordo com a Organização Mundial de Saúde (OMS), cerca de 322 milhões de

pessoas vivem com depressão, compreendendo 4,4% da população mundial (2015). A

prevalência desse distúrbio é alta e aumenta de acordo com o crescimento da população

mundial, onde estimou-se um crescimento de 18,4% no número de pessoas com depressão de

2005 a 2015. A prevalência varia de acordo com o sexo e idade, acometendo o sexo feminino

com maior frequência que no masculino (quase o dobro) e os idosos (BARUA et al., 2011;

WORLD HEALTH ORGANIZATION, 2017).

No Brasil, poucos estudos são encontrados sobre a prevalência de distúrbios depressivos

em diferentes regiões, entretanto, a OMS estima que afeta cerca de 5,8% da população

brasileira. Estudos mostram que pessoas depressivas apresentam uma pobre qualidade de vida,

maior susceptibilidade a outras doenças como cardiopatias e diabetes, alto risco de

comportamento abusivo e suicídio, o que leva a uma alta utilização dos serviços de saúde

(KRISHNAN; NESTLER, 2008; SILVA et al., 2014; WORLD HEALTH ORGANIZATION,

2017).

De acordo com o Manual de Diagnóstico e Estatístico de Transtornos Mentais, 5ª edição

(DSM-V), apesar dos principais sintomas da depressão incluírem humor deprimido e anedonia

(falta de interesse em atos prazerosos), a doença é caracterizada por um complexo agrupamento

de sintomas clínicos que podem incluir agitação e/ou retardo psicomotor, diminuição de

energia, alteração do peso e do apetite, nervosismo, irritabilidade, distúrbios do sono e

deficiências cognitivas incluindo o impedimento da habilidade de pensamento, concentração e

tomada de decisões (AMERICAN PSYCHIATRIC ASSOCIATION, 2014). Além disso, os

Page 15: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

13

indivíduos apresentam um aumento de doenças físicas, diminuição da interação social e uma

alta taxa de mortalidade (KESSLER; BROMET, 2013).

Atualmente os antidepressivos disponíveis, apesar de largamente prescritos para

depressão e doenças relacionadas ao humor e ansiedade, apresentam significantes limitações

incluindo um intervalo de tempo longo para início da resposta terapêutica (semanas a meses) e

baixos índices de resposta (apenas um terço respondem ao primeiro medicamento e até dois

terços respondem a vários fármacos) (TRIVEDI et al., 2006). Isto é particularmente

problemático para uma doença associada a altos índices de suicídio.

Os antidepressivos típicos agudamente bloqueiam a recaptação ou a metabolização das

monoaminas (serotonina e noradrenalina), sendo os inibidores seletivos da recaptação de

serotonina a classe de medicamentos mais amplamente prescritos para a depressão e distúrbios

relacionados. Este mecanismo de ação agudo dá suporte a hipótese monoaminérgica, mas o

longo intervalo de tempo para o início da resposta do tratamento indica um início lento nas

adaptações de sinalização e regulação de genes-alvo, que por sua vez, resultam na regulação de

múltiplos processos fisiológicos, incluindo neuroplasticidade, neuroproteção e neurogênese no

cérebro adulto, o que leva a demora das ações terapêuticas dos antidepressivos (KRISHNAN;

NESTLER, 2008; DUMAN et al., 1997).

Estudos recentes indicam que uma diminuição da plasticidade sináptica (neurogênese,

ramificação axonal, dendritogênese e sinaptogênese) em áreas específicas do SNC, em

particular o hipocampo, pode ser um fator importante na fisiopatologia do comprometimento

cognitivo de pacientes depressivos. A anormal plasticidade neuronal pode estar relacionada

com alterações nos níveis de fatores neurotróficos, como o fator neurotrófico derivado do

cérebro (BDNF), que desempenha um papel central na plasticidade. Como o BDNF é reprimido

pelo estresse, a regulação epigenética do gene BDNF pode desempenhar um papel importante

na depressão (LEAL; BRAMHAM; DUARTE, 2017; MCEWEN et al., 2015).

Fatores ambientais estressantes provocam a ativação do eixo hipotalâmico-pituitário-

adrenal e faz com que o cérebro seja exposto aos corticosteroides, afetando as funções

neurocomportamentais com uma forte regulação de diminuição da neurogênese, sendo então,

um grande fator de risco para a depressão (YANG et al., 2015). O tratamento antidepressivo

pode aumentar os níveis de BDNF, estimular a neurogênese e reverter os efeitos inibitórios do

estresse. Entretanto esse aumento não é evidenciado com todos os fármacos antidepressivos e

Page 16: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

14

mesmo naqueles em que essa elevação é observada, a melhora só é evidente apenas após três a

quatro semanas de administração, que é o tempo necessário para a maturação de novos

neurônios, (FLECK et al., 2009; GOLD, 2015).

Portanto, esforços significantes têm sido direcionados para a caracterização da

neurobiologia da depressão com a promessa de identificar novos alvos terapêuticos. Estudos

sugerem novos possíveis alvos para a farmacoterapia da depressão como fatores neurotróficos,

seus receptores e cascatas afins de sinalização intracelular; agentes que podem neutralizar os

efeitos do estresse sobre a neurogênese no hipocampo (incluindo antagonistas de

corticosteroides, citocinas inflamatórias e seus receptores) e agentes que facilitam a ativação da

expressão do gene e aumentam a transcrição de neurotrofinas no cérebro (AL-HARBI, 2012;

GUPTA; RADHAKRISHNAN; KURHE, 2015; YOUNG; BRUNO; POMARA, 2014).

Diferentes abordagens científicas (modelos animais, estudos neuroendócrinos, post-

mortem, psicofarmacológicos, genéticos e de neuroimagem) têm sido empregadas para

investigar a depressão. Contudo, como essa doença apresenta-se sem uma fisiopatologia ou

etiologia completamente conhecidas, modelos animais tornam-se cada vez mais válidos para

seu estudo. Para este fim, inúmeros modelos atualmente estão relacionando a etiologia da

depressão com a cronicidade de eventos estressantes que levam a alterações neurobiológicas e

falhas na transmissão cerebral desencadeando o processo depressivo (MÉNARD; HODES;

RUSSO, 2016).

Mesmo com alguns importantes avanços no campo dos fármacos antidepressivas,

decorrentes da descoberta de vários antidepressivos atípicos, há necessidade do

desenvolvimento de novos fármacos que possam apresentar melhor eficácia, diminuição da

latência do efeito terapêutico, diminuição das recaídas e comprometimento cognitivo,

principalmente na população idosa, além de redução dos efeitos colaterais indesejáveis.

Nesse contexto, o presente trabalho buscou investigar de forma mais detalhada o

potencial efeito antidepressivo da riparina IV em um modelo de estresse crônico que induz o

desenvolvimento da sintomatologia da depressão. Deste modo, será verificado se a riparina IV

é capaz de reverter sintomas como anedonia, desamparo apreendido e comprometimento

cognitivo, além de observar se esta é capaz de normalizar a expressão de fatores neurotróficos,

como o BDNF, assim como diminuir o processo inflamatório neuronal visando fornecer

subsídios para a ampliação do arsenal terapêutico para o tratamento da depressão. Além disso,

Page 17: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

15

a investigação de alterações comportamentais e neuroquímicas no modelo de estresse pela

administração de corticosterona poderá contribuir para o entendimento dos aspectos

fisiopatológicos desta doença.

Page 18: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

16

2 REVISÃO DE LITERATURA 2.1 Estresse e depressão

2.1.1 Envolvimento do eixo hipotalâmico-hipofisário-adrenal (HHA)

Distúrbios depressivos podem ocorrer de forma idiopática, entretanto, estudos mostram

que vários fatores de risco podem desencadear sintomas depressivos incluindo fatores

genéticos, como polimorfismos no receptor de 5-hidroxitriptamina (5-HTTLPR) e BDNF

(Val66Met) (KIYOHARA; YOSHIMASU, 2009), e fatores ambientais (alguns tipos de câncer,

anormalidades endócrinas, luto e eventos estressantes) (HAMMEN, 2005; SOUTHWICK;

VYTHILINGAM; CHARNEY, 2005; WAGER-SMITH; MARKOU, 2011).

Em termos de depressão, estudos com gêmeos indicam a importância no

desencadeamento dos sintomas (HENN; VOLLMAYR; SARTORIUS, 2004), sendo exposição

ao estresse um dos mais importantes (CHARNEY; MANJI, 2004; DEAN; KESHAVAN, 2017;

GOLD, 2015; WILLNER; SCHEEL-KRÜGER; BELZUNG, 2013). De fato, até 85% dos

pacientes experienciam significantes eventos estressantes antes do início dos sintomas

depressivos (HAMMEN, 2005).

A conexão entre o estresse e a depressão pode ser relacionada com observações da

hiperatividade do eixo hipotálamo-hipófise-adrenal (HHA), níveis altos de cortisol e

interrupção da ritmicidade do cortisol.

As respostas fisiológicas e neurobiológicas normais estão bem caracterizadas. A

exposição a um fator estressante agudo, isto é, qualquer estímulo que altere o funcionamento

normal, desencadeia uma série de eventos fisiológicos e comportamentais com o objetivo de

reestabelecer a homeostase. Dessa forma, ocorre ativação do eixo HHA resultando em uma

cascata de eventos endócrinos que incluem liberação e transporte de dois importantes

neuropeptídios (fator de liberação da corticotrofina - CRF e vasopressina) de neurônios do

núcleo paraventricular do hipotálamo (NPV) para a pituitária anterior (ou hipófise anterior),

onde estes hormônios estimulam a liberação do hormônio adrenocorticotrópico (ACTH) para a

circulação sistêmica. O ACTH atua, então, sobre o córtex glândula adrenal, onde estimula a

produção e liberação de glicocorticoides (cortisol no ser humano e corticosterona em roedores)

para a circulação sistêmica. Uma vez liberados, estes hormônios agem nos tecidos corporais,

Page 19: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

17

para limitar as funções não essenciais e mobilizar energia para lidar com o fator estressante,

ssim como também atuam a nível cerebral, onde exercem influência inibitória central, ou seja,

inibem as atividades do eixo HHA (feedback negativo) (DE KLOET; JOËLS; HOLSBOER,

2005; DUMBELL; MATVEEVA; OSTER, 2016; OGŁODEK et al., 2014; STEPHENS;

WAND, 2012; TSIGOS; CHROUSOS, 2002) ( Figura 1).

Figura 1 - Representação esquemática da ativação do eixo HHA em resposta a um

agente estressor.

Fonte: Adaptado de Maclaughlin et al. (2011) Legenda: O fator de liberação da corticotrofina (CRF) e vasopressina sintetizados pelo núcleo paraventricular e liberados para o sistema portal hipofisário estimulam a síntese e secreção do hormônio adrenocorticotrópico (ACTH) pela hipófise anterior. O ACTH desencadeia a liberação de glicocorticoides (cortisol ou corticosterona) pelo córtex da adrenal. Os glicocorticoides regulam a liberação de CRH e ACTH através de mecanismos de feedback. Os glicocorticoides, então, exercem ações disseminadas no corpo conforme necessário para restaurar e manter a homeostase fisiológica. Setas sólidas: regulação positiva; linhas pontilhadas: feedback negativo.

Page 20: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

18

Em resposta ao estressor, os glicocorticoides normalmente alcançam um pico de

concentração sistêmica depois de 15-30 minutos e retornam a concentrações basais após 60-90

minutos. Dessa forma, a ação desses hormônios ao estresse agudo pode ser permissiva,

estimulatória ou supressiva com potencial para responder em magnitude adequada, limitando o

impacto da resposta ao estressor para prevenir hiperativação e dano (DE KLOET, 2014).

O cortisol é o mais importante hormônio liberado durante a resposta ao estresse e age

em vários órgãos e áreas cerebrais através de dois tipos de receptores homólogos: receptores

mineralocorticoides (MR) e receptores glicocorticoides (GR), (BANUELOS; LU, 2016; BAO;

MEYNEN; SWAAB, 2008; DUMBELL; MATVEEVA; OSTER, 2016; GOMEZ-SANCHEZ;

GOMEZ-SANCHEZ, 2014) que apresentam distribuição específica e seletiva em regiões

cerebrais como na glândula pituitária, núcleo paraventricular e sistema límbico (STEPHENS;

WAND, 2012).

O processo de retroalimentação negativa do eixo HHA parece ser fortemente

dependente da integridade do hipocampo. O hipocampo expressa tanto receptores de

mineralocorticoides quanto de glicocorticoides, que são os principais sítios de ação dos

glicocorticoides. Os MR apresentam uma alta afinidade pelo cortisol (até 10 vezes maior que

pelo GR) e, portanto, são ativados mesmo quando os níveis deste hormônio estão baixos. Em

contrapartida, os GR apresentam uma baixa afinidade e são ativados somente quando a

concentração basal de cortisol está relativamente elevada, o que ocorre durante os picos

circadianos e em situações de estresse moderado a intenso (BELLAVANCE; RIVEST, 2014;

NIKKHESLAT; PARIANTE; ZUNSZAIN, 2018; ZUNSZAIN et al., 2011).

Os receptores de glicocorticoides (GR) estão intimamente envolvidos no processo de

retroalimentação negativa do eixo HHA. Quando estes receptores estão disponíveis em nível

alto, a inibição por retroalimentação do NPV é aumentada e a atividade no eixo HHA é

fortemente controlada. Contudo, quando estão em nível baixo, a inibição por retroalimentação

é ineficiente e o estímulo que provoca a resposta no eixo HHA permite um aumento, maior que

o normal, nos níveis de cortisol (DE KLOET; JOËLS; HOLSBOER, 2005; DUMBELL;

MATVEEVA; OSTER, 2016). O hipocampo é particularmente suscetível aos efeitos danosos

do estresse prolongado, evidenciado pela diminuição da ramificação dendrítica, diminuição da

neurogênese e diminuição da expressão de RNAm do receptor de glicocorticoides no

hipocampo (SCHOENFELD; CAMERON, 2015). As implicações funcionais deste dano não

estão claras, mas presume-se que ele reduz o controle de retroalimentação exercida pelo

Page 21: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

19

hipocampo sobre o eixo HHA, causando mais aumento nos níveis de cortisol e, assim,

danificando ainda mais o hipocampo (WILLNER; SCHEEL-KRÜGER; BELZUNG, 2013)

(Figura 2). Esse dano hipocampal corrobora com a hipótese da cascata de glicocorticoides como

sendo um dos mais importantes mecanismos patogênicos nas doenças degenerativas e

associadas a desregulação do eixo HHA, como a depressão, outros distúrbios afetivos e o

Alzheimer.

Figura 2 – Comprometimento da retroalimentação negativa exercida pelo hipocampo no

estresse crônico.

Fonte: Autoria própria.

Legenda: O estresse crônico leva a altos níveis sustentados de glicocorticoides, que com o tempo podem levar a

danos celulares no hipocampo, onde a aprendizagem e a memória de novas informações são transferidas para a

memória de longo prazo. Esse dano, consequentemente, pode interferir no ciclo de feedback que diz ao cérebro

quando "desligar" a resposta ao estresse, alimentando ainda mais o ciclo.

Fundamentalmente, a ativação do eixo HHA em resposta a um fator de estresse agudo

é essencial para a sobrevivência, sendo sua intenção primária preparar o organismo para

combate-lo através da resposta de luta ou fuga, e então restaurar a homeostase corporal

Page 22: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

20

(SANDI; HALLER, 2015). Contudo, quando há exposição cumulativa a estes estressores, os

níveis de glicocorticoides permanecem aumentados, resultando em aumento do catabolismo,

peptídios de estresse e citocinas inflamatórias (STEPHENS; WAND, 2012). Portanto, a

ativação prolongada do eixo HHA, pode apresentar um sério risco à saúde, podendo levar a

imunosupressão, inibição do crescimento, distúrbios do sono, ansiedade, comprometimento da

memória, diminuição do comportamento sexual e disforia crônica (BAO; MEYNEN; SWAAB,

2008; SOUTHWICK; VYTHILINGAM; CHARNEY, 2005; SWAAB; BAO; LUCASSEN,

2005). Dessa forma, o mesmo hormônio do estresse que é vital para a sobrevivência do

organismo durante o estresse agudo pode também predispor o organismo à doença se o período

de estresse for prolongado.

Diversos estudos revelam uma estreita conexão entre a excessiva ativação do eixo HHA

e a depressão. Por exemplo, cerca de metade dos pacientes deprimidos apresentam

hipercortisolemia e ritmicidade do cortisol interrompida (DUMBELL; MATVEEVA; OSTER,

2016; SOUTHWICK; VYTHILINGAM; CHARNEY, 2005) que pode ser revertida pelo

tratamento com antidepressivos (DU; PANG, 2015; HINKELMANN et al., 2012; WILLNER;

SCHEEL-KRÜGER; BELZUNG, 2013). Além disso, existem evidências do aumento dos

níveis de CRF no fluido cerebroespinhal, do aumento do cortisol livre na urina e da diminuição

da supressão do cortisol plasmático após a administração de dexametasona em pacientes

deprimidos (BAO; MEYNEN; SWAAB, 2008; ZUNSZAIN et al., 2011). Em pessoas

saudáveis, a administração de dexametasona suprime o ACTH e a liberação de cortisol pela

ligação ao GR por retroalimentação negativa. Em pacientes deprimidos, se a supressão do

ACTH pela dexametasona está diminuída, a normalização ocorre durante um tratamento eficaz

com antidepressivos (KIM et al., 2016). Estudos mostraram que em pacientes com a síndrome

de Cushing, desordem marcada cronicamente pelos altos índices de cortisol no plasma,

frequentemente apresentam altos índices de depressão (CHATTARJI et al., 2015; SWAAB;

BAO; LUCASSEN, 2005; ZUNSZAIN et al., 2011) criando um forte argumento para a

influência da desregulação do sistema de estresse e o desenvolvimento do estado depressivo.

Portanto, se várias classes de drogas antidepressivas são capazes de agir em vias

neuroendócrinas para regularem a secreção de cortisol (SOUTHWICK; VYTHILINGAM;

CHARNEY, 2005), então novas terapias antidepressivas que inibam a secreção de cortisol

podem ser promissoras em ensaios clínicos (SCHÜLE et al., 2009).

Page 23: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

21

2.1.2 Anormalidades funcionais e estruturais do cérebro

Circuitos neuronais podem ser remodelados pela experiência e eventos estressantes

apresentam um efeito relevante na funcionalidade da árvore dendrítica, espinhas dendríticas e

número de sinapses em várias regiões cerebrais (MCEWEN; MORRISON, 2013).

Os distúrbios depressivos são marcados por profundas alterações na estrutura, função e

responsividade cerebral (GODSIL et al., 2013) e, consequentemente, pacientes deprimidos

apresentam uma incapacidade em se adaptar ao ambiente e podem estar mais vulneráveis a

desafios ou experiências estressantes. Geralmente, os padrões de mudanças metabólicas durante

os episódios de depressão maior sugerem que determinadas estruturas que apresentam um papel

fundamental nas respostas de estresse (hipocampo) e áreas que modulam ou inibem a expressão

emocional também estão ativadas (córtex pré-frontal subgenual), enquanto que outras áreas de

processamento sensorial e atenção estão desativadas (córtex pré-frontal dorsolateral). A

ativação patológica de determinadas áreas cerebrais é acompanhada de anormalidades

estruturais. Dessa forma, análises de neuroimagem e post-mortem de pacientes com depressão

revelam mudanças estruturais na região límbica e frontal, incluindo o hipocampo, amígdala e

córtex pré-frontal (CHATTARJI et al., 2015; FUNAHASHI, 2017; KRISHNAN; NESTLER,

2008; MCEWEN; MORRISON, 2013).

O hipocampo é a região mais extensivamente estudada no contexto da depressão e os

resultados encontrados sugerem que reduções no volume hipocampal estão associadas com o

distúrbio depressivo. De modo interessante, pequenos volumes hipocampais têm sido mais

comumente encontrados em pacientes que apresentaram diversos episódios de depressão

quando comparados com aqueles em remissão ou que estavam em seu primeiro episódio (BAO;

MEYNEN; SWAAB, 2008; CHATTARJI et al., 2015; GODSIL et al., 2013; MALBERG et

al., 2000; ZUNSZAIN et al., 2011). Isto sugere que a redução do volume hipocampal está

relacionado com a severidade da doença (LIU et al., 2017). De modo semelhante, existem

relatos consistentes de que há redução no volume do córtex pré-frontal em pacientes com

depressão, especificamente no córtex pré-frontal dorsolateral, orbitofrontal e subgenual

(ARNSTEN, 2009; CERQUEIRA et al., 2005; CHARNEY; MANJI, 2004). Na amígdala,

contudo, as mudanças volumétricas parecem ser dinâmicas durante todo o curso da doença,

com um aumento inicial seguido de uma diminuição do volume com o progresso da depressão

(LORENZETTI et al., 2009). Essas regiões são parte do circuito límbico-córtico-talâmico que

Page 24: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

22

apresenta um papel integral no processo cognitivo e emocional (CHARNEY; MANJI, 2004).

O fato de todas essas regiões, em algum grau, funcionarem patologicamente na depressão dá

suporte a um modelo neural de depressão no qual as disfunções em determinadas áreas que

modulam ou inibem o comportamento emocional podem resultar em manifestações emocionais,

motivacionais, cognitivas e comportamentais da depressão.

O estresse tem sido implicado em algumas mudanças volumétricas no cérebro de

pacientes deprimidos. Mais especificamente, tem sido reportado que a desregulação do eixo

HHA e as mudanças subsequentes na secreção de glicocorticoides pode resultar em ambas

remodelação reversível e morte celular irreversível em regiões límbicas e frontais, que pode

resultar em mudanças volumétricas e subsequente funcionamento patológico visto em pacientes

com depressão (CHATTARJI et al., 2015; MILLER; HEN, 2015). De modo relevante, o

hipocampo, o córtex pré-frontal e a amígdala expressam receptores de mineralocorticoides e

glucocorticoides, tornando-se alvos da ação do cortisol e, portanto, particularmente susceptíveis

à atrofia ou hipertrofia neuronal induzida pelo estresse (LIU et al., 2017).

Estudos anatômicos indicam que as terminações límbicas que incidem sobre o NPV do

hipotálamo e neurônios GABAérgicos hipotalâmicos podem ser excitatórias no hipocampo e

córtex pré-frontal, e assim aumentar o tônus GABAérgico, ou inibitório da amígdala, e assim

reduzir o tônus GABAérgico (CHATTARJI et al., 2015). Dessa forma, o hipocampo e o córtex

pré-frontal inibem a atividade do eixo HHA enquanto que a amígdala aumenta esta atividade

(GOLD, 2015; SANDI; HALLER, 2015; WILLNER; SCHEEL-KRÜGER; BELZUNG, 2013).

Como os pacientes com depressão apresentam diminuição do volume do hipocampo e

do córtex pré-frontal e um aumento no volume da amígdala, isto pode indicar que o estresse

prolongado interfere com a habilidade do hipocampo e do córtex pré-frontal em inibir a

atividade no eixo HHA enquanto o aumento da atividade sobre o eixo HHA é facilitado pelo

aumento da amígdala. Para corroborar com essas afirmações, alguns estudos informam que a

elevação prolongada de glicocorticoides induz atrofia dendrítica, e em alguns casos, morte

neuronal no hipocampo e córtex pré-frontal e hipertrofia dendrítica na amígdala (LIU et al.,

2017; SOUSA; CERQUEIRA; ALMEIDA, 2008) (Figura 3).

Evidências comportamentais demonstram como a exposição a condições de estresse

afeta a aprendizagem e a memória dependentes do hipocampo ou da amígdala. Em roedores, o

estresse crônico facilita o medo, o comportamento ansioso e prejudica a memória espacial.

Page 25: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

23

Embora o estresse repetido produza atrofia dendrítica na região do corno de Amon 3 (CA3) e

prejudique o aprendizado dependente do hipocampo, a região basolateral da amígdala mostrou-

se essencial para a facilitação da aprendizagem aversiva induzida pelo estresse (CHATTARJI

et al., 2015).

Figura 3 - Áreas cerebrais implicadas em transtornos psiquiátricos relacionados ao estresse.

Fonte: Adaptado de Chattarji et al. (2015).

Legenda: A amígdala, o córtex pré-frontal (CPF) e o hipocampo sofrem alterações estruturais e funcionais em

condições de estresse prolongado e, por sua vez, regulam diferencialmente a resposta ao estresse por meio da

atividade do eixo HHA (tanto positiva quanto negativamente).

Portanto, pode-se afirmar que o comprometimento da integração da informação

hipocampal, amigdalar e/ou pré-cortical está relacionada com a disfunção do eixo HHA assim

como prejuízos no humor e na cognição.

Page 26: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

24

2.1.3 Processos cognitivos, memória e aprendizado

Estudos sobre os efeitos crônicos de níveis elevados de glicocorticoides elucidaram a

relação entre hipercortisolemia, depressão e memória (JOELS; SARABDJITSINGH; KARST,

2012; WILLNER; SCHEEL-KRÜGER; BELZUNG, 2013). Três importantes áreas do sistema

límbico mostram alterações com o aumento de glicocorticoides circulantes: o córtex pré-frontal,

o hipocampo e a amígdala. O córtex pré-frontal está envolvido na função executiva (memória

de trabalho e comportamento assertivo), o hipocampo está envolvido no aprendizado e memória

(espacial e declarativa) e a amígdala no processamento da memória emocional (GODSIL et al.,

2013).

O córtex pré-frontal participa de uma série de funções cognitivas, como pensar,

racionalizar, planejar e tomar decisões (MILLER, 2000). Estudos realizados em humanos e

animais observaram redução dendrítica no córtex pré-frontal em condições de estresse crônico

(CERQUEIRA et al., 2005; GOLD, 2015; MCEWEN; MORRISON, 2013). Como o córtex

pré-frontal está implicado no processamento cognitivo, redução da atividade nessa área levaria

a um mau julgamento, planejamento e comprometimento de decisões (DEAN; KESHAVAN,

2017; SEO et al., 2017). Pacientes depressivos mostram diminuição da memória de trabalho,

comprometendo o processamento cognitivo, refletindo parcialmente na redução no

funcionamento do córtex pré-frontal dorsolateral (FUNAHASHI, 2017). Esses achados são

mais comuns do que em condições normais de estresse.

O hipocampo é intensamente afetado em condições de estresse prolongado, havendo

comprometimento da performance cognitiva devido a alterações cumulativas na função e

morfologia hipocampal (BAO; MEYNEN; SWAAB, 2008; CHATTARJI et al., 2015; LIU et

al., 2017; ORTIZ et al., 2018; SHEN et al., 2016). A consolidação da memória é um processo

no qual um traço de memória de curto prazo é transferido em uma de longo prazo estável.

Entretanto, nem todas as informações são igualmente armazenadas a longo prazo. Sabe-se que

experiências emocionalmente excitantes são bem lembradas, mesmo depois de décadas. A

consolidação bem-sucedida da memória depende da síntese de novas proteínas e de mudanças

a longo prazo na plasticidade sináptica (QUERVAIN et al., 2009).

Altos níveis de glicocorticoides podem reduzir a capacidade de aprendizado e memória,

ao prejudicar a Long-Term Potentiation (LTP; alterações celulares responsáveis pela

Page 27: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

25

manutenção da excitação nas sinapses que resultam na consolidação da memória) (JOELS;

SARABDJITSINGH; KARST, 2012; MAHEU et al., 2004), a plasticidade sináptica, e ainda

promover a atrofia da árvore dendrítica (CHATTARJI et al., 2015; JOELS;

SARABDJITSINGH; KARST, 2012; LIU et al., 2017; MCEWEN; MORRISON, 2013; ORTIZ

et al., 2018). Estudos revelam que animais cronicamente estressados exibiram uma redução na

plasticidade e o LTP em neurônios hipocampais mediados por receptores glicocorticoides (GR)

(ALFAREZ et al., 2002), levando a um comprometimento adaptacional e de aprendizado.

Em condições normais, os receptores de glicocorticoides participam da consolidação de

memória no sistema corticolímbico, promovendo alterações comportamentais para preparar o

organismo para situações futuras (QUERVAIN et al., 2009). Os altos níveis circulantes dos

glicocorticoides alteram o balanço entre os receptores MR:GR, o que pode causar efeitos

opostos na função cognitiva (DE KLOET, 2014; DE KLOET; DERIJK; MEIJER, 2007;

NIKKHESLAT; PARIANTE; ZUNSZAIN, 2018). Enquanto a ativação do MR aumenta em

processos relacionados à memória, o estresse associado à ativação do GR pode comprometer

esta função. Vários estudos realizados em humanos e animais indicaram que os glicocorticoides

prejudicam a recuperação da memória espacial ou contextual em ratos e a memória declarativa

(principalmente episódica) em humanos (COLUCCIA et al., 2008; KUHLMANN;

KIRSCHBAUM; WOLF, 2005; RASHIDY-POUR et al., 2004; ZUNSZAIN et al., 2011).

Dai et al. (2018) encontraram hipoatividade na translocação para o núcleo de GR (

mecanismo pelo qual há regulação da transcrição gênica, pela ligação com a região promotora

dos genes responsivos aos glicocorticoides, passando a facilitar ou reprimir a transcrição

gênica) no hipocampo de animais depressivos submetidos a condições crônicas de estresse.

Essas alterações no balanço podem levar a desregulação na adaptação comportamental e

neuroendócrina, comprometendo o feedback negativo do eixo HHA, sendo um fator de risco na

precipitação da depressão.

Diminuições volumétricas observadas no hipocampo e em outras regiões cerebrais em

pacientes deprimidos dão suporte a conhecida hipótese neurotrófica da depressão, a qual

envolve decréscimos em fatores neurotróficos que são fatores de crescimento expressos no

neurodesenvolvimento que também regulam a plasticidade no cérebro adulto (KRISHNAN;

NESTLER, 2008).

Page 28: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

26

2.1.4 Plasticidade e sobrevivência neuronal

A habilidade do cérebro de se adaptar e modificar em resposta a experiências ou

situações ambientais depende da plasticidade das conexões sinápticas. Esse processo exibe

várias propriedades fisiológicas que substanciam seu papel como um correlato celular para

múltiplos processos cognitivos, incluindo aprendizado e memória (WOO; LU, 2009).

O fator neurotrófico derivado do cérebro (brain-derived neurotrophic factor - BDNF) é

considerado um importante mediador de eficácia sináptica, plasticidade neuronal,

conectividade, sobrevivência e maturação celular, neurogênese e funções cognitivas (LEAL;

COMPRIDO; DUARTE, 2014; SOUTHWICK; VYTHILINGAM; CHARNEY, 2005). É

produzido principalmente pela glia e pelos núcleos neuronais e tem grande expressão no

hipocampo, neocórtex, amígdala e cerebelo (ARANGO-LIEVANO et al., 2015; SHIMIZU et

al., 2003). Diversos estudos em humanos e animais sugerem que o BDNF está implicado na

fisiopatologia de diversas desordens neurodegenerativas e psiquiátricas como, por exemplo, a

depressão (IHARA et al., 2016; LOPES et al., 2018; VASCONCELOS et al., 2015;

WOLKOWITZ et al., 2011; WOO; LU, 2009).

A expressão de fatores neurotróficos, principalmente o BDNF, no córtex pré-frontal,

hipocampo e outras regiões cerebrais está diminuída em condições de estresse agudo e crônico

(LEAL; BRAMHAM; DUARTE, 2017; WILLNER; SCHEEL-KRÜGER; BELZUNG, 2013),

contribuindo diretamente com a redução do volume dessas áreas, sendo essa diminuição

revertida pelo tratamento com antidepressivos (GOLD, 2015; IHARA et al., 2016; LOPES et

al., 2018; MALBERG et al., 2000; ORTIZ et al., 2018; SHEN et al., 2016; SHIMIZU et al.,

2003; VASCONCELOS et al., 2015; WOLKOWITZ et al., 2011; ZUNSZAIN et al., 2011).

Por outro lado, estudos sugerem que a expressão aumentada de BDNF em regiões específicas,

como no núcleo meso accumbens e amígdala, resulta em efeitos pró-depressivos (CHATTARJI

et al., 2015; KRISHNAN; NESTLER, 2008).

Em relação ao seu papel central na plasticidade sináptica, vários estudos avaliaram como

o BDNF regula a aquisição (aprendizado) e retenção (memória) da informação. Há uma forte

relação observada entre o BDNF e a memória dependente do hipocampo, que inclui memória

declarativa ou episódica e memória espacial. Durante um contexto de aprendizado, a expressão

Page 29: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

27

de BDNF é rápida e seletivamente supraregulada no hipocampo (LEAL; BRAMHAM;

DUARTE, 2017; WOO; LU, 2009).

O BDNF desempenha um papel fundamental na LTP hipocampal e na aprendizagem.

Esta neurotrofina mostrou regular a indução e manutenção de uma LTP estável; induzir

alterações na liberação de neurotransmissores; modular os receptores glutamatérgicos pós-

sinápticos – NMDA e AMPA; regular a síntese proteica; ativar a transcrição e modular a

plasticidade estrutural nas espinhas dendríticas (LEAL; COMPRIDO; DUARTE, 2014).

Estudos conduzidos por Ortiz e colaboradores (2018) investigaram o envolvimento de

BDNF e seu receptor tirosina-quinase relacionado a tropomiosina do tipo B (tropomyosin-

related receptor tyrosine kinase B - TrkB) na região CA3 do hipocampo de ratos estressados

por 21 dias. Concluiu-se que a presença de BDNF e TrkB é um importante fator para o processo

de recuperação após exposição a situações de estresse crônico, com aumento da complexidade

dendrítica e melhora no déficit de memória espacial.

A estreita relação entre os glicocorticoides e o BDNF na resposta adaptativa ao estresse

foi explorada pelo estudo de Arango-Lievano et al. (2015) que demonstrou que os receptores

de glicocorticoides eram alvos da sinalização mediada por BDNF e TrkB. Foi observado que o

BDNF induz a fosforilação de GR e sugere que ações coordenadas entre BDNF e

glicocorticoides são essenciais para respostas de neuroplasticidade ao estresse. Dessa forma,

estes resultados corroboram com a hipótese que alguns dos efeitos crônicos dos glicocorticoides

podem resultar da diminuição dos níveis e desregulação na sinalização do BDNF.

2.1.5 Envolvimento do sistema imunológico e o estresse oxidativo

Como a depressão é um transtorno complexo, é provável que alterações em vários

sistemas, que interagem em conjunto, fundamentem a patogênese da doença. Há evidências de

que processos inflamatórios mediados por citocinas desempenham um papel importante no

desenvolvimento de distúrbios de humor.

Estudos relatam que cerca de 30-70% dos pacientes tratados com interferon alfa (IFN-

α) apresentam depressão como efeito adverso nos três primeiros meses (BONACCORSO et al.,

Page 30: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

28

2002; CHIU et al., 2017; PINTO; ANDRADE, 2016). Além disso, foram observadas altas

concentrações de citocinas em pacientes depressivos e a administração destas em animais pode

induzir a comportamentos semelhantes a depressão (BEAUREPAIRE, 2002; KIM et al., 2016;

KRISHNAN; NESTLER, 2008; LOTRICH, 2015), corroborando com a hipótese inflamatória

em algumas desordens depressivas.

A ativação do eixo HHA estimula a liberação de noradrenalina na circulação sistêmica,

que por sua vez, estimula a produção de interleucina-6 (IL-6) e ambas estimulam a uma resposta

de fase aguda. Esta resposta gera a produção de várias proteínas que desempenham efeitos pró-

inflamatórios e pró-trombóticos relevantes para a resposta ao estresse (BORTOLATO et al.,

2015; GOLD, 2015; SCHIEPERS; WICHERS; MAES, 2005). Apesar dos glicocorticoides

apresentarem vários efeitos anti-inflamatórios, altos níveis de cortisol geram alterações que

resultam em estímulos pró-inflamatórios como aumento da gordura visceral, resistência a

insulina ou hiperinsulinemia e estímulo simpático (IZAOLA et al., 2015).

Altas concentrações de glicocorticoides também promovem a liberação de citocinas

pró-inflamatórias pelos macrófagos e células da micróglia, que contribuem para a

dessensibilização de receptores GR e estímulo direto do eixo HHA (MAES, 2011; ZUNSZAIN

et al., 2011). Das citocinas inflamatórias, o fator de necrose tumoral alfa (TNF-a), interleucina-

1 beta (IL-1b) e interleucina-6 (IL-6) são as que apresentam o maior efeito modulatório no eixo

associado a resposta imune, podendo estimular do eixo HHA sozinhas, ou em sinergia

(BEAUREPAIRE, 2002; DUMBELL; MATVEEVA; OSTER, 2016; MALEK et al., 2015;

RIVEST, 2010; SCHIEPERS; WICHERS; MAES, 2005; SINGHAL et al., 2014). Há

evidências que sugerem que a IL-6, a principal citocina endócrina, desempenha o papel

principal na estimulação imune do eixo, especialmente na inflamação crônica (MIURA et al.,

2008; TSIGOS; CHROUSOS, 2002) (Figura 4).

Figura 4 - Diagrama esquemático da interação de células imunes com o eixo HHA

através de citocinas inflamatórias.

Page 31: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

29

Fonte: Adaptado de Glaser e Kiecolt-Glaser (2005) Legenda: HHA: eixo hipotálamo-hipófise-adrenal; CRF: fator de liberação da corticotrofina; ACTH: hormônio adrenocorticotrópico.; TNF-a: fator de necrose tumoral alfa; IL-1b: interleucina-1 beta; IL-6: interleucina-6; APC: célula apresentadora de antígeno NK, células natural killer.

Além de seus múltiplos efeitos periféricos, as citocinas têm efeitos pleiotrópicos no

sistema nervoso central. Elas não só influenciam a inflamação, mas também exercem papéis

fundamentais na função dos neurotransmissores, regulação neuroendócrina, neuroplasticidade

e suporte neurotrófico (BORTOLATO et al., 2015; GOLD, 2015; LOTRICH; ALBUSAYSI;

Page 32: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

30

FERRELL, 2013; NIKKHESLAT; PARIANTE; ZUNSZAIN, 2018; YOUNG; BRUNO;

POMARA, 2014).

As citocinas inflamatórias podem influenciar duas vias neurofarmacológicas

importantes: monoaminérgicas (serotonina, dopamina e noradrenalina) e glutamatérgicas.

Ambos os sistemas são frequentemente envolvidos na etiologia de distúrbios depressivos. A

presença de citocinas pode levar a diminuição de serotonina (5-HT) disponível através da

diminuição de triptofano para a síntese, aumento da liberação e metabolismo, além de

influenciar a expressão de receptores 5-HT1A e 5-HT2 (BORTOLATO et al., 2015;

SCHIEPERS; WICHERS; MAES, 2005). De forma similar, IL-6, IL-2 e TNF-α diminuem os

níveis de dopamina e noradrenalina ao diminuir a síntese, alteram a recaptação na fenda

sináptica e reduzem o conteúdo vesicular de dopamina (LOTRICH, 2015; LOTRICH;

ALBUSAYSI; FERRELL, 2013; MILLER; MALETIC; RAISON, 2009). Em relação ao

glutamato, a citocinas inflamatórias promovem liberação, diminuem a sua receptação ou atuam

como agonista NMDAR (SCHWARCZ et al., 2012), predispondo à excitotoxicidade.

Estudos mostram que além das citocinas inflamatórias, o estresse oxidativo afeta

negativamente a neuroplasticidade e neurogênese. A superprodução de espécies reativas de

oxigênio (EROS), como o radical superóxido (O•), hidroxila (OH•) e peróxido de hidrogênio

(H2O2) e espécies reativas de nitrogênio, como óxido nítrico (NO•) e peroxinitrito (ONOO),

pode induzir a clivagem do DNA nuclear (promovendo a apoptose), favorecer a peroxidação

lipídica (BARBOSA et al., 2008), reduzir a função de receptores catecolaminérgicos e

serotoninérgicos, além de aumentar a atividade da monoamino oxidase (MAO), enzima

responsável pela degradação de monoaminas (WILLNER; SCHEEL-KRÜGER; BELZUNG,

2013).

A estimulação desses receptores glutamatérgicos, aumenta o influxo de cálcio nos

neurônios, contribuindo para a geração de ROS e radicais livres, estimulando ainda a

peroxidação lipídica da membrana, e comprometendo, assim, a sua fluidez e permeabilidade,

com consequente dano neuronal (CARVALHO et al., 2017).

A inflamação e a fosforilação oxidativa mitocondrial geram espécies reativas e radicais

livres. Quando a produção desses radicais excede a capacidade sequestrante do sistema

antioxidante, ocorre oxidação extensa de proteínas e peroxidação lipídica, causando dano

oxidativo, degeneração celular e até declínio funcional. Esse desequilíbrio é conhecido como

Page 33: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

31

estresse oxidativo, que está cada vez mais estabelecido no desfechos e progressão de uma ampla

gama de patologias, como diabetes, doenças coronarianas e depressão (BOUAYED;

RAMMAL; SOULIMANI, 2009; HALLIWELL, 2007; JÖRGENS; AROLT, 2018;

NIKKHESLAT et al., 2015; PALTA et al., 2014).

O sistema nervoso central é uma das áreas mais vulneráveis ao estresse oxidativo. O

cérebro consome grandes quantidades de oxigênio, carece de compostos antioxidantes e

apresenta altas concentrações de ácidos graxos poli-insaturados e íons metálicos (KIM et al.,

2016). Dessa forma, o estresse oxidativo torna-se particularmente perigoso para o

funcionamento normal do cérebro.

O sistema de enzimas antioxidantes e os antioxidantes de baixo peso molecular

representam o mecanismos de proteção que operam no cérebro para enfrentar ameaças

representadas pelas espécies reativas de oxigênio e nitrogênio. O sistema enzimático

antioxidante inclui a superóxido dismutase (SOD), glutationa redutase (GSR), glutationa

peroxidase (GSHPx) e catalase (CAT). As enzimas SOD, facilitam a dismutação espontânea

dos radicais superóxido para gerar H2O2, que é posteriormente removido pelas enzimas CAT e

glutationa peroxidase (Figura 5).

Page 34: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

32

Figura 5 – Mecanismos antioxidantes de defesa contra o dano oxidativo.

Fonte: Adaptado de Valle, Oliver e Roca (2010)

Legenda: SOD: superóxido dismutase; GSH: Glutationa reduzida; GSSG: glutationa dissulfeto;

glutationa redutase (GSR), glutationa peroxidase (GSHPx)

Os antioxidantes de baixo peso molecular incluem glutationa, ácido úrico, ácido

ascórbico (vitamina C), a-tocoferol (vitamina E) e melatonina, que oferecem funções

neutralizantes, causando quelação de metais de transição. A glutationa, que ocorre na forma

reduzida (GSH) e também na forma oxidada (glutationa dissulfeto - GSSG), é o antioxidante

endógeno não enzimático mais importante e pode ser regenerada pela glutationa redutase com

o consumo de NADPH (HUBER; ALMEIDA; DE FÁTIMA, 2008; OZCAN et al., 2004;

SALIM, 2017), mantendo níveis ótimos de GSH reduzida. A glutationa, em particular,

desempenha um papel importante no processo de oxiredução e afeta o cérebro por desintoxicar

diretamente xenobióticos e EROS (KIM et al., 2016; KOGA et al., 2011; SALIM, 2017).

Na presença de estresse oxidativo, a constituição rica em lipídios do cérebro favorece a

peroxidação lipídica, com produção de moléculas tóxicas como malondialdeido (MDA), que

resulta em diminuição da fluidez da membrana e danos em proteínas de membrana, inativando

receptores, enzimas e canais iônicos (BOUAYED; RAMMAL; SOULIMANI, 2009; KIM et

al., 2016; WIGNER et al., 2018). Como resultado, o estresse oxidativo pode alterar a

neurotransmissão, a função neuronal e a atividade cerebral geral.

Page 35: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

33

Dessa forma, os níveis de ansiedade, depressão e comprometimento cognitivo

correlacionam-se positivamente com os níveis de citocinas circulantes, um achado que

confirma mais uma vez o envolvimento de citocinas na mediação das respostas emocionais e

cognitivas as condições de estresse crônico. Desafios imunes são capazes provocar o estresse

oxidativo, aumentar os níveis de outras citocinas inflamatórias (como TNF- α, IL-6, IL-1b),

diminuir a expressão de BDNF no hipocampo de animais (BORTOLATO et al., 2015) e em

humanos (LOTRICH; ALBUSAYSI; FERRELL, 2013), estimular o eixo HHA (KIM et al.,

2016) alterar os níveis de neurotransmissores (LOTRICH, 2015), além de inibir a long-term

potentiation (ZUNSZAIN et al., 2011), com comprometimento da aprendizagem e memória,

fatores frequentemente afetados em distúrbios depressivos.

2.1.6 Modelo da administração de corticosterona

Diante de tudo isso, o modelo da administração de corticosterona foi desenvolvido com

o intuito de determinar a influência do estresse no desenvolvimento da depressão, sendo

amplamente utilizado (KIM; HAN, 2006).

Neste modelo, a corticosterona (Cort) pode ser administrada por um período de semanas

a meses por diversas vias como a injeção subcutânea, a implantação de pellets, a infusão de

bombas osmóticas ou através da administração passiva na bebida permitindo um controle mais

rigoroso sobre os níveis hormonais (MÜLLER et al., 2009). Uma vantagem desse modelo é que

ele permite examinar a influência direta de glicocorticoides no desenvolvimento da

sintomatologia da depressão.

Apesar de ser impossível examinar todos os sintomas da depressão manifestados em

pacientes através de modelos animais, uma ampla gama de medidas comportamentais tem sido

usadas com o intuito de “medir” a depressão em roedores como a perda de peso, o impedimento

da memória, o distúrbio do sono, a exploração no campo aberto, anedonia e os comportamentos

de desamparo, sendo os dois últimos os mais frequentemente utilizados (YIN; GUVEN;

DIETIS, 2016).

A anedonia (falta de interesse em atitudes agradáveis) é tipicamente inferida pela

medida da ingestão de solução de sacarose comparada com a ingestão de água. Uma vez que

Page 36: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

34

camundongos normais preferem a solução de sacarose, então, uma diminuição da ingestão é

indicativa de depressão que pode ser revertida pelo tratamento com antidepressivos

(WILLNER, 2005).

O desamparo aprendido pode ser examinado em camundongos de várias formas, sendo

o mais utilizado o teste do nado forçado. Neste teste, o aumento do comportamento passivo,

como a imobilidade, e a diminuição do comportamento ativo, como o nado e a escalada, são

indicativos de comportamentos depressivos (NESTLER et al., 2002). Este teste é considerado

válido porque todas as formas de tratamento que são eficazes em humanos, incluindo os

antidepressivos típicos e atípicos e a terapia por eletrochoque são eficazes em diminuir a

imobilidade neste teste (CRYAN; VALENTINO; LUCKI, 2005; PORSOLT; BERTIN;

JALFRE, 1977).

Uma extensa gama de trabalhos indicam que a administração prolongada de

corticosterona acarreta em mudanças consistentes e confiáveis em uma variedade de

comportamentos em roedores que podem ser considerados sintomas depressivos como o

desamparo aprendido, verificado pelo aumento do tempo de imobilidade nos testes do nado

forçado e suspensão da cauda (CRYAN; VALENTINO; LUCKI, 2005; GUPTA et al., 2012;

IIJIMA et al., 2010; LOPES et al., 2018; OLIVEIRA, 2017; VASCONCELOS et al., 2015) e a

anedonia, representada pela diminuição do consumo de solução de sacarose (DAVID et al.,

2009; GUPTA et al., 2012; LOPES et al., 2018; VASCONCELOS et al., 2015), diminuição da

resposta para o reforço alimentar (GOURLEY; WU; TAYLOR, 2008), inibição do

comportamento sexual (GORZALKA; HANSON; HONG, 2001) e diminuição do grooming

(DAVID et al., 2009; VASCONCELOS et al., 2015).

Além disso, estudos evidenciam de que a administração repetida de Cort produz

comportamentos ansiosos em diversas tarefas incluindo o campo aberto (DAVID et al., 2009;

SKÓRZEWSKA et al., 2006; VASCONCELOS et al., 2015), o labirinto em cruz elevado

(SKÓRZEWSKA et al., 2006) e o modelo do claro/escuro (MURRAY; SMITH; HUTSON,

2008). Estes achados são extremamente relevantes uma vez que a manifestação de sintomas

depressivos são frequentemente associados a desordens ansiosas em pacientes com depressão

maior (MILLER; HEN, 2015; WORLD HEALTH ORGANIZATION, 2017), o que torna este

modelo altamente plausível e revela sua validade de face. Outras mudanças indicativas de

depressão que ocorrem com a administração de Cort incluem a diminuição do ganho de peso

(ZHAO et al., 2008) e desregulação da função do eixo HHA (ZHU et al., 2014).

Page 37: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

35

Os estudos mostram ainda que a exposição ao estresse prolongado induz considerável

grau de plasticidade estrutural no cérebro adulto (LIU et al., 2017; MCEWEN; MORRISON,

2013). É importante ressaltar que essas mudanças neurobiológicas formam a base da

sintomatologia da depressão e que têm sido fielmente reproduzidas com o modelo de

administração de Cort. Por exemplo, alguns trabalhos mostraram que este modelo tem induzido

remodelação dendrítica no hipocampo (JACOBSEN; MØRK, 2006; SOUTHWICK;

VYTHILINGAM; CHARNEY, 2005), amígdala (MITRA; SAPOLSKY, 2008) e córtex pré-

frontal (GOURLEY; WU; TAYLOR, 2008; JACOBSEN; MØRK, 2006) semelhante ao que

tem sido documentado no cérebro post-mortem de pacientes com depressão (KONARSKI et

al., 2008). Além disso, é capaz de induzir extensa atrofia dendrítica no hipocampo

(BRUMMELTE; GALEA, 2010; SOUSA et al., 2000) e em doses altas e/ou prolongadas pode

causar morte celular (SOUSA; MADEIRA; PAULA-BARBOSA, 1998). De modo semelhante,

verifica-se atrofia do córtex pré-frontal (ZOLADZ et al., 2008) e redução na proliferação de

glia e células endoteliais (COTTER, 2002).

De maneira importante, muitas formas de estresse crônico, incluindo a deste modelo,

têm um profundo efeito na neurogênese hipocampal, causando rápidas e consistentes reduções

na proliferação e sobrevivência de neurônios recém-formados no cérebro adulto (DAVID et al.,

2009; MURRAY; SMITH; HUTSON, 2008). Tais alterações também são encontradas no

homem e podem ser revertidas por diversos tipos de tratamento para a depressão, como os

antidepressivos típicos e atípicos, eletrochoque e atividade física (DAVID et al., 2009;

DWIVEDI; RIZAVI; PANDEY, 2006). Esses achados são particularmente importantes como

uma das hipóteses atuais mais convincentes a respeito da etiologia da depressão de que o

estresse crônico provoca plasticidade patológica dentro do hipocampo levando a diminuição da

neurogênese e, eventualmente, aos sintomas depressivos (GODSIL et al., 2013).

A interação entre o estresse crônico e as mudanças celulares e moleculares que

influenciam no desenvolvimento da depressão tem se tornado cada vez mais clara (PARIANTE

et al., 2004). Por exemplo, tanto a administração de Cort quanto a depressão em humanos estão

associadas com reduções de fatores de transcrição os quais induzem genes efetores que

contribuem para a estabilização da plasticidade sináptica (EGELAND; ZUNSZAIN;

PARIANTE, 2015). Dentre estes está o fator neurotrófico derivado do cérebro que tem um

papel crucial na estabilização de neurônios durante o desenvolvimento (FU et al., 2016) e é

importante para a sobrevivência e função de neurônios maduros. Sendo assim, alguns trabalhos

Page 38: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

36

mostram que a exposição aos glicocorticoides leva ao impedimento da sinalização mediada por

BDNF em regiões límbicas e frontais (FU et al., 2016; GOURLEY; WU; TAYLOR, 2008;

JACOBSEN; MØRK, 2006; SOUSA et al., 2015) semelhantes as observadas em pacientes com

depressão (CASTRÉN; RANTAMÄKI, 2010a; CASTRÉN; VÕIKAR; RANTAMÄKI, 2007).

Dessa forma, a validade do modelo de administração corticosterona para simular a

sintomatologia da depressão está bem estabelecida, visto que induz mudanças

comportamentais, morfológicas e celulares convincentes e reprodutíveis para o estudo dessa

patologia.

2.2 Abordagens terapêuticas na depressão

Todos os fármacos utilizados atualmente para o tratamento da depressão estão

relacionados de algum modo com o aumento da transmissão monoaminérgica em regiões

cerebrais. Os diferentes antidepressivos, inibidores seletivos da recaptação de serotonina

(ISRS), inibidores seletivos da receptação de noradrenalina (ISRN), inibidores da MAO,

tricíclicos e atípicos têm eficácia semelhante para a maioria dos pacientes deprimidos, variando

em relação ao seu perfil de efeitos colaterais e potencial de interação com outros medicamentos

(RACAGNI; POPOLI, 2008).

A eletroconvulsoterapia (ECT) é o tratamento antidepressivo agudo disponível mais

eficaz. No entanto, ele não é utilizado como tratamento inicial para depressão em função de

seus efeitos colaterais, necessidade de anestesia geral e estigma social (WILKINS; OSTROFF;

TAMPI, 2008).

A resposta ao tratamento com antidepressivos ocorre entre 2 a 4 semanas após o início

do uso, embora alguns pacientes respondam apenas em 6 semanas. As estratégias utilizadas

quando um paciente não responde ao tratamento com medicamento antidepressivo consiste em

aumento de dose, potencialização com lítio ou triiodotironina (T3), associação ou troca de

antidepressivos, eletroconvulsoterapia e associação com psicoterapia. Existem evidências

limitadas sobre qual estratégia seria a melhor alternativa quando não há resposta a um

tratamento inicial proposto (FLECK et al., 2003).

Page 39: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

37

O planejamento de um tratamento com antidepressivos envolve a fase aguda, de

continuação e de manutenção, cada uma com objetivos específicos. O tratamento da fase aguda

inclui os 2 a 3 primeiros meses de tratamento e tem como objetivo a diminuição dos sintomas

depressivos (resposta) ou idealmente sua remissão completa (remissão). A continuação do

tratamento corresponde aos 4 a 6 meses que seguem ao tratamento da fase aguda e tem como

objetivo manter a melhora obtida evitando recaídas dentro de um mesmo episódio depressivo.

Ao final dessa fase, se o paciente permanece com a melhora obtida após o tratamento da fase

aguda, é considerado recuperado do episódio índice. Já a fase de manutenção tem por objetivo

evitar que novos episódios ocorram (recorrência) e é, em geral, por longo prazo. A terapia de

manutenção, portanto, é recomendada para aqueles pacientes com probabilidade de recorrência

(FLECK et al., 2009).

De acordo com a Associação Médica Brasileira, um terço dos pacientes com episódio

depressivo com remissão inicial recai no primeiro ano. Os índices de recaída são estimados em

20% a 24% nos primeiros 2 meses, 28% a 44% aos 4 meses, 27% a 50% aos 6 meses e 37% a

54% aos 12 meses (FLECK et al., 2009).

O Manual Diagnóstico e Estatístico de Transtornos Mentais, DSM-V, identifica o

comprometimento cognitivo (como prejuízo na concentração e indecisão) como critério de

diagnóstico de episódios depressivos (AMERICAN PSYCHIATRIC ASSOCIATION, 2014).

Há evidências que os sintomas cognitivos podem ser revertidos com a utilização de

antidepressivos, sendo alguns mais efetivos que outros (HERRERA-GUZMÁN et al., 2008).

Sendo assim, o entendimento da etiologia da depressão e a busca de novos fármacos

eficazes no tratamento desta doença que diminua o tempo de latência para o início do efeito

terapêutico, diminua os índices de recaída e melhore os sintomas de cognição é de suma

importância para conseguir controlar esta doença heterogênea, crônica e incapacitante.

Page 40: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

38

2.3 Riparina IV

A riparina IV, ou (O-Metil)-N-(3,4,5-trimetoxibenzoil)-tiramina, é uma molécula

sintética obtida pela primeira vez por Barbosa-filho, da Silva e Bhattacharyya em 1990.

Recebeu esse nome devido a semelhança estrutural com as riparinas I, II e III, alcamidas

naturais isoladas da Aniba riparia (BARBOSA-FILHO et al., 1987). Apresenta em sua estrutura

uma molécula de tiramina, uma monoamina derivada do aminoácido tirosina, e um derivado do

ácido benzoico, o trimetil-éter do ácido gálico, conforme figura 6.

Figura 6 - Estrutura química da riparina IV.

Fonte: Dias (2012).

Estudos anteriores com a riparina IV mostraram atividade anti-inflamatória e

antinociceptiva em testes de contorções abdominais induzidas por ácido acético; placa quente;

teste da formalina (DIAS, 2012; NASCIMENTO et al., 2016); nocicepção mecânica induzida

pela carragenina, capsaicina, mentol e glutamato (DIAS, 2012). Também foi observado um

efeito antimicrobiano contra cepas de Staphylococcus aureus e Escherichia coli (CATÃO et

al., 2005).

Devido a atividade comprovada das riparinas I, II e III nos modelos comportamentais

de depressão (DE SOUSA et al., 2014; LOPES et al., 2018; MELO et al., 2013, 2006;

OLIVEIRA, 2017; SOUSA et al., 2005, 2004; TEIXEIRA et al., 2013; VASCONCELOS et al.,

2015) e ansiedade (MELO et al., 2006; OLIVEIRA, 2012; SOUSA et al., 2005, 2007, 2004),

sendo a riparina IV um análogo estrutural dessas substâncias, torna-se relevante a investigação

do seu potencial farmacológico em animais submetidos a modelos de estresse crônico que

melhor representam as alterações comportamentais e neuroquímicas da depressão.

Page 41: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

39

3 CAPÍTULOS

Os resultados foram divididos em artigos, como segue abaixo:

• ARTIGO 1: onde constam os resultados referentes aos efeitos da riparina IV no

comportamento ansioso (campo aberto e labirinto em cruz elevado), desamparo

aprendido (nado forçado, suspensão da cauda) e sintomas anedônicos ( preferência pela

solução de sacarose) em camundongos submetidos ao modelo de estresse induzido pela

administração de corticosterona. Foram avaliadas também os efeitos na

neuroplasticidade hipocampal através da dosagem dos níveis de BDNF. Artigo

submetido a revista Pharmacology, Biochemistry and Behavior.

• ARTIGO 2: onde constam os resultados referentes aos efeitos da riparina IV no

comportamentos de avaliação cognitiva e memória (labirinto em Y, esquiva passiva,

interação social e inibição pré-pulso), além de avaliar o efeito neuroprotetor nos

parâmetros de estresse oxidativo (nitrito, glutationa reduzida, lipoperoxidação e

atividade da superóxido dismutase e catalase) e níveis das citocinas (IL-2, IL-4, IL-6,

IL-10, IFN-γ, TNF-a) em camundongos estressados.

Page 42: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

40

3.1 Capítulo I REVERSAL EFFECT OF RIPARIN IV IN DEPRESSION AND ANXIETY CAUSED

BY CORTICOSTERONE CHRONIC ADMINISTRATION IN MICE

Raquell de Castro Chavesa*; Auriana Serra Vasconcelos1; Natália Ferreira Oliveiraa; Iris

Cristina Maia Oliveiraa; Victor Celso Cavalcanti Capibaribea; Daniel Moreira Alves da Silvaa;

Iardja Stéfane Lopesa; José Tiago Valentima; Alyne Mara Rodrigues de Carvalhoa; Danielle

Silveira Macêdoa; Silvânia Maria Mendes Vasconcelosa; Stanley Juan Chaves Gutierrezb; José

Maria Barbosa Filhoc; Francisca Cléa Florenço de Sousaa

a Drug Research and Development Center, Department of Physiology and Pharmacology,

School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. b Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Federal University of

Piauí, Teresina, Piauí, Brazil. c Laboratory of Pharmaceutics Technology, Federal University of Paraiba, João Pessoa-Paraiba,

Brazil.

ABSTRACT

Mental disorders have a multifactorial etiology and stress presents as one of the causal factors.

In depression, it is suggested that high cortisol concentration contributes directly to the

pathology of this disease. Based on that, the study aims to evaluate the potential antidepressant

effect of riparin IV (Rip IV) in mice submitted to chronic stress model by repeated

corticosterone administration. Female Swiss mice were selected into four groups: control

(Control), stressed (Cort), riparin IV (Cort + Rip IV) and fluvoxamine (Cort + Flu). Three

groups were administrated subcutaneously (SC) with corticosterone (20 mg/kg) during twenty-

one days, while the control group received only vehicle. After the fourteenth day, groups were

administrated tested drugs: riparin IV (50 mg/kg), fluvoxamine (50 mg/kg) or distilled water

vehicle, by gavage, one hour after subcutaneous injections. After the final treatment, animals

were exposed to behavioral models such as forced swimming test (FST), tail suspension test

Page 43: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

41

(TST), open field test (OFT), elevated plus maze (EPM) and sucrose preference test (SPT).

Hippocampus was also removed for the determination of BDNF levels. Corticosterone

treatment alters all parameters in behavior tests. Riparin IV and fluvoxamine exhibit

antidepressant effect in FST, TST and SPT. In EPM and OFT, treatment shown anxiolytic effect

without alter locomotor activity. Corticosterone administration decreased BDNF levels and

riparin IV could reestablish them. These findings suggest that riparin IV improves the

depressive and anxious symptoms after chronic stress and could be a new alternative treatment

for patients with depression.

Keywords: riparin; corticosterone administration; chronic stress; depression.

Highlights

• Corticosterone treatment can induce chronic stress and depressive symptoms in mice.

• Riparin IV shows antidepressant and anxiolytic effect after chronic stress.

• Riparin IV was able to normalize BDNF levels in mice hippocampus.

INTRODUCTION

Depression is a chronic and complex disorder with an enormous impact on society and

is associated with functional impairment and high morbidity and mortality. The prevalence of

major depression is high and is still increasing. Data confirmed that women are more vulnerable

than men and that it happens more frequently in young people and in the elderly (CAPRIOTTI,

2006; SILVA et al., 2014). According to The World Health Organization (WHO) by 2020

depression is estimated to be the second leading global burden of illness.

Depressive symptoms include depressed mood, irritability, lack of concentration,

psychomotor retardation or agitation, anhedonia (reduced ability to experience pleasure from

natural rewards), and abnormalities in appetite and sleep (ANISMAN; MATHESON, 2005).

Anxiety disorders have substantial co-morbidity with depression and could add, as regular

symptoms, nervous dread of the future, hypervigilance, increased heart rate and blood pressure

to regular symptoms (GREGUS et al., 2005; GRILLO, 2016; MILLER; HEN, 2015).

Page 44: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

42

Most depression occurs idiopathically, but some risk factors could trigger depressive

symptoms, such as some types of cancers, endocrine abnormalities, side effects of drugs,

stressful life events, among many others (WAGER-SMITH; MARKOU, 2011). Stress is

presented as one of the causal factors of many mental disorders (ANISMAN; MATHESON,

2005; WANG et al., 2008) and it is suggested that hypersecretion of cortisol contributes directly

to the pathology of anxiety and depression (ROHLEDER; WOLF; WOLF, 2010;

SKÓRZEWSKA et al., 2006).

During depression, disturbs in the limbic system may result in alterations in the HPA

axis where the hippocampus appears to be involved in negative feedback control of the

glucocorticoid levels (KRISHNAN; NESTLER, 2008; STERNER; KALYNCHUK, 2010;

WARNER-SCHMIDT; DUMAN, 2006).

This inhibition appears to be dependent on the integrity of the hippocampus. Studies

suggest that depressed patients show hippocampal volumetric reductions (LORENZETTI et al.,

2009) and neurogenesis in rodent hippocampus is reduced by stress and increased by various

types of antidepressant treatments (MILLER; HEN, 2015; SAHAY; HEN, 2007; WARNER-

SCHMIDT; DUMAN, 2006). The neurotrophic alterations observed in the hippocampus of

depressed patients may be attributed in part to the reductions of the brain-derived neurotrophic

factor (BDNF) (AUTRY; MONTEGGIA, 2012).

Many strategies can take advantage of the molecular diversity of natural products in the

designing of combinatorial synthesis collections. Structural modifications of the skeleton of an

existing bioactive natural product are intended to promote improvements in their inherent

biological activity or pharmacological properties at a reasonable cost. This can be achieved by

means of semi-synthetic modifications of the molecule or by synthetic methods (HAUSTEDT

et al., 2006; KOEHN; CARTER, 2005).

Riparin IV is a synthetic alkamide drug analogue to Aniba riparia’s natural compounds

(Figure 1). The synthesis involves the condensation between acyl chlorides and O-

methyltyramine in a very high yield (BARBOSA-FILHO; DA SILVA; BHATTACHARYYA,

1990). Studies conducted by Dias (2012) and Nascimento et al. (2016) evidenced that riparin

IV has an antinociceptive and anti-inflammatory activity in the model of nociception induced

by acetic acid, formalin, and carrageenan.

Page 45: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

43

Figure 1. Chemical structures of riparin IV. Source: Adapted from Barbosa-Filho et al. (1990)

Due to the similarity with the tyramine chemical structure, a sympathomimetic amine,

and central effects of riparins I, II and III, it becomes relevant to investigate the pharmacological

potential of riparin IV in anxiety and depression models. Based on these findings, the goal of

this study is to evaluate the potential antidepressant effect of riparin IV in mice submitted to a

chronic stress model through repeated corticosterone injections.

MATERIALS AND METHODS

Animals

Female Swiss mice (22–25 g) were used in this study. The animals were maintained on

a 12/12 h light/dark cycle, with access to water and food ad libitum, randomly distributed into

specified experimental groups. All experiments were performed at 23 ± 2 °C room temperature

and were carried out between 12:00 and 16:00 h, with each animal used only once. Experiments

were performed in accordance with the current laws and the National Institute of Health Guide

for the Care and Use of Laboratory Animals and under the consent and surveillance of the

Ethics Committee from the Department of Physiology and Pharmacology of Federal University

of Ceará (Protocol number 112/2014).

Page 46: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

44

Drugs

Corticosterone (Sigma®, St Louis, MO, USA) was dissolved in a 0.9% saline solution

containing 0.1% polysorbate (Tween®) 80 (VETEC™, USA) and 0.1% dimethyl sulfoxide

(DMSO) (VETEC™, USA) and it was administered in a dose of 20 mg/kg, subcutaneously

(SC).

The riparin IV, a total of three batches, were provided by Laboratory Chemistry of

Bioactive Natural and Synthetic Products, Federal University of Piaui, Teresina, PI, Brazil.

Riparin IV was emulsified with 2% Tween® 80 and administered intragastric (oral gavage)

doses of 50 mg/kg.

Fluvoxamine (Abott®, New Jersey, USA), in a 50 mg/kg dose were dissolved in distilled

water and given by oral gavage.

Experimental procedure

The study design was based on a depression mouse model involving exogenous

corticosterone administration (ZHAO et al., 2008), where repeated corticosterone injections

increase depression-like behavior in mice after up to 1 week.

The animals were divided in four experimental groups (n = 12 animals/group, on

average): (1) Control; (2) corticosterone (Cort); (3) corticosterone + riparin IV (Cort + Rip IV)

and (4) corticosterone + fluvoxamine (Cort + Flu). Groups (1), (2) and (3) were administrated

subcutaneously (SC) with 20mg/kg corticosterone in a saline vehicle for twenty-one days, while

the control group (1) was administrated only with saline vehicle.

In the last seven days of treatment, each group was administrated with tested drugs

riparin IV (50mg/kg) (group 3), fluvoxamine (50mg/kg) (group 4) or distilled water vehicle

(distilled water emulsified with 2% Tween® 80) (groups 1 and 2), per gavage, with a 1-h interval

between corticosterone treatment injections (Figure 2).

Page 47: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

45

Figure 2. Schematic overview of the experimental design. SC: subcutaneous; PO: per oral gavage; FST: Forced Swimming Test; TST: Tail Suspension Test; OFT: Open Field Test; EPM: Elevated Plus Maze Test; SPT: Sucrose Preference Test; BDNF: Brain-derived Neurotrophic Factor.

Behavioral determinations were registered sixty minutes after the last drug

administration and the hippocampus was removed for BDNF levels evaluation. One group of

40 animals, divided in 4 groups was tested in OFT, FST and SPT behavioral tests. Other group

of 40 animals, divided as explained above, was submitted to other behavioral tests and their

hippocampus used to BDNF analysis.

Behavioral tests

Forced swimming test

The procedure used was based on that described by Porsolt, Bertin and Jalfre (1977)

with a minimum modification. Mice were placed individually in the cylinders tank filled with

water (25 ± 1 °C) to a depth of 25 cm, dimensions the mice will not be able to touch the bottom

of the tank, either with their feet or their tails, during the swimming test. Animal behavior was

analyzed by an independent researcher who did not know the experimental groups. The

immobility time during a five minute period was recorded. Immobility was defined as the

Page 48: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

46

animal floating in the water with the absence of any movement except for those necessary for

keeping the nose above water. An increase in the duration of immobility is indicative of

depressed-like behavior (YANKELEVITCH-YAHAV et al., 2015).

Tail suspension test

The procedure followed in this study was previously described by Steru et al. (1985).

Mice were suspended 50cm above the floor by adhesive scotch tape placed around 1 cm from

the tip of the tail. Immobility time was measured using a chronometer by an observer during a

six minute period.

Open Field Test

The test was performed in a soundproof in an air-conditioned chamber under dim light.

The apparatus used was a cube of transparent acrylic with a black floor (30 × 30 × 15 cm) and

divided into nine equal square grids clearly drawn on the surface. After 60 minutes of last

treatment, the animals were placed on the central quadrant to begin the test. The outcome

measured during the 5 minute test was: number of line crosses contacted with all four legs

(spontaneous movement), number of grooming (licking the paws, washing movements over the

head, fur licking and/or tail/genitals cleaning) and rearing, which is the number of times an

animal stood erect on its hind legs with forelegs in the air against the wall (ARCHER, 1973).

Elevated plus maze

The elevated plus maze is a plus-shaped apparatus with four arms at right angles to each

other as described by Handley and Mithani (1984). Sixty minutes after oral treatment, the

animal was placed at the center of the plus maze facing one of the enclosed arms, and observed

for 5 minutes, according to the following parameters: number of entries into the open and closed

arms and time of permanence in each of them. The criterion for arm visit was considered only

when the animal decisively moved all its four limbs into an arm. The percentage of time spent

in the arms and the number of entries into the arms was calculated using the following formula:

Timespentinopenarms(%) =timespentinopenarms

timespentinopenarm + closedarms x100

Page 49: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

47

Entriesinopenarms(%) =numberofentriesintoopenarms

totalnumberofentries x100

Sucrose preference test

Sucrose preference is considered to be an index of anhedonia (WANG et al., 2014). The

test was performed as described previously by Strekalova et al. (2004), with minor

modifications. In this model, a mouse is given free choice between two solutions to drink: water

or a sucrose solution. Usually, mice show a clear preference for the sweetened water, while

depressed animals demonstrate less interest. Before the test, the mice were trained to adapt to

1% (w/v) sucrose solution by placing two bottles of 1% sucrose solution in each cage for

eighteen hours. After adaptation, mice were housed in individual cages for eighteen hours and

exposed to two identical bottles, one filled with 1% sucrose solution and the other filled with

water. The beginning of the test started with the onset of the dark (active) phase of the animals’

cycle. No previous food or water deprivation was applied before the test. After eighteen hours,

sucrose and water consumption were recorded and the sucrose preference was calculated by the

following formula:

Sucrosepreference(%) =Sucroseconsumption

Waterconsumption + Sucroseconsumption x100

Neurochemical tests

BDNF

After twenty-one days of treatment, the animals were euthanized by decapitation to

remove the skulls. The hippocampi were dissected and stored in a freezer at -80 °C for posterior

biochemical analysis. The content of BDNF protein was measured using a commercially

available enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems Inc, Minneapolis,

Minnesota) according to the manufacturer’s instructions. The amount of BDNF was determined

by absorbance in 450 nm and expressed as pg per g of wet tissue. The standard curve

demonstrates a direct relationship between optical density and BDNF concentration.

STATISTICAL ANALYSIS

Page 50: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

48

The data were analyzed with GraphPad Prism 7.0a (San Diego, CA, USA). Statistical

analysis of the data was performed by one-way ANOVA, followed by Student-Newman-Keuls

post hoc test. Data are expressed as mean ± SEM and differences were considered significant

when p ≤ 0.05.

RESULTS AND DISCUSSION

Mice were treated with subcutaneous corticosterone injections at a dose of 20 mg/kg,

daily, and behavioral tests were assessed on the twenty-first day by using the forced swimming

test (FST), tail suspension test (TST), sucrose preference test (SPT), elevated plus maze (EPM)

and open field test (OFT).

Stress induced by repeated corticosterone administration was chosen to induce chronic

depression because it can control over increases in circulating glucocorticoids, different than

other stress models such as chronic mild stress exposure and repeated restraint stress (GREGUS

et al., 2005; HERRERA-PÉREZ et al., 2016). Animals can differ in stress responses (quality

and quantity) and HPA axis stimulation and this may result in differentiating corticosterone

levels between different animals exposed to the same stressor, which in turn could lead to

increased experimental variability (MARKS; FOURNIER; KALYNCHUK, 2009; ZHAO et

al., 2008).

Results have showed that exogenous corticosterone administration for twenty-one days

can produce depression-like behavior in the forced swimming test [F (3, 54) = 36.74] and tail

suspension test [F (3, 58) = 39.08] (Figure 3). Administration of riparin IV and fluvoxamine for

7 days has decreased immobility time compared to corticosterone administration only

(p<0.0001).

Page 51: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

49

Figure 3. Immobility time analysis in forced swimming test after 21 days of treatment with corticosterone

and tested drugs Rip IV (50mg/kg) and Fluvoxamine (50mg/kg). Data are expressed as mean ± SEM of

immobility time during 5 minutes’ test. Statistical analysis was performed by one-way ANOVA, followed

by Student-Newman-Keuls’ post hoc test. aaaap<0.0001 vs control; bbbbp<0.0001 vs stressed group.

Animals were submitted to tail suspension test and showed a significant difference

between groups [F (3, 58) = 39.08]. Results (Figure 4) showed that corticosterone treated mice

spent a significantly greater percentage of time immobile during the TST than did the control

group (p<0.0001). Riparin IV and fluvoxamine were able to decrease immobility time caused

by stress conditions (p<0.0001).

Page 52: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

50

Figure 4. Effect of Rip IV (50 mg/kg) and Flu (50mg/kg) on immobility time of mice in tail suspension test.

Data are expressed as mean ± SEM of immobility time during 6 minutes’ test. Statistical analysis was

performed by one-way ANOVA, followed by Student-Newman-Keuls’ post hoc test. Significant values:

aaaap<0.0001 vs control; bbbbp<0.0001 vs Cort group.

Animal models of depression are typically based on exposure of animals under a

stressful condition (a real or a potentially dangerous situation) and use a specific test for

measuring behavioral and physiological reactions. The forced swimming and tail suspension

tests are two of the most widely used models for assessing antidepressant-like activity in mice

(BERGNER et al., 2016; CAN et al., 2012; CRYAN et al., 2005; CRYAN; MARKOU; LUCKI,

2002; KRISHNAN; NESTLER, 2011; PALANZA, 2001) and they are highly sensitive to all

major classes of antidepressant drugs and treatments including MAO inhibitors, tricyclics,

serotonin-specific reuptake inhibitors, atypical antidepressants, and electroconvulsive shock

(CASTAGNÉ et al., 2011). The increased immobility behavior in the FST and TST is

considered to be an indicator of despair and is widely used to investigate the acute and chronic

effects of antidepressant drugs (BERGNER et al., 2016).

High cortisol levels could be associated to psychotic depression, where people with

severe depression may also develop psychotic symptoms (hallucinations and/or delusions),

most commonly thematically consistent with the negative, self-blaming cognitions and low

mood. This subtype of depression proves difficult to treat and the pharmacotherapy includes

the combination of antidepressants and antipsychotics associated with many adverse effects

(IIJIMA et al., 2010).

Clinical studies proved that monotherapy using the fluvoxamine, a selective serotonin

reuptake inhibitor (SSRI), was effective against both the psychotic and depressive symptoms

of this disorder (FURUSE; HASHIMOTO, 2009). Zanardi and collaborators (2000) conducted

a double-blind study comparing fluvoxamine and venlafaxine monotherapy for six weeks. In

twenty-eight hospitalized patients diagnosed with major depression and severe psychotic

features, fluvoxamine showed efficacy as the treatment of psychotic depression. These results

motivated the choice of fluvoxamine as the reference drug for this work.

Page 53: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

51

The stress response is meant to maintain the stability or homeostasis of the organism.

Long-term activation of the stress system can cause pathological states, or exacerbate pre-

existing or latent morbid states such as obesity and cardiovascular diseases (PEREIRA-

FIGUEIREDO et al., 2017; ROHLEDER; WOLF; WOLF, 2010). Stressful events also underlie

to various pathophysiological processes associated with mood disorders, such as unipolar or

bipolar depression, as well as posttraumatic stress disorder (PTSD) (MORRIS; COMPAS;

GARBER, 2012) or anxiety (KIYOHARA; YOSHIMASU, 2009).

Nearly one-half of those diagnosed with depression are also diagnosed with an anxiety

disorder. Therefore, it was decided to study the effect of riparin IV in the open field and elevated

plus maze, two sensitive tests to evaluate anxious-like behavior (KORTE; DE BOER, 2003).

In the OFT, groups treated orally with riparin IV and fluvoxamine decreased the number

of rearing [F (3, 31) = 5.97] and grooming [F (3, 31) = 6.481] as compared to Cort group. No

alteration was observed in the number of crossing [F (3, 35) = 2.003] (Figure 5).

Page 54: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

52

Figure 5. Number of squares crossed (crossings) (a), groomings (b) and rearings (c) by mice treated with

vehicle (control), Cort (20mg/kg), Rip IV (50 mg/kg) and Flu (50mg/kg) in an open field test. Results were

expressed as mean ± SEM (n=8 per group). Statistical analysis was performed by one-way ANOVA,

followed by Student-Newman-Keuls’ post hoc test. Significant values: aap<0.01 vs control; bp<0.05 and bbp<0.01 vs stressed group.

The open field test is used to measure not only anxiety-like behaviors but also activity

or even sedation (PRUT; BELZUNG, 2003). Our findings show that the corticosterone, riparin

IV and fluvoxamine treatment didn’t change the locomotor activity in animals, but chronic

corticosterone administration increased grooming and rearing, and the treatment with riparin

IV and fluvoxamine significantly decrease these parameters.

Page 55: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

53

According to van Erp et al. (1994) and Kalueff and Tuohimaa (2004), stress can induce

grooming in rodents and this innate behavior it might be related to endocrine hypothalamus-

pituitary adrenal (HPA) axis. Riparin IV was able to decrease grooming suggesting that

treatment may alter cortisol homeostasis. Treatment with riparin IV was able to decrease mice

immobility time caused by chronic stress and also preserved locomotor activity in OFT,

suggesting that its antidepressant effect in this predictive model is specific and not related to an

increase in motor activity of the animals.

In the elevated plus maze (EPM), the number of entries into and the time spent in the

open arms were taken as indices of anxiety. Treatment significantly increased in number and

time spent in the open arm compared to Cort group. Comparing percentage time spent in the

open arm to the closed arm, the animals treated with riparin IV (p<0.0001) and fluvoxamine

(p<0.01) spent significantly more time in the open arm than compared to Cort and control

groups. These parameters were expressed as a percentage of the total entries into and the total

time spent in any arm during the 5 minute test session (Table 1).

Groups Number of entries % of entries in open

arms

% time spent in

open arms

Control 8.500 ± 0.8303 36.81 ± 2.963 43.20 ± 2.386

Cort 3.545 ± 0.4545 aaa 24.03 ± 2.152aa 26.15 ± 1.757 aaaa

Cort + Rip IV 11.60 ± 1.122 bbbb 45.83 ± 1.661bbb 53.34±2.651 bbbb/aa

Cort + Flu 6.357 ± 0,7603 bb 38,78 ± 2.182bb 34.46 ± 1.656 bb/aa

Table 1. Each value represents the mean ± S.E.M. Significant values: aap<0.01, aaap<0.001 and aaaap<0.0001

as compared to control, bbp<0.01, bbbp<0.001 and bbbbp<0.0001 as compared to stressed animals. Statistical

analysis was performed by one-way ANOVA followed by Newman–Keuls as the post hoc test.

In the animal’s models, the results found by Iijima et al. (2010) showed a different

conclusion. Rats received corticosterone injections (20 mg/kg, subcutaneously), once a day for

21 consecutive days prior to the forced swimming test. A day prior to the behavior test, animals

orally received fluvoxamine (3mg/kg), imipramine (10.0 mg/kg) and a combination of

risperidone (0.1 mg/kg) and fluvoxamine (3.0 mg/kg). Acute treatment with fluvoxamine and

imipramine monotherapy failed to decrease the immobility time but a combination of

Page 56: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

54

antidepressant and antipsychotic drugs could decrease immobility time in the forced swimming

test when administered once. Our behavioral findings show that fluvoxamine also reversed

stress symptoms associated with depression and anxiety in a higher dosage (50mg/kg) and after

several days of administration.

Results from several previous studies have indicated that repeated corticosterone

treatments can influence rodent behavior and induce depressive symptoms (IIJIMA et al., 2010;

LUSSIER et al., 2013; MARKS; FOURNIER; KALYNCHUK, 2009; MURRAY; SMITH;

HUTSON, 2008; SILVA et al., 2016; SKÓRZEWSKA et al., 2014; ZHAO et al., 2008, 2009),

including anhedonia (ABELAIRA; RÉUS; QUEVEDO, 2013; GUPTA; RADHAKRISHNAN;

KURHE, 2015; LI et al., 2015; VASCONCELOS et al., 2015). In the evaluation of the sucrose

preference parameter (Figure 6), the Cort-treated group had a lower sucrose consumption when

compared to other groups, while riparin IV (p<0.05) and fluvoxamine (p<0.0001) treatment

was able to recover the sucrose preference after the corticosterone exogenous administration [F

(3, 27) = 9.704].

Figure 6. Effect of Rip IV (50 mg/kg) and Flu (50mg/kg) on the percentage of sucrose consumption of mice

induced to chronic corticosterone stress model. Data are expressed as mean ± SEM and statistical analysis

was performed by one-way ANOVA, followed by Student-Newman-Keuls’ post hoc test. Significant values:

aap<0.01 vs control; b p<0.05, bbbp<0.001 and bbbp<0.001 vs stressed group.

Page 57: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

55

Anhedonia is a key symptom of all forms of depression and it can influence many of its

symptoms (BOGDAN; PIZZAGALLI, 2006). The reduction of the ability to experience

pleasure caused by stressful events tends to be long-lasting and its operationally defined by a

decreased preference for sweetened solutions (STREKALOVA et al., 2004). Corticosterone

administration led to a reduction of sucrose consumption and a seven-day treatment with Rip

IV normalize sucrose intake similar to fluvoxamine. This finding is very relevant because some

types of antidepressants and anxiolytics drugs are ineffective in reversing chronic stress-

induced anhedonia (PATEL, 2016; TREADWAY; ZALD, 2011; WILLNER; MUSCAT;

PAPP, 1992).

The neurochemical analysis, Figure 7 shows the significant effect of riparin IV and

fluvoxamine treatment on BDNF protein levels in the hippocampus [F (3, 28) = 18.52].

Corticosterone administration significantly decreased BDNF protein levels in the hippocampus

of mice, as compared to control. Riparin IV and fluvoxamine treatment significantly increased

the BDNF protein levels when compared to stressed animals.

Figure 7. Effect of Riparin IV (50mg/kg) and Fluvoxamine (50mg/kg) ztreatment on BDNF protein levels in

the hippocampus of chronic corticosterone stress model exposed mice. Data are expressed as mean ± SEM

and statistical analysis was performed by one-way ANOVA, followed by Student-Newman-Keuls’ post hoc

test. Significant values: aaaap<0.0001 vs control; bbbbp<0.0001 vs Cort group.

Page 58: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

56

Brain Derived Neurotrophic Factor (BDNF) is a member of the nerve growth factor

family. BDNF, signaling in the mesolimbic pathway, play a role in survival mechanism in the

central nervous system, such as neurogenesis, neuronal growth, cellular differentiation and

survival of neurons. This type of neurotrophin also influences dendritic connectivity and

neuroplasticity (BANERJEE et al., 2014; BRAMHAM; MESSAOUDI, 2005; CASTRÉN;

RANTAMÄKI, 2010b).

However, under stress, the gene for BDNF is repressed, leading to atrophy and possible

apoptosis of neurons in the hippocampus. These events, in turn, lead to depression and

susceptibility to social anhedonia followed by social stress (HUANG; LIN, 2015; KIYOHARA;

YOSHIMASU, 2009; KUPFERBERG; BICKS; HASLER, 2016). Furthermore, the

hippocampus is particularly susceptible to the damaging effects of prolonged stress, (IHARA

et al., 2016; NOVKOVIC; MITTMANN; MANAHAN-VAUGHAN, 2015) evidenced by

decreased hippocampal neurogenesis and hippocampal glucocorticoid receptor (GR) mRNA

expression (STERNER; KALYNCHUK, 2010). This GR decrease could lead to a stimulation

of the HPA axis and increase glucocorticoid serum levels and creating even more hippocampal

damage.

Many antidepressant drugs acutely increase monoamine levels, but in order to achieve

success in therapy it is necessary to lead long-term adaptation such as regulation of

neurotrophins, as BDNF (KOZISEK; MIDDLEMAS; BYLUND, 2008). Studies have shown,

in depressed patients and animal models of stress, that the efficacy of antidepressants in causing

alterations behavioral symptoms of depression depends on their ability to increase BDNF levels

(BANERJEE et al., 2014; CASTRÉN; RANTAMÄKI, 2010a; DELTHEIL et al., 2008;

SOUSA et al., 2015).

Data suggests that chronic corticosterone administration reduces BDNF levels in the

hippocampus (GREGUS et al., 2005; JACOBSEN; MØRK, 2006; SOUSA et al., 2015;

VASCONCELOS et al., 2015; WARNER-SCHMIDT; DUMAN, 2006) and riparin IV shows

a significant effect in BDNF levels which is not a regular finding in all antidepressant treatment.

Jacobsen and Mørk (2004) found different changes in antidepressant treatment in BDNF

protein level, where escitalopram (a selective serotonin reuptake inhibitor [SSRI]) decreased

BDNF protein in the hippocampus and desipramine (a tricyclic antidepressant that inhibit the

reuptake of noradrenaline) did not affect the BDNF protein level.

Page 59: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

57

As previously mentioned, chronic stress induced by corticosterone is a model of

depression involving psychotic symptoms and turn into a persistent kind of depression

(LORENZETTI et al., 2009). Psychotic depression is difficult to treat and normally involves

the administration of the combination of an antidepressant and an antipsychotic, which

increases the risk of adverse effects (HAMODA; OSSER, 2008). The evidence that riparin IV

could reverse the psychotic depression induced in animals as a monotherapy incites its

importance in depression management.

CONCLUSION

Depression is a common mental disorder associated with debilitating symptoms; it can

also co-exist with another mental disorders such as anxiety and psychosis and affect populations

around the globe. There is a lack of effective pharmacological treatments and 10-30% of

patients did not respond to regular antidepressant treatments (AL-HARBI, 2012). Treating a

resistant depression causes socioeconomic impact and the development of new strategies are

extremely necessary.

Animal models are utilized to provide knowledge of the neurobiological basis of several

disorders, which could ultimately produce improved treatment options for the patient with

depression. We have reviewed the findings of preclinical research demonstrating that riparin

IV prevents the effects of corticosterone induced stress on behavior. The ability to increase

BDNF levels is also a critical finding and could lead to riparin IV as a potential treatment

strategy in the future.

Funding

This study was financied in part by Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior – Brasil (CAPES) – Finance Code: 001; by Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq-Brazil; Process numbers: nº 12/2017, nº 306746/2013-1, nº

446120/2014-6 and nº 407567/2013-5), and Fundação Cearense de Apoio à Pesquisa

(FUNCAP-Ceará-Brazil).

Page 60: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

58

REFERENCES

ABELAIRA, H. M.; RÉUS, G. Z.; QUEVEDO, J. Animal models as tools to study the pathophysiology of depression. Revista Brasileira de Psiquiatria, v. 35, n. Suppl 2, p. S112–S120, 2013. AL-HARBI, K. S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Preference and Adherence, v. 6, p. 369–388, 2012. ALBERT, P. R. Why is depression more prevalent in women? Journal of Psychiatry and Neuroscience, v. 40, n. 4, p. 219–221, 2015. AMERICAN PSYCHIATRIC ASSOCIATION. Manual Diagnóstico e Estatístico de Transtornos Mentais - DSM-5. 5a edição ed. [s.l.] Artmed, 2014. ANISMAN, H.; MATHESON, K. Stress, depression, and anhedonia: Caveats concerning animal models. Neuroscience and Biobehavioral Reviews, v. 29, n. 4–5, p. 525–546, 2005. ARCHER, J. Tests for emotionality in rats and mice: A review. Animal Behaviour, v. 21, n. 2, p. 205–235, 1973. AUTRY, A. E.; MONTEGGIA, L. M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev, v. 64, n. 2, p. 238–258, 2012. BAI, Y. et al. Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids, v. 135, n. 155, p. 73–78, 2018. BAJOR, L. A.; TICLEA, A. N.; OSSER, D. N. The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Update on Posttraumatic Stress Disorder. Harvard Review of Psychiatry, v. 19, n. 5, p. 240–258, 2011. BANERJEE, R. et al. Chronic Administration of Bacopa Monniera Increases BDNF Protein and mRNA Expressions: A Study in Chronic Unpredictable Stress Induced Animal Model of Depression. The Psychiatry Investigation, v. 11, n. 3, p. 297–306, 2014. BARBOSA-FILHO, J. M.; DA SILVA, E. C.; BHATTACHARYYA, J. Synthesis of Several New Phenylethylamides of Substituted Benzoic Acids. Quimica Nova, v. 13, n. 4, p. 332–334, 1990. BERGNER, C. L. et al. Mouse Models for Studying Depression-like States and Antidepressant Drugs. In: PROETZEL, G.; WILES, M. (Eds.). . Mouse Models for Drug Discovery. Methods in Molecular Biology (Methods and Protocols). [s.l.] Humana Press, 2010. v. 602p. 267–282. BERGNER, C. L. et al. Mouse Models for Studying Depression-Like States and Antidepressant Drugs. In: PROETZEL, G.; WILES, M. V. (Eds.). . Mouse Models for Drug Discovery: Methods and Protocol, Methods in Molecular Biology. New York, NY: Humana Press, 2016. v. 1438p. 255–269. BOGDAN, R.; PIZZAGALLI, D. A. Acute Stress Reduces Reward Responsiveness:

Page 61: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

59

Implications for Depression. Biological Psychiatry, v. 60, n. 10, p. 1147–1154, 2006. BRAMHAM, C. R.; MESSAOUDI, E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Progress in Neurobiology, v. 76, n. 2, p. 99–125, 2005. BRUMMELTE, S.; GALEA, L. A. M. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience, v. 168, n. 3, p. 680–690, 2010. CAN, A. et al. The mouse forced swim test. Journal of visualized experiments : JoVE, n. 59, p. e3638, 2012. CASTAGNÉ, V. et al. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Current Protocols in Pharmacology, v. Unit 5.8, p. Unit 8.10A, abr. 2011. CASTRÉN, E.; RANTAMÄKI, T. Role of brain-derived neurotrophic factor in the aetiology of depression: Implications for pharmacological treatment. CNS Drugs, v. 24, n. 1, p. 1–7, 2010a. CASTRÉN, E.; RANTAMÄKI, T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental Neurobiology, v. 70, n. 5, p. 289–297, 2010b. CHATTARJI, S. et al. Neighborhood matters: Divergent patterns of stress-induced plasticity across the brain. Nature Neuroscience, v. 18, n. 10, p. 1364–1375, 2015. CHESLACK-POSTAVA, K. et al. Oral contraceptive use and psychiatric disorders in a nationally representative sample of women. Archives of Women’s Mental Health, v. 18, n. 1, p. 103–111, fev. 2015. CRYAN, J. F. et al. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience and Biobehavioral Reviews, v. 29, n. 4–5, p. 571–625, 2005. CRYAN, J. F.; MARKOU, A; LUCKI, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends in pharmacological sciences, v. 23, n. 5, p. 238–245, 2002. DELTHEIL, T. et al. Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: Studies in adult mice hippocampus. Pharmacology Biochemistry and Behavior, v. 90, n. 2, p. 174–183, 2008. DESANTIS, S. M. et al. Gender differences in the effect of early life trauma on hypothalamic-pituitary-adrenal axis functioning. Depression and Anxiety, v. 28, n. 5, p. 383–392, 1 maio 2011. DIAS, M. L. Atividade antinociceptiva da riparina IV: participação dos receptores TRPV1, TRPM8, receptores glutamatérgicos e do óxido nítrico. Fortaleza: Universidade Federal do Ceará, 2012.

Page 62: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

60

DU, X.; PANG, T. Y. Is dysregulation of the HPA-axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? Frontiers in Psychiatry, v. 6, n. MAR, p. 1–33, 2015. FURUSE, T.; HASHIMOTO, K. Fluvoxamine monotherapy for psychotic depression: the potential role of sigma-1 receptors. Annals of General Psychiatry, v. 8, p. 26, 2009. GOGOS, A.; VAN DEN BUUSE, M.; ROSSELL, S. Gender differences in prepulse inhibition (PPI) in bipolar disorder: men have reduced PPI, women have increased PPI. The International Journal of Neuropsychopharmacology, v. 12, n. 09, p. 1249, 2009. GREGUS, A. et al. Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behavioural Brain Research, v. 156, n. 1, p. 105–114, 2005. GRILLO, L. A Possible Role of Anhedonia as Common Substrate for Depression and Anxiety. Depression Research and Treatment, v. 2016, p. 8 pages, 2016. GUPTA, D.; RADHAKRISHNAN, M.; KURHE, Y. Effect of a novel 5-HT3 receptor antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice. Steroids, v. 96, p. 95–102, 2015. HAMODA, H. M.; OSSER, D. N. The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Update on Psychotic Depression. Harvard Review of Psychiatry, v. 16, n. 4, p. 235–247, jul. 2008. HANDLEY, S. L.; MITHANI, S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ’fear’-motivated behaviour. Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 327, n. 1, p. 1–5, ago. 1984. HAUSTEDT, L. et al. Rational approaches to natural-product-based drug design. Current Opinion in Drug Discovery & Development, v. 9, n. 4, p. 445–462, 2006. HERMAN, J. P. et al. Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, v. 24, n. 3, p. 151–180, 2003. HERRERA-PÉREZ, J. J. et al. Young-Adult Male Rats’ Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors. Neuroscience Journal, v. 2016, p. 1–12, 2016. HUANG, T. L.; LIN, C. C. Advances in Biomarkers of Major Depressive Disorder. In: MAKOWSKI, G. S. (Ed.). . Advances in Clinical Chemistry. 1. ed. [s.l.] Elsevier Inc., 2015. v. 68p. 177–204. IHARA, K. et al. Serum BDNF levels before and after the development of mood disorders: a case-control study in a population cohort. Translational Psychiatry, v. 6, n. 4, p. e782, 2016. IIJIMA, M. et al. Pharmacological characterization of repeated corticosterone injection-induced depression model in rats. Brain Research, v. 1359, p. 75–80, 2010.

Page 63: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

61

JACOBSEN, J. P. R.; MØRK, A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Research, v. 1024, n. 1–2, p. 183–192, 2004. JACOBSEN, J. P. R.; MØRK, A. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain Research, v. 1110, n. 1, p. 221–225, 2006. KALUEFF, A. V.; TUOHIMAA, P. Grooming analysis algorithm for neurobehavioural stress research. Brain Research Protocols, v. 13, n. 3, p. 151–158, 2004. KIYOHARA, C.; YOSHIMASU, K. Molecular epidemiology of major depressive disorder. Environmental Health and Preventive Medicine, v. 14, n. 2, p. 71–87, 2009. KOEHN, F. E.; CARTER, G. T. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery, v. 4, n. 3, p. 206–220, 2005. KORNSTEIN, S. G.; SCHNEIDER, R. K. Clinical features of treatment-resistant depression. The Journal of Clinical Psychiatry, v. 62, n. 16, p. 18–25, 2001. KORTE, S. M.; DE BOER, S. F. A robust animal model of state anxiety: Fear-potentiated behaviour in the elevated plus-maze. European Journal of Pharmacology, v. 463, n. 1–3, p. 163–175, 2003. KOZISEK, M. E.; MIDDLEMAS, D.; BYLUND, D. B. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacology and Therapeutics, v. 117, n. 1, p. 30–51, 2008. KRISHNAN, V.; NESTLER, E. J. The molecular neurobiology of depression. Nature, v. 455, n. 7215, p. 894–902, 2008. KRISHNAN, V.; NESTLER, E. J. Animal models of depression: molecular perspectives. Current Topics in Behavioral Neurosciences, v. 7, p. 121–47, 2011. KUPFERBERG, A.; BICKS, L.; HASLER, G. Social functioning in major depressive disorder. Neuroscience and Biobehavioral Reviews, v. Volume 69, n. October 2016, p. 313–332, 2016. LEVINSTEIN, M. R.; SAMUELS, B. A. Mechanisms underlying the antidepressant response and treatment resistance. Frontiers in behavioral neuroscience, v. 8, n. June, p. 208, 2014. LI, Y. C. et al. Baicalin decreases SGK1 expression in the hippocampus and reverses depressive-like behaviors induced by corticosterone. Neuroscience, v. 311, p. 130–137, 2015. LOPES, I. S. et al. Riparin II ameliorates corticosterone-induced depressive-like behavior in mice: Role of antioxidant and neurotrophic mechanisms. Neurochemistry International, v. 120, p. 33–42, 2018. LORENZETTI, V. et al. Structural brain abnormalities in major depressive disorder: A

Page 64: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

62

selective review of recent MRI studies. Journal of Affective Disorders, v. 117, n. 1–2, p. 1–17, 2009. LUSSIER, A. L. et al. The progressive development of depression-like behavior in corticosterone-treated rats is paralleled by slowed granule cell maturation and decreased reelin expression in the adult dentate gyrus. Neuropharmacology, v. 71, p. 174–183, 2013. MARKS, W.; FOURNIER, N. M.; KALYNCHUK, L. E. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength. Physiology & Behavior, v. 98, n. 1–2, p. 67–72, 2009. MILLER, B. R.; HEN, R. The Current State of the Neurogenic Theory of Depression and Anxiety. Current Opinions in Neurobiology, v. 0, n. February, p. 51–58, 2015. MORRIS, M. C.; COMPAS, B. E.; GARBER, J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clinical Psychology Review, v. 32, n. 4, p. 301–315, 2012. MURRAY, F.; SMITH, D. W.; HUTSON, P. H. Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. European Journal of Pharmacology, v. 583, n. 1, p. 115–127, 2008. NASCIMENTO, O. A. et al. Pharmacological Properties of Riparin IV in Models of Pain and Inflammation. Molecules (Basel, Switzerland), v. 21, n. 12, p. 1–14, 2016. NOVKOVIC, T.; MITTMANN, T.; MANAHAN-VAUGHAN, D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus, v. 16, 2015. PALANZA, P. Animal models of anxiety and depression: how are females different? Neuroscience and Biobehavioural Reviews, v. 25, n. 3, p. 219–233, 2001. PATEL, P. The Efficacy of Antidepressants in Alleviating Anhedonia in Depressed Patients. Undergraduate Honors Thesis Collection, 350, 2016. PEREIRA-FIGUEIREDO, I. et al. Long-Term Sertraline Intake Reverses the Behavioral Changes Induced by Prenatal Stress in Rats in a Sex-Dependent Way. Frontiers in Behavioral Neuroscience, v. 11, n. May, p. 1–11, 2017. PIZZAGALLI, D. A. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annual Review of Clinical Psychology, v. 10, p. 393–423, 2014. PORSOLT, R. D.; BERTIN, A.; JALFRE, M. Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Thérapie, v. 229, n. 2, p. 327–36, out. 1977. PRUT, L.; BELZUNG, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, v. 463, n. 1, p. 3–33, 2003.

Page 65: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

63

ROHLEDER, N.; WOLF, J. M.; WOLF, O. T. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neuroscience and Biobehavioral Reviews, v. 35, n. 1, p. 104–114, 2010. SAHAY, A.; HEN, R. Adult hippocampal neurogenesis in depression. Nature Neuroscience, v. 10, n. 9, p. 1110–1115, 2007. SCHOENFELD, T. J.; CAMERON, H. A. Adult neurogenesis and mental illness. Neuropsychopharmacology Reviews, v. 40, n. 1, p. 113–128, 2015. SILVA, M. C. C. et al. Augmentation therapy with alpha-lipoic acid and desvenlafaxine: A future target for treatment of depression? Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 386, n. 8, p. 685–695, 2013. SILVA, M. C. C. et al. Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 64, p. 142–148, 2016. SILVA, M. T. et al. Prevalence of depression morbidity among Brazilian adults : a systematic review and meta-analysis. Revista Brasileira de Psiquiatria, v. 36, n. 3, p. 262–270, 2014. SKÓRZEWSKA, A. et al. The effects of acute and chronic administration of corticosterone on rat behavior in two models of fear responses, plasma corticosterone concentration, and c-Fos expression in the brain structures. Pharmacology Biochemistry and Behavior, v. 85, n. 3, p. 522–534, 2006. SKÓRZEWSKA, A. et al. The effect of chronic administration of corticosterone on anxiety- and depression-like behavior and the expression of GABA-A receptor alpha-2 subunits in brain structures of low- and high-anxiety rats. Hormones and Behavior, v. 65, n. 1, p. 6–13, 2014. SOARES, C. N. Depression and Menopause: Current Knowledge and Clinical Recommendations for a Critical Window. Psychiatric Clinics of North America, v. 40, n. 2, p. 239–254, 1 jun. 2017. SOUSA, C. N. S. DE et al. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression. Psychiatry Research, v. 230, n. 2, p. 211–219, 2015. STERNER, E. Y.; KALYNCHUK, L. E. Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: Relevance to depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 34, n. 5, p. 777–790, 2010. STERU, L. et al. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, v. 85, n. 3, p. 367–70, 1985. STREKALOVA, T. et al. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology, v. 29, n. 11, p. 2007–2017, nov. 2004.

Page 66: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

64

TREADWAY, M. T.; ZALD, D. H. Reconsidering Anhedonia in Depression: Lessons from Translational Neuroscience. Neuroscience and Biobehavioral Reviews, v. 35, n. 3, p. 537–555, 2011. VAN ERP, A. M. M. et al. Effect of environmental stressors on time course, variability and form of self-grooming in the rat: Handling, social contact, defeat, novelty, restraint and fur moistening. Behavioural Brain Research, v. 65, n. 1, p. 47–55, 1994. VASCONCELOS, A. S. et al. Subchronic administration of riparin III induces antidepressive-like effects and increases BDNF levels in the mouse hippocampus. Fundamental and Clinical Pharmacology, v. 29, n. 4, p. 394–403, 2015. WAGER-SMITH, K.; MARKOU, A. Depression: A repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neuroscience and Biobehavioral Reviews, v. 35, n. 3, p. 742–764, 2011. WANG, J. L. et al. The relationship between work stress and mental disorders in men and women: findings from a population-based study. Journal of Epidemiology and Community Health, v. 62, n. 1, p. 42–47, jan. 2008. WANG, Z.-J. et al. Correlations between depression behaviors and sleep parameters after repeated corticosterone injections in rats. Acta Pharmacologica Sinica, v. 35, p. 879–888, jul. 2014. WARNER-SCHMIDT, J. L.; DUMAN, R. S. Hippocampal neurogenesis: Opposing effects of stress and antidepressant treatment. Hippocampus, v. 16, n. 3, p. 239–249, 2006. WILLNER, P.; MUSCAT, R.; PAPP, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neuroscience & Biobehavioral Reviews, v. 16, n. 4, p. 525–534, 1992. WORLD HEALTH ORGANIZATION. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization, 2017. WU, Z.; FANG, Y. Comorbidity of depressive and anxiety disorders: challenges in diagnosis and assessment. Shanghai Archives of Psychiatry, v. 26, n. 4, p. 227–231, 2014. YANKELEVITCH-YAHAV, R. et al. The Forced Swim Test as a Model of Depressive-like Behavior. Journal of Visualized Experiments : JoVE, v. 97, n. e52587, p. 1–7, 2015. ZANARDI, R. et al. Venlafaxine Versus Fluvoxamine in the Treatment of Delusional Depression: A Pilot Double-Blind Controlled Study. The Journal of Clinical Psychiatry, v. 61, n. 1, p. 26–29, 2000. ZHAO, Y. et al. A mouse model of depression induced by repeated corticosterone injections. European Journal of Pharmacology, v. 581, n. 1–2, p. 113–120, 2008. ZHAO, Y. et al. The varying effects of short-term and long-term corticosterone injections on depression-like behavior in mice. Brain Research, v. 1261, n. 1999, p. 82–90, 2009.

Page 67: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

65

3.2 Capítulo II

THE NEUROPROTECTIVE EFFECT OF RIPARIN IV ON OXIDATIVE STRESS

AND NEUROINFLAMMATION RELATED TO COGNITIVE IMPAIRMENT

CHRONIC STRESS

Raquell de Castro Chavesa; Auriana Serra Vasconcelos Mallmann1; Natália Ferreira Oliveiraa;

Victor Celso Cavalcanti Capibaribea; Daniel Moreira Alves da Silvaa; Iardja Stéfane Lopesa;

José Tiago Valentima; Giovanna Riello Barbosab; Alyne Mara Rodrigues de Carvalhoa; Marta

Maria de França Fontelesc; Stanley Juan Chavez Gutierrezd; José Maria Barbosa Filhoe;

Francisca Cléa Florenço de Sousaa

a Neuropharmacology Laboratory, Drug Research and Development Center, Department of

Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza,

Ceará, Brazil. b Multi-User Facility, Drug Research and Development Center, Federal University of Ceará c Department of Pharmacy, Federal University of Ceará, Fortaleza, Brazil.

d Laboratory Chemistry of Bioactive Natural and Synthetic Products, Federal University of

Piauí, Teresina, Piauí, Brazil. e Laboratory of Pharmaceutics Technology, Federal University of Paraiba, João Pessoa-Paraiba,

Brazil.

ABSTRACT

Stress is one of the precipitating factors in the development of depression disorders and may be

related to hypothalamic–pituitary–adrenal (HPA) axis disruption. Cognitive impairment is

identified as one of the diagnostic criterion for major depressive disorder (MDD) and can

extensively affect the quality of life of those patients. Based on these findings, this study aimed

to investigate the possible effects of Riparin IV on cognition impairment induced by chronic

administration of corticosterone in mice. Female Swiss mice were divided into four groups:

control (Control), corticosterone (Cort), Riparin IV (Cort + Rip IV), and Fluvoxamine (Cort +

Flu). Three groups were administrated subcutaneously (SC) with corticosterone (20 mg/kg)

Page 68: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

66

during the 22-day study, while the control group received only vehicle. After the 14th day, the

groups were administrated tested drugs: Riparin IV (Rip IV), fluvoxamine (Flu), or distilled

water, by gavage, one hour after the subcutaneous injections. After the final treatment, animals

were exposed to behavioral models such as the Y-maze test (YMT), the step-down inhibitory

avoidance test (SDIT), the social interaction test (SIT), and the prepulse inhibition test (PPI).

The animals were euthanized, and the prefrontal cortex, the hippocampus, and the striatum were

removed for evaluation of oxidative stress and cytokine content. The results revealed the

development of cognitive impairment in mice treated with Cort, an increase in brain

malondialdehyde (MDA) and nitrite/nitrate levels, and a decrease in reduced glutathione (GSH)

content, catalase (CAT), and superoxide dismutase (SOD) activities as compared to the control.

Cort-treated mice also exhibited a an neuroinflammatory profile with increased pro-

inflammatory cytokines TNF-a, IFN-g and IL-2 and decreased anti-inflammatory IL-4, but no

significant alteration in IL-6 and IL-10. Rip IV treatment, like that of the antidepressant Flu,

significantly ameliorated cognitive deficit behavior induced by Cort. The antidepressant-like

ability of Rip IV treatment against the chronic Cort-induced stress may be due to its potential

to mitigate inflammatory damage and oxidative stress. This antioxidant and anti-inflammatory

effect observed indicates Rip IV as a possible drug in the antidepressant treatment of non-

responsive patients related to severe and cognitive symptoms.

Keywords: riparin; depression; corticosterone; oxidative stress; Th1-Th2 Balance.

INTRODUCTION

Stress is characterized by physiological changes that occur in response to novel or

threatening stimuli. The hypothalamic–pituitary–adrenal (HPA) axis is the final common

pathway in the mediation of the stress response, which subsequently causes the cortisol release

(BAO; MEYNEN; SWAAB, 2008). Glucocorticoids are released in response to physical,

emotional and/or metabolic stressors, but intense stimulation of the HPA axis may lead to

maladaptive responses (SKÓRZEWSKA et al., 2014; TAFET; BERNARDINI, 2003). Some

studies claim that chronic glucocorticoid administration decreases during neurogenesis, which

Page 69: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

67

may be responsible for memory deficits and mood disturbance (SKÓRZEWSKA et al., 2006;

ZHAO et al., 2008).

Chronic stress or even isolated traumatic experiences may alter cognitive functions,

such as learning and memory (QUERVAIN et al., 2009; SCHILLING et al., 2013;

WALESIUK; TROFIMIUK; BRASZKO, 2006). The literature suggests that exposure to stress

may be a precipitating factor in the development of depression. In fact, some studies show that

up to 85% of patients experience significant stressful events before the onset of depressive

symptoms (SAVEANU; NEMEROFF, 2012).

The Diagnostic and Statistical Manual of Mental Disorders (DSM-V) identifies

cognitive impairment (poor concentration, memory deficit, indecision) as a diagnostic criterion

for major depressive disorder (MDD). Cognitive complaints during the symptomatic and

remission phases of MDD are common when compared to other serious mental disorders such

as schizophrenia and bipolar disorder, all of which extensively affect the quality of life for those

patients (DARCET et al., 2016; MCINTYRE et al., 2013).

Riparin IV was first synthetized in 1990 by Barbosa-Filho, da Silva and Bhattacharyya

(Figure 1). Our previous studies (DIAS, 2012) and others (NASCIMENTO et al., 2016) showed

that it has anti-inflammatory and antinociceptive activities on mice. Considering its structure

has a molecule of tyramine, with recognized central effect, and a derivative of benzoic acid, the

trimethyl ether of gallic acid , the aim of this study is to investigate the possible effects of

Riparin IV on cognition impairment induced by chronic administration of corticosterone in

mice.

Figure 1. Chemical structure of Riparin IV.

Page 70: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

68

MATERIAL AND METHODS

Animals

Female Swiss mice (22–25 g; age: 8–10 weeks) were used in this study and were

randomly distributed into specified experimental groups. Their environments were maintained

on a 12/12 h light/dark cycle, with lights off at 18:00h. They were also maintained at a constant

temperature of 25±1 °C and the animals were given free access to food and tap water.

Experiments were performed in accordance with the current laws and the National Institute of

Health Guide for the Care and Use of Laboratory Animals and under the consent and

surveillance of the Ethics Committee from the Department of Physiology and Pharmacology of

the Federal University of Ceará (Protocol number 112/2014).

Drugs

Corticosterone (Sigma®, St Louis, MO, USA), administered in a dose of 20 mg/kg,

subcutaneously (SC), was dissolved in a 0.9% saline solution containing 0.1% polysorbate

(Tween®) 80 (VETEC™, USA) and 0.1% dimethyl sulfoxide (DMSO) (VETEC™, USA), at a

constant volume of 0.1 ml/10 g of body weight.

The Riparin IV, a total of three batches provided by Laboratory Chemistry of Bioactive

Natural and Synthetic Products (Federal University of Piaui, Teresina, PI, Brazil), was

emulsified with 2% Tween® 80 and administered in intragastric (oral gavage – p.o) doses of 50

mg/kg. Fluvoxamine (Abott®, New Jersey, USA), 50 mg/kg, and ketamine 20 mg/kg (Konig,

Brazil) diluted in distilled water, were administered by oral gavage.

Experimental procedure

The study aimed to evaluate the effects of Riparin IV treatment against chronic

corticosterone induced depressive-like behavior in mice cognitive function. The experimental

Page 71: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

69

design and chose of reference drug were previously described (LOPES et al., 2018;

VASCONCELOS et al., 2015).

The animals (5-10 per group) were divided in four experimental groups: (1) vehicle or

control group (Control), (2) corticosterone group (Cort), (3) corticosterone + Riparin IV (Cort

+ Rip IV) and corticosterone + Fluvoxamine (Cort + Flu). Mice in groups (2), (3) and (4) were

administrated subcutaneously (s.c.) with corticosterone (20mg/kg) in a saline vehicle (0.9%

NaCl + 0.1% DMSO + 0.1% Tween-80) during 22 days, while the control group (1) were

administrated only with saline vehicle. After the 14th day, groups received Cort for 22 days

and within them treatment groups received either Riparin IV (50mg/kg) (3), fluvoxamine

(50mg/kg) (4) and distilled water vehicle (distilled water emulsified with 2% Tween-80)(1)(2),

per oral, with a 1-h interval between corticosterone treatment injections (Figure 2). Sixty

minutes after the last drug administration, behavioral tests were performed to verify cognitive

function, such as Y-maze test (YMT), step-down inhibitory avoidance test (SDIT), social

interaction test (SIT) and prepulse inhibition test (PPI). Animals were euthanized and prefrontal

cortex, hippocampus and striatum were removed for oxidative stress evaluation and cytokine

content. This timeline was taken twice so the animals were divided between different behavioral

tests and neurochemical tests.

Figure 2. Experimental design of the study. Each group received daily subcutaneous injections of

corticosterone (Cort), 20 mg/kg, or saline vehicle, for 22 days. From the 14th day of treatment onward, in

addition to the stressor hormone, animals also received a daily, per gavage, administration of distilled water

vehicle, Riparin IV (Rip IV), or fluvoxamine (Flu), both 50 mg/kg, for 8 consecutive days. At the end of

schedule, behavioral tests were conducted. Animals was them sacrificed and brain areas removed for

Page 72: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

70

neurochemical assays. YMT = Y-maze test; SDIT = step-down inhibitory avoidance test; SIT = social

interaction test; PPI = prepulse inhibition test.

Behavioral tests

Y-maze test

The working memory was analyzed on Y-maze, which allows to evaluate spatial

working memory performance (YAMADA et al., 1996). The maze consists of three identical

arms 40cm long, 25cm high and 3cm wide, each converging at an equal angle. Each mouse was

placed at end of one of the three arm of the apparatus and allowed to explore the freely for 8

minutes. The total number of arm entries was recorded visually and an alternation was

considered correct if the animal visited a new arm and did not return to the previously visited

arm. Thus, the percentage of alternations was calculated using following formula:

%𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑠𝑢𝑐𝑒𝑠𝑠𝑖𝑣𝑒𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑠

(𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑒𝑛𝑡𝑟𝑖𝑒𝑠 − 2)𝑥100

Step-down inhibitory avoidance test

The step-down inhibitory avoidance is based on negative reinforcement and is used to

evaluate short-term memory (STM) and long-term memory (LTM). The apparatus consisted of

a box (31 cm long, 27 cm high, and 24 cm wide) with a frontal glass wall. The floor consisted

of a series of parallel stainless-steel bars spaced 0.8 cm apart and connected to a generator. The

left extremity of the grid was covered by a high formic non-conductive platform (safety

platform).

Training was performed in two similar sessions. First, each mouse was placed on the

safety platform. The amount of time for the animal stepdown with its four paws on the grid was

recorded (step-down latency time). Then, a shock (0.5 mA: 1s) was applied and the animal was

removed from the apparatus. The second session was carried out 90 min after the first test.

Page 73: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

71

The retention test was carried out in the similar manner, except in the retention test

animals were not submitted to footshock, and the step-down latency time (SDL) was recorded

(JOSHI; PARLE, 2006). For the evaluation of the STM and LTM, the animals were submitted

to the test session at 90 min (second session) and at 24 h (retention) after the training session,

respectively, with an upper cutoff time of 300 s.

Social Interaction

The testing apparatus consisted of a 60 x 40 x 22 cm Plexiglas box divided into three

chambers with rectangular openings allowing access into each chamber. Two iron cages were

placed in each side of the chambers where an unfamiliar, same-sex mouse from the same

experimental group, was placed in one of two restraining cages (MOY et al., 2004). Test mice

were placed in the center chamber and were allowed 5 min of exploration time in the box. The

time spent in each of the three chambers was manually recorded, and social preference was

defined as follows:

(%𝑡𝑖𝑚𝑒𝑠𝑝𝑒𝑛𝑡𝑖𝑛𝑡ℎ𝑒𝑠𝑜𝑐𝑖𝑎𝑙𝑐ℎ𝑎𝑚𝑏𝑒𝑟) −(%𝑡𝑖𝑚𝑒𝑠𝑝𝑒𝑛𝑡𝑖𝑛𝑡ℎ𝑒𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒𝑐ℎ𝑎𝑚𝑏𝑒𝑟)

Prepulse inhibition (PPI)

Prepulse inhibition of the startle test is based on the fact that under specific conditions,

a weak stimulus, or "prepulse" stimulus, may inhibit the effects of a subsequent severe and

intense (pulse) stimulus. This test is widely used in translational models to understand the

biology of the brain based on inhibitory mechanisms and its deficiency in neuropsychiatric

disorders (SWERDLOW et al., 2009).

The test was performed as previously described by Levin et al. (2011) where individual

mice were placed in small metal cages equipped with a movable platform floor attached to a

sensor that recorded vertical movements of the floor (Insight, São Paulo, Brazil). Startle reflexes

were evoked by acoustic stimuli delivered from a loudspeaker that was suspended above the

cage and connected to an acoustic generator. For prepulse inhibition tests, 74

pseudorandomized protocol assays were divided into eight categories, where the 120 dB / 50

Page 74: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

72

ms startle pulse was applied alone or preceded by a prepulse stimulus of 70, 75 or 80 dB of

intensity (300Hz frequency /20 milliseconds duration). An interval of 100 milliseconds with

background noise was employed between each pre-pulse and pulse stimulus. The amplitude of

the startle response was defined as the difference between the maximum force detected during

a recording window and the force measured immediately before the start of the stimulus.

Amplitudes were ascertained for each individual animal, separately for both types of assays

[i.e., isolated pulse (P) or stimulus preceded by a prepulse (PP + P)]. Prepulse inhibition was

calculated as the percentage of the startle amplitude reduction using the following formula:

%𝑃𝑃𝐼 = 100 − [𝑃𝑃 + 𝑃𝑃 𝑥100]

Determination of oxidative stress parameters

Following behavioral tests, the animals were euthanized and their prefrontal cortex

(PFC), hippocampus (HC), and striatum (ST) were quickly dissected, frozen and stored at −70

°C. The samples were subjected to biochemical estimation such as oxidative stress, as described

below.

Determination of reduced glutathione (GSH) levels

Reduced glutathione levels in cerebral areas were evaluated to estimate endogenous

defenses against oxidative stress and were measured based on non-protein thiol content. The

method was based on Ellman’s reagent (DTNB) reaction with free thiol groups. Homogenates

10% (w/v) in EDTA 0.02M were added to a 50% trichloroacetic acid solution. After

centrifugation (3000 rpm for 15 min), samples were mixed with a 0.4 M Tris-HCl buffer that

had a pH of 8.9 and 0.01M DTNB. The color reaction was measured at 412 and expressed as

μg of GSH/g of wet tissue (SEDLAK; LINDSAY, 1968).

Measurements of lipid peroxidation

Page 75: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

73

Malondialdehyde (MDA) content, a measure of lipid peroxidation, was assayed in the

form of Thiobarbituric Acid Reacting Substances (TBARS) according to Draper and Hadley

(1990). The samples were briefly mixed with 50 mM potassium phosphate monobasic buffer

of pH 7.4. Meanwhile, 63 μL of the homogenate was mixed with 100 μL of 35% perchloric

acid. Then these were centrifuged (5000 rpm during 10 min) and 150 μL of the supernatant was

retrieved and mixed with 50μL of 1.2% thiobarbituric acid and heated in a boiling water bath

for 30 min. After cooling, the lipid peroxidation was determined by the amount of absorbance

at 535 nm. The calibration curve was developed and TBARS levels were calculated and

expressed as μg of MDA/g of wet tissue.

Nitrite and nitrate determination

In order to assess the effects of treatments with respective drugs on nitric oxide (NO)

production, nitrite/nitrate levels were determined in the mouse brain homogenates immediately

after decapitation in all groups. After centrifugation (10000 rpm for 10 min), the homogenate

supernatant was collected and the production of NO was determined based on the Griess

reaction (GREEN et al., 1982). Briefly, 100 μL of supernatant was incubated with the same

volume of Griess reagent at room temperature for 10 min. The absorbance was measured at 546

nm via a microplate reader. The amount of nitrite was calculated from a NaNO2 standard curve

and it was expressed as nmol/g of wet tissue.

Determination of Catalase (CAT) activity

The CAT activity was based on the ability of catalase to induce disappearance of

hydrogen peroxide (H2O2) (CHANCE; MAEHLY, 1955). The experimental procedure used

980 μL of the Reaction Medium (H2O2, 1 M Tris-HCl buffer, 5 mM EDTA, pH 8.0 in Milli-Q

water) with 20 μL of homogenate. The enzymatic action is measured by following the decrease

in absorbance per minute for 6 minutes and the results were expressed in U/mg protein at 230

nm. The protein concentration was determined by the method of Bradford (1976). One enzyme

unit (U) is defined as the amount of enzyme decomposing 1 mM H2O2 per minute at 25°C.

Determination of Superoxide dismutase (SOD) activity

Page 76: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

74

The SOD amount was assessed by measuring its ability to inhibit the photochemical

reduction of Nitro Blue Tetrazolium (NBT), previously described by Beauchamp and Fridovich

(1971). Briefly, 1 μM riboflavin and 750 μM NBT were added to the homogenate in a reaction

medium (50 mM Phosphate Buffer, 9.5 mM methionine, 0.1 mM EDTA). The reading was

taken after exposure of the material to fluorescent light for 15 min in a spectrophotometer at

560 nm. The enzymatic activity was expressed in U/g of wet tissue. One unit of SOD activity

induced approximately 50% inhibition of the auto-oxidation of NBT.

Determination of cytokine levels

The dissected brain areas (PFC, HC and ST) were homogenized with Assay Diluent,

and then centrifuged (10000 rpm, 5 min, 4 °C). The concentrations of the cytokines tumor

necrosis factor-α (TNF-α), interferon -γ (IFN-γ), interleukin-2 (IL-2), interleukin-6 (IL-6),

interleukin-4 (IL-4), and interleukin-10 (IL-10) were determined by flow cytometry with the

Th1 / Th2 / Th17 CBA cytokine kit (BD Cytometric Bead Array, San Jose, CA, USA) according

to the manufacturer and expressed in pg/ml. The results were extracted using the FCAP Array

software.

STATISTICAL ANALYSIS

The data were analyzed with GraphPad Prism 7.0a (San Diego, CA, USA). The

Shapiro–Wilk test was used to confirm normality. Statistical analysis of the data was performed

by one-way ANOVA, followed by Tukey as a post hoc test (parametric) or Kruskal-Wallis

followed by Dunn’s test (non-parametric). Data are expressed as mean ± standard error of mean

(SEM) and differences were considered significant when p ≤ 0.05.

Page 77: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

75

RESULTS Mice were treated with corticosterone injections over 22 days and a behavioral

neurochemical test was performed to evaluate memory impairment.

Effect of Rip IV on induced cognitive deficit behaviors in mice

The working memory was evaluated in Y-maze by the number of correct alternations

between the arms of the apparatus. As can be observed in Figure 3, the parameter was decreased

by the chronic administration of Cort (p =0.0013), when compared to the control, and this

decrease was reversed by the treatments with Rip IV and Flu (p = 0.0138) [F (3, 36) = 6.053].

Figure 3. Effect of the administration of Rip IV (50 mg/kg, p.o.) and Flu (50 mg/kg, p.o.) against the Cort-induced chronic stress, on the percentage of correct alternations in the Y-maze Test. Results were expressed as mean ± SEM (n=10 per group). Statistical analysis was performed by one-way ANOVA, followed by Tukey post hoc test. Significant values: aap<0.01 vs control (vehicle); bp<0.05 vs Cort group.

In the step-down avoidance test, Cort treatment profoundly decreased SDL on the

second training session (p = 0.0003) and retention test (p=0.0052), indicating impairment of

memory. Rip IV treatment increased SDL and after 24 hours (p=0.0038), similar to Flu, after

22 days of corticosterone administration (Figure 4).

Page 78: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

76

Figure 4. Effect of the administration of Rip IV (50 mg/kg, p.o.) and Flu (50 mg/kg, p.o.) against the Cort-induced chronic stress, on the step-down latency during a training session (A) and retention session (B). Data are expressed as mean ± SEM (n=10 per group) during 5 minutes’ test. Statistical analysis was performed by Kruskal-Wallis, followed by Dunn’s post hoc test. aap<0.01; aaaap<0.0001 vs control (vehicle); bp<0.05; bbp<0.01 bbbp<0.001 vs Cort group.

In social interaction test, corticosterone administration decreases the duration of social

interaction between two mice (p = 0.0030), and Riparin IV (p = 0.0354) and fluvoxamine (p =

0.0002) treated animals spent more time in active social interaction (Figure 5) [F (3, 36) =

7.851].

Figure 5. Effect of the administration of Rip IV (50 mg/kg, p.o.) and Flu (50 mg/kg, p.o.) against the Cort-induced chronic stress in social interaction test. Data are expressed as mean ± SEM (n=10 per group) of interaction time between animals during 5 minutes’ test. Statistical analysis was performed by one-way ANOVA, followed by Tukey post hoc test. aap<0.01 vs control (vehicle); bp<0.05; bbbp<0.001 vs Cort group.

Page 79: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

77

In the prepulse inhibition test (PPI), Cort mice demonstrated a significant decrease in

PPI for the 70 dB prepulse sound level followed by 120 dB startle stimulus compared to vehicle

mice (p = 0.0058; Figure 6) while mice with Riparin IV and fluvoxamine treatment exhibited

normal startle response, indicating the ability of the treatment to restore normal levels of PPI in

mice.

Figure 6. Effect of the administration of Rip IV (50 mg/kg, p.o.) and Flu (50 mg/kg, p.o.) against the Cort-induced chronic stress in prepulse inhibition test. Data are expressed as mean ± SEM (n=8 per group) of percent prepulse inhibition of the startle response following presentation of prepulse of 70, 75 and 80 dB. Statistical analysis was performed by two-way ANOVA, followed by Tukey post hoc test. ap<0.05; aap<0.01 vs control (vehicle); bp<0.05; bbp<0.01; bbbp<0.001 vs Cort group; **p<0.01; ***p<0.001 vs ketamine group.

Effect of Riparin IV on oxidative stress parameters

The oxidative stress evaluation was performed in the prefrontal cortex (PFC), the

hippocampus (HC), and the striatum (ST) that were isolated from mice exposed to Riparin IV

(50 mg/kg) and fluvoxamine (50 mg/kg), and were evaluated regarding lipid peroxidation

levels, nitrite/nitrate content, reduced glutathione (GSH) levels, catalase activity (CAT) and

superoxide dismutase (SOD) activity.

Page 80: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

78

The effect of Cort, Rip IV, and Flu on pro-oxidant and antioxidant markers is illustrated

in Table 1. Corticosterone administration induced oxidative load in the prefrontal cortex, the

hippocampus, and the striatum with a significant increase in pro-oxidant markers (lipid

peroxidation and nitrite/nitrate) and a decrease of antioxidant marker such as GSH, SOD and

CAT. Riparin IV treatment was able to ameliorate those parameters in the brain areas similar

to fluvoxamine.

Control Cort Cort + RipIV Cort + Flu

PFC

TBARS

(µg/g tissue)

17.97 ±

4.135

88.72

±11.49aaaa

43.61 ±

5.729bbb

11.39 ±

1.731bbbb

Nitrite/Nitrate (nM/g tissue)

2.293 ± 0.221

6.565 ± 0.977aaa

1.578 ± 0.263bbbb 3.969 ± 0.801b

GSH (µg/g tissue)

653.8 ± 40.66 520.5 ± 14.26 737.7 ±

73.48bb 527.1 ± 24.43

CAT (µM/min/mg

protein)

24.34 ± 1.447 14.09 ± 0.91a 31.62 ±

3.38bbbb 32.42 ±

1.661bbbb

SOD (U/g tissue)

2.007 ± 0.005

1.924 ± 0.024aa 1.981 ± 0.003 2.002 ±

0.003bb

HC

TBARS

(µg/g tissue)

16.18 ±

0.6865

27.77 ±

1.873aa 17.78 ± 3.536 17.32 ± 1.471

Nitrite/Nitrate (nM/g tissue) 2.14 ± 0.254 4.211 ±

0.605aa 2.396 ± 0.226b

2.226 ± 0.422bb

GSH (µg/g tissue)

974.7 ± 84.97 539 ± 23.24a 1312 ±

137.6bbb 1012 ± 133.7b

CAT (µM/min/mg

protein)

23.07 ± 2.206 23.08 ± 1.242 25.03 ± 1.642 30.57 ± 2.533

SOD (U/g tissue)

2.001 ±0.002

1.86 ± 0.043aaa

1.981 ± 0.004bbb 2 ±0.003bbb

ST

TBARS

(µg/g tissue)

18.43 ±

2.564

33.12 ±

4.913a 23.99 ± 4.616

10.73 ±

1.172bbb

Nitrite/Nitrate (nM/g tissue)

3.478 ± 0.569 6.561 ± 1.21 2.696 ± 0.403 1.367 ±

0.128bbbb

Page 81: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

79

GSH (µg/g tissue) 1179 ± 108 651.1 ±

22.34aaa 1014 ± 87.6b 968.1 ± 82.04b

CAT (µM/min/mg

protein)

22.17 ± 1.812 15.59 ± 2.085 29.51 ±

1.657bb 28.14 ± 1.66b

SOD (U/g tissue)

1.991 ±0.009

1.872 ± 0.055a

1.989 ± 0.005b 1.994 ± 0.007b

Table 1. Effects of corticosterone (20mg/kg), Riparin IV (50 mg/kg) and fluvoxamine (50 mg/kg) in lipid peroxidation levels (TBARS), nitrite/nitrate content, reduced glutathione levels (GSH), catalase (CAT) and superoxide dismutase (SOD) activities. Results were expressed as mean ± SEM (n= 6-8 per group) (ANOVA and Tukey as post hoc test or Kruskal-Wallis and Dunn’s as post hoc test). ap<0.05; aap<0.01; aaap<0.001; aaaap<0.0001 when compared with control (vehicle); bp<0.05; bbp<0.01; bbbp<0.001; bbbbp<0.0001 when compared with Cort group; PFC= prefrontal cortex; HC = hippocampus; ST = striatum;

Effect of Rip IV on cytokine levels in brain areas.

The results of the cytokine assays in mice exposed to corticosterone treatment are shown

accordingly in the brain areas: the prefrontal cortex (Figure 7), the hippocampus (Figure 8) and

the striatum (Figure 9).

Results shows the ability of corticosterone administration in alter cytokine levels in

brain tissue. Th1-related cytokines (TNF-a, IFN-g and IL-2) showed the same increasing trend

under corticosterone exposure in PFC (Figure 7A-C) (TNF-a: p = 0.03; F (3, 16) = 10.83; IFN-

g: p = 0.008; F (3, 16) = 5.658; IL-2: p = 0.0001; F (3, 16) = 16.2) whereas no alteration occur

on the Th2-related cytokines (IL-4, IL-6 and IL-10) in the same area ( Figure 7D-F) (IL-4: F

(3, 16) = 4.391; IL-6: F (3, 16) = 1.178; IL-10: F (3, 16) = 15.86). Riparin IV treatment was

able to decrease Th1-related cytokines (TNF-a: p = 0.0002; IFN-g: p = 0.0389; IL-2: p <

0.0001) and increase IL-4 and IL-10 (IL-4: p = 0.0185; IL-10: p < 0.0001).

Page 82: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

80

Page 83: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

81

Figure 7. Effect of the administration of Rip IV (50 mg/kg, p.o.) and Flu (50 mg/kg, p.o.) against the Cort-induced chronic stress on cytokine levels in mice prefrontal cortex. Data are expressed as mean ± SEM (n=5 per group) (one-way ANOVA, followed by Tukey post hoc test. ap<0.05; aap<0.01; aaap<0.001 vs control (vehicle); bp<0.05; bbp<0.01; bbbp<0.001; bbbbp<0.0001 vs Cort group. Tumor Necrosis Factor-α (TNF-α), Interferon -γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-6 (IL-6), Interleukin-4 (IL-4), Interleukin-10 (IL-10).

In the hippocampus, Cort exposure increased only IL-2 levels (p = 0.0397) (TNF-a: F

(3, 16) = 4.48; IFN-g: F (3, 16) = 1.216; IL-2: F (3, 16) = 12.46; IL-6: F (3, 16) = 4.594; IL-4:

F (3, 16) = 8.665; IL-10: F (3, 16) = 5.262) and riparin IV decreased IL-2 (p = 0.0002), TNF-a

(p = 0.0139) and IL-6 (p = 0.0289) and was able to significantly increase IL-4 (p = 0.0023) and

IL-10 ( p = 0.0069) (Figure 8).

Page 84: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

82

Page 85: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

83

Figure 8. Effect of the administration of Rip IV (50 mg/kg, p.o.) and Flu (50 mg/kg, p.o.) against the Cort-induced chronic stress in cytokine levels in mice hippocampus. Data are expressed as mean ± SEM (n=5 per group) (one-way ANOVA, followed by Tukey post hoc test. ap<0.05 vs control (vehicle); bp<0.05; bbp<0.01; bbbp<0.001 vs Cort group. Tumor Necrosis Factor-α (TNF-α), Interferon -γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-6 (IL-6), Interleukin-4 (IL-4), Interleukin-10 (IL-10).

Figure 9 shows the effect of stress in the striatum, where Cort exposure altered IL-2 (p

= 0.0079 ) and IL-4 (p = 0.0119) levels (TNF-a: F (3, 16) = 2.843; IFN-g: F (3, 16) = 3.12; IL-

2: F (3, 16) = 8.861; IL-6: F (3, 16) = 1.772; IL-4: F (3, 16) = 5.382; IL-10: F (3, 16) = 5.5) and

riparin IV treatment was able to normalize those cytokine levels (p = 0.0020 and p = 0.0204,

respectively).

Page 86: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

84

Figure 9. Effect of the administration of Rip IV (50 mg/kg, p.o.) and Flu (50 mg/kg, p.o.) against the Cort-induced chronic stress in cytokine levels in mice striatum. Data are expressed as mean ± SEM (n=5 per group) (one-way ANOVA, followed by Tukey post hoc test. ap<0.05; aap<0.01 vs control (vehicle); bp<0.05;

Page 87: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

85

bbp<0.01 vs Cort group. Tumor Necrosis Factor-α (TNF-α), Interferon -γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-6 (IL-6), Interleukin-4 (IL-4), Interleukin-10 (IL-10).

DISCUSSION

The presented data demonstrate that 22 days of corticosterone administration

induced marked amnesic effects in mice, evidenced as deficiencies in both short- and long-term

memory. This treatment induced a decrease in spontaneous alternation behavior in the Y-maze,

an index of spatial working memory, and alternated behavior was significantly ameliorated by

the administration of Riparin IV and fluvoxamine. The step-down type passive avoidance task

was also used to examine short- and long-term memory. Similar results, as for alternated

behavior, were obtained indicating that the Cort affected both memory storages, whereas

Riparin IV and fluvoxamine treatment for 7 days reestablished this impairment.

Several studies indicate that animals undergoing chronic stress frequently exhibit

diminished or suppressed HPA responses after reexposure to the same stressor (BAI et al., 2018;

ZENI; CAMARGO; DALMAGRO, 2017; ZHAO et al., 2008). It is well known that stress and

stress hormones have and large impact on memory encoding, consolidation, and retrieval

(SCHWABE; WOLF; OITZL, 2010).

In situations of emotional arousal, glucocorticoids play a crucial role in enabling the

significance of an experience to regulate the strength of memory, in enhancing memory

consolidation (SCHWABE; WOLF; OITZL, 2010), and is strongly related to glucocorticoid

interaction with basolateral amygdala modulation (BENDER et al., 2018; SMEETS et al.,

2008). However, these stress effects may be related to the intensity of the stressor and are time-

dependent. Additionally, they have the opposite effects on different memory processes. While

they can enhance consolidation, but they also impair the retrieval of dependent-hippocampal

memory (BARIK et al., 2013; QUERVAIN; SCHWABE; ROOZENDAAL, 2017).

Symptoms related with high levels of chronic glucocorticoids are usually associated

with decreased cognitive abilities. These disadvantages are thought to result from a cumulative

and long-lasting burden on the function and morphology of the hippocampus (DARCET et al.,

2014; OLESCOWICZ et al., 2018; QUERVAIN et al., 2009). Recently, however, it became

clear that memory deficits observe evidence that stress may also alter non-hippocampal, and in

Page 88: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

86

particular, striatal memory processes such as in navigation memory (GUENZEL; WOLF;

SCHWABE, 2013; QI et al., 2018).

Learning and memory are behavioral elements related to plasticity of the central nervous

system (CNS). Evidence indicates that widespread cognitive deficits such as impairments in

executive functioning, attention, and memory, are associated with depressive patients

(BAUNE; RENGER, 2014; TERFEHR et al., 2011; WINGENFELD; WOLF, 2015), and may

be remitted in different types of antidepressant treatment for major depressive disorder (MDD)

(BAUNE; LI; BEBLO, 2013; SOLÉ et al., 2015).

In this way, the memory deficit observed in Cort-treated mice in behavior tests

corroborates with different studies that demonstrate that repeated corticosterone administration

can induce memory impairment in inhibitory avoidance (OLIVEIRA, 2017; RASHIDY-POUR

et al., 2004), novel object recognition (DARCET et al., 2014), the Y-maze (GRECH et al.,

2018; LOPES et al., 2018), the Morris water maze (DARCET et al., 2014; WORKMAN;

CHAN; GALEA, 2015) and in fear conditioning tests (DARCET et al., 2014; MARKS et al.,

2015).

Previously we demonstrated that Riparin IV presented antidepressant effects and

increased BDNF levels in the mouse hippocampus (CHAVES et al., 2019). In this way, its

beneficial effects on memory, demonstrated in the present work by normalization of memory

deficit induced by Cort, may be attributed to this ability of Riparin IV to increase hippocampal

neurogenesis. Interestingly, in another study conducted by Martel, Jaffard, and Guillou (2010)

observed that contextual retrieval deficit is supported by the hippocampus but also reveals that

others neural systems such as the amygdala and/or the striatum additionally mediate stimulus–

response learning.

In addition to this, individual social status stands out as an important impairment to the

quality of life of patients with depression. Based on this fact, the social interaction test was

conducted, which evaluates the tendency of an individual to spend time with a new animal.

Barik and col. (2013) showed that rodents exhibit social aversion triggered by chronic social

stress related to hyperactivation of the HPA axis and high corticosterone levels. This could be

a possible mechanism implicated in their resilience to stress and their modulation of emotional

and social behavior.

Page 89: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

87

Riparin IV was able to reverse the social isolation induced by corticosterone in a manner

like fluvoxamine. This finding is important because, despite the fact that these aspects of these

cognitive impairment can be resolved after successful treatment in some patients, it is often

persists beyond illness remission (AL-HARBI, 2012; BORA et al., 2013; DARCET et al., 2016;

GROVES; DOUGLAS; PORTER, 2018; MCINTYRE et al., 2013; SOLÉ et al., 2015).

Herrera-Guzmán and coworkers (2009) evaluated the cognitive symptoms of patients

with MDD who received duloxetine and escitalopram, a serotonin norepinephrine inhibitor

(SNRI) and a selective serotonin reuptake inhibitor (SSRI) respectively. Patients presented

improvement in attention, in executive function, and in mental processing after 24 weeks of

treatment with the drugs. However, duloxetine showed a superior response regarding the

improvement of episodic and working memory as compared to the response to escitalopram.

Several brain areas are activated by social cognition tasks in rodent and humans, such

as social recognition (the fusiform area, superior temporal gyrus, and accessory olfactory bulb),

social motivation (the ventral tegmental area, ventral pallidum, and nucleus accumbens),

context evaluation (the amygdala, and the temporal and prefrontal cortices) and the execution

of social behaviors execution (the hypothalamus, and the brainstem motor and autonomic

pathways) (KUPFERBERG; BICKS; HASLER, 2016; SANDI; HALLER, 2015). Studies on

rodents rely on the concept that the ‘social brain’, an interconnected network which interacts to

produce social and emotional behaviors, is governed by homologous brain networks in the

human social brain (FILE; SETH, 2003; KAS et al., 2014). Any functional improvement in

those connections correlates with the improvement of social and family relationships, an

increase in levels of pleasure with daily activities, and an increase in work capacity of depressed

patients.

Stress is a strong modulator of central nervous system structure and function, and most

of the brain areas that are particularly vulnerable to stress and high glucocorticoid levels (such

as the prefrontal cortex, the amygdala, the hippocampus and the mesolimbic system) exhibit

functional and/or structural alterations in patients with depression and/or abnormal social

behaviors (CHATTARJI et al., 2015; LIU et al., 2017).

Mechanisms within the CNS normally serve to inhibit responses to sequential or

repetitive stimuli. Prepulse inhibition (PPI) is unlearned attenuation in startle reflex magnitude

that occurs when a startling stimulus (a pulse) is closely preceded by a week sensory event (a

prepulse or prestimulus) (SWERDLOW, 2009). This inhibition reflects the basic inhibitory

Page 90: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

88

process which regulates the input of sensory stimuli to the brain (such as visual and tactile

stimuli), thereby preventing sensory overload and cognitive fragmentation. This process is

interpreted as an operational measure of sensorimotor gating that involves cortico-striato-

pallido-pontine circuitry (DULEY et al., 2007; ROHLEDER et al., 2016; STURM, 2014).

At a clinical level, a number of neuropsychiatric disorders are characterized by the

failure of inhibition such as in the case of schizophrenia. In people at a high clinical risk for

psychosis and in some anxiety disorders, dysfunction of this gating processes has been linked

conceptually to the inability to suppress or gate intrusive or irrelevant sensory, motor, or

cognitive information (DULEY et al., 2007; MENA et al., 2016; SÁNCHEZ-MORLA et al.,

2016; SWERDLOW et al., 2009).

Studies show evidence of a relationship between cognitive processing and the PPI, in

which a disruption to the PPI may lead to a prognosis involving complex disturbances to

cognitive functioning, specifically in attentional and executive function (MICOULAUD-

FRANCHI et al., 2016; SCHOLES; MARTIN-IVERSON, 2009).

Although our findings do not show a significant reduction in startle reflex in all pulses

in corticosterone treated animals compared to controls, it is important to notice the trend. Dirks

et al. (2002) related the alterations in the HPA axis due to corticotropin-releasing factor (CRF)

hyperactivity to robust impairments of prepulse inhibition in transgenic mice, corroborating our

data that chronic stress is related to several brain alterations in function, behavior, and

neurogenesis (CHAVES et al., 2019; LOPES et al., 2018; SOUSA et al., 2015;

VASCONCELOS et al., 2015).

De La Casa, Mena and Ruiz-Salas (2016) conducted a clinical trial to analyze the effect

of induced stress and attentional load on PPI in volunteers. Their results indicate that stress can

reduce PPI, and that startle reflex intensity is reduced when attention is directed away from the

auditory stimulus that induces the reflex.

In this way, the ability of Riparin IV and fluvoxamine to reverse the reduction in

prepulse inhibition by Cort-treatment is very relevant since, several studies showed that a

variety of antidepressant drugs, including tricyclics, serotonin-selective reuptake inhibitors, and

norepinephrine-selective uptake inhibitors, appear to have minimal or no effect on PPI in either

animals or humans (BRAFF; GEYER; SWERDLOW, 2001; PEREIRA-FIGUEIREDO et al.,

Page 91: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

89

2015, 2017; PHILLIPS et al., 2000). This data can contribute to improving our understanding

of the pathophysiology of the neurocognitive deficit in some neuropsychiatric disorder related

to stress.

Stress has been implicated in some volumetric changes in the brains of depressed

patients. It has been reported that the HPA axis dysregulation and subsequent changes in

glucocorticoid secretion may result in neuronal cell death in limbic and frontal regions, which

may result in volumetric changes and subsequent pathological functioning seen in patients with

depression (CHATTARJI et al., 2015). Fundamentally, the hippocampus, the prefrontal cortex

and the amygdala express mineralocorticoid and glucocorticoid receptors, which become

targets of cortisol action and are therefore particularly susceptible to stress-induced neuronal

atrophy or hypertrophy (LIU et al., 2017).

It has been observed that chronic exposure to stress can increase the generation of free

radicals, alter neurotransmission and neuronal function, and is one of the key pathogenic

mechanisms of depression (BAI et al., 2018; BOUAYED; RAMMAL; SOULIMANI, 2009;

FILHO et al., 2015; ZENI; CAMARGO; DALMAGRO, 2017). Studies have demonstrated that

various classes of antidepressants can reduce levels of oxidative stress in animals (GUPTA;

RADHAKRISHNAN; KURHE, 2015; KV et al., 2018; LOPES et al., 2018; SOUSA et al.,

2015; VASCONCELOS et al., 2015) and humans (MOYLAN et al., 2014; WIGNER et al.,

2018).

Based on that, we have examined whether the treatment with Cort, Rip IV and Flu can

alter the lipid peroxidation level, nitrite/nitrate and reduced glutathione content, superoxide

dismutase, and catalase activities in PFC, HC, and ST during corticosterone administration in

mice.

The brain is more vulnerable to oxidative damage. The simultaneous presence of high

levels of poly-unsaturated fatty acids and iron makes it susceptible to peroxidation, which

results in a decrease in membrane fluidity and damage (KIM et al., 2016; MOYLAN et al.,

2014). We have recorded the rise in lipid peroxidation levels in the mouse brain, which is

reflected by a rise in TBARS and oxide nitric metabolite levels. This may also be related to the

high production of reactive oxygen and nitrogen species that results in membrane damage. In

addition, the administration of Cort altered enzymatic and non-enzymatic antioxidant defense

decreases GSH concentration and therefore, activities of SOD and CAT.

Page 92: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

90

Besides the CNS, a response to stress is also manifested in the peripheral organ systems.

Stanić et al. (2016) observed an expressive imbalance in the production and efficiency of

antioxidant defenses in rats that were chronically treated with corticosterone and expressed a

suppression of DNA repair of peripheral blood cells. Zafir and Banu (2009a, 2009b) also found

that oxidative stress markers significantly increased in the brain, the liver, and the heart.

Alterations induced by chronic stress were also observed in different animals (BIRNIE-

GAUVIN et al., 2017; LOPES et al., 2018; STIER et al., 2009; VASCONCELOS et al., 2015)

and humans (FLANAGAN et al., 2018; MYINT et al., 2017; PRASAD et al., 2016;

VERÍSSIMO; BAST; WESELER, 2018). The oxidative damage caused by exposure to Cort

may lead to neuronal loss, suppressing neurogenesis and tissue atrophy. It may also be

positively correlated with the depressive and cognitive behavior observed in the mice through

behavioral tests.

Interestingly, Rip IV, like Flu ameliorated Cort-induced oxidative loading in the brain.

This is in line with the earlier reports that several antidepressants reverse oxidative damage in

the brain. This is one of the important pathogenic causes of major depression, which indicates

the possible mechanism of antidepressant-like effect of Riparin IV. Thus, the antioxidant effect

observed may be related to the presence of unstable hydrogen in the Riparin IV molecular

structure, like the gallic acid structure.

Gallic acid is an polyphenolic compound (3,4,5-trihydroxybenzoic acid) that exhibits

high antioxidant activity (YILMAZ; TOLEDO, 2004). It has been recognized to have diverse

therapeutically beneficial characteristics, such as antimicrobial activity, immunomodulatory

activities, and even anticancer qualities (BADHANI; SHARMA; KAKKAR, 2015). Although

it has potential, Pereira and collaborators (2018) evaluated the effect of gallic acid treatment on

diabetic rats. These treatments presented anxiolytic-, but not antidepressant-like effects after

long-term administration. In this way, we may plausibly suggest that the mode of action for the

Riparin IV antidepressant effect may not only be related to its similarities in structure to gallic

acid.

Neuroinflammation is a known factor in the pathogenesis of neurodegenerative diseases

and psychiatric illnesses, such as depression. It has also been implicated in causing diminished

cognition and memory (SINGHAL et al., 2014). The hyperactivation of the HPA axis, under

prolonged stress conditions, stimulates the immunological cells relevant to the systemic

response to stress (BORTOLATO et al., 2015; GOLD, 2015), as well as promotes the release

Page 93: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

91

of pro-inflammatory cytokines IL-1b, IL-6 and TNF-a, by macrophages and microglial cells,

which contributes to the direct stimulation of the HPA axis and glucocorticoid resistance

(KOMORI, 2017; MALEK et al., 2015; NIKKHESLAT; PARIANTE; ZUNSZAIN, 2018;

YOUNG; BRUNO; POMARA, 2014; ZUNSZAIN et al., 2011).

Based on the neuroinflammatory hypothesis of depression, this study evaluated the

effect of Riparin IV on cytokine content in various brain areas. Cort-treated mice exhibited a

neuroinflammatory profile with increased pro-inflammatory cytokines TNF-a and IL-2, and

decreased anti-inflammatory IL-4, but had no significant effect on IL-6 or IL-10.

In situations of chronic activation of the HPA axis and failed glucocorticoid

compensatory mechanisms (DUMBELL; MATVEEVA; OSTER, 2016), a neuroinflammation

process was observed. The imbalance between pro-inflammatory and anti-inflammatory

activities in the brain determines the consequent detrimental results, in which pro-inflammatory

cytokines, such as IL-1β, IL-6, and TNF-α, have a crucial role in the pathophysiology of MDD

(BORTOLATO et al., 2015; DOWLATI et al., 2010; KIM et al., 2016; MAES, 2011;

MANIKOWSKA et al., 2014; SINGHAL et al., 2014).

TNF-α, in addition to the IL-1 cytokine family, has been primarily implicated in

neuroinflammation. It has been well established that both TNF-α and IL-1β stimulate each

other’s secretion and exhibit overlapping and synergistic effects, such as promoting apoptosis,

and stimulating inflammasome activation, and stimulating others cytokine’s release (MAES,

2011; SINGHAL et al., 2014). Elevated levels of TNF-α in particular have been shown to cause

a reduction in hippocampal volumes through the neurodegenerative tumor necrosis factor

receptor (TNFR)-1 pathway. This results in severe neuroinflammation, neurodegeneration, and

in consequence, functional and cognitive sequelae (BAUNE; LI; BEBLO, 2013; SINGHAL et

al., 2014; WIGNER et al., 2018). IL-2, IL-4 and TNF-α inhibit GR function through different

pathways (KIM et al., 2016). In this way, the ability of Riparin IV to attenuate

neuroinflammation, in some situation better then fluvoxamine, might be another significant

aspect of antidepressant drug action.

In addition, cytokines have pleiotropic effects on the central nervous system. Not only

do they influence inflammation centrally, but they also play key roles in neurotransmitter

function, neuroendocrine regulation, neuroplasticity, and neurotrophic support (BORTOLATO

et al., 2015; GOLD, 2015; LOTRICH; ALBUSAYSI; FERRELL, 2013; NIKKHESLAT;

Page 94: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

92

PARIANTE; ZUNSZAIN, 2018). Another mechanism relating proinflammatory cytokines to

mood is their capacity to stimulate indoleamine 2,3- dioxygenase (IDO) in glial cells to deviate

tryptophan from serotonin synthesis to the kynurenine pathway, which is then transformed into

neurotoxic quinolinic acid inside the brain (DEAN; KESHAVAN, 2017; MAES,

2011). Quinolinic acid binds to N-methyl-D-aspartate (NMDA) receptors, perturb

neurotransmission along glutamatergic pathways, and may lead to hippocampal neuron damage

and apoptosis (DOWLATI et al., 2010; YOUNG; BRUNO; POMARA, 2014). This excitotoxic

mechanism may also contribute to the symptoms of major depression and to hippocampal

volume loss (DOWLATI et al., 2010). Cytokines can also alter other neurotransmitters, such as

serotonin, dopamine, and noradrenaline, relating to the largest role in MDD (KUBERA et al.,

2005; LOTRICH, 2015; SCHWARCZ et al., 2012). In summary, complex neural mechanisms

are thought to be involved in depressive disorders.

Moreover, studies have also shown elevated levels of proinflammatory cytokines in the

plasma of patients with MDD who had attempted suicide and in patients with suicidal ideation.

This suggests that the inflammatory mechanisms may be positively associated with different

subsets of depressive disorders (NIKKHESLAT; PARIANTE; ZUNSZAIN, 2018; WIGNER

et al., 2018; YOUNG; BRUNO; POMARA, 2014) and with the development of comorbid

systemic illnesses (BANUELOS; LU, 2016; JÖRGENS; AROLT, 2018; MARTINO et al.,

2012; NIKKHESLAT et al., 2015).

Several studies found that antidepressants can decrease the pro-inflammatory/anti-

inflammatory cytokine ratio and the Th1-Th2 imbalance cytokine may impair the modulation

of cellular responses in the brain during psychological stress and depression, specially

treatment-resistant patients (MYINT et al., 2005; O’BRIEN et al., 2007; SUTCIGIL et al.,

2007; THOMAS; KHANAM; VOHORA, 2016). Nevertheless, actual findings are inconsistent

with the theory that treatment of depressive disorders with antidepressants can suppress

immune (KOMORI, 2017; MAES, 2011; MARTINO et al., 2012). (THOMAS; KHANAM;

VOHORA, 2016)(THOMAS; KHANAM; VOHORA, 2016)(THOMAS; KHANAM;

VOHORA, 2016)(THOMAS; KHANAM; VOHORA, 2016)(Thomas et al., 2016)Thomas,

Khanam and Vohora (2016) noticed that venlafaxine (SNRI) was able to reverse the elevated

serum levels of IL-1β and IL-6 caused by chronic stress in mice while agomelatine, atypical

antidepressant, failed to show such a reversal. A clinical study conducted by Sutcigil and co-

workers (2007) investigated the effects of sertraline (SSRI) therapy in unipolar depressive

Page 95: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

93

patients and its administration might have exertd immunomodulatory effects through a decrease

in the proinflammatory cytokine IL-12, an increase in the anti-inflammatory IL-4 and TGF-β1

but no alterations in IL-2 and TNF-α. Otherwise, a robust study evaluated the variations in

circulating cytokine levels during 52 week course of different SSRI drugs and concluded that

was an increase in Th1 cytokines, such as IL-1β, IL-2 and IFN-γ, and decrease Th2 cytokines,

such as IL-4, IL-10 and IL-13.

In conclusion, divergent effects of antidepressant compounds in cytokine content

suggests a possible explanation for the differences in efficacy of treating different depressive

subtype and resistance. The capability of Riparin IV in alter the Th1/Th2 balance towards a Th2

shift, combined to its antioxidant effect, shows an anti-inflammatory profile. This result is very

important as a choice of specific antidepressant in specific clusters of symptoms will lead to a

successful and efficient treatment.

Thus, depression and cognitive impairment correlate positively with levels of circulating

cytokines, a finding that confirms once again the involvement of cytokines in the mediation of

emotional and cognitive responses to chronic stress conditions. Immune challenges are capable

of provoking oxidative stress (MOYLAN et al., 2014; WIGNER et al., 2018), increasing the

levels of other inflammatory cytokines (ROOMRUANGWONG et al., 2017), and decreasing

neurotrophic factor in the animal hippocampus (BORTOLATO et al., 2015) and in humans

(LOTRICH; ALBUSAYSI; FERRELL, 2013; WIGNER et al., 2018). Additionally, immune

challenges can stimulate the HHA axis (KIM et al., 2016; KOMORI, 2017), can alter

neurotransmitter levels (LOTRICH, 2015), and can inhibit long-term potentiation (ZUNSZAIN

et al., 2011), while impairing learning and memory, which are factors frequently affected in

depressive disorders.

CONCLUSION

Taken together, the effect of Riparin IV in ameliorate corticosterone cognitive and

memory impairment can be attributed, at least in part, to the decrease in oxidative stress and

neuroinflammation-induced neuronal damage, demonstrated as decreases in pro-oxidant

markers, increases in antioxidant defense systems, and the modulation cytokines levels in the

brain. This antioxidant and anti-inflammatory effects put Riparin IV on an interesting level as

Page 96: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

94

a possible drug in the antidepressant treatment of non-responsive patients related to severe and

cognitive symptoms.

In conclusion, the results obtained regarding the neuroprotective role of Riparin IV in

cognition and memory are interesting. Therefore further studies are still necessary to explain

this mechanism.

ACKNOWLEDGMENT

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior – Brasil (CAPES) (Finance Code: 001), Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq - Brazil; Process numbers: 12/2017, 306746/2013-1,

446120/2014-6 and 407567/2013-5) and Fundação Cearense de Apoio à Pesquisa (FUNCAP –

Ceará - Brazil). The authors would like to thank the Multi-User Facility of Drug Research and

Development Center of Federal University of Ceará for technical support.

REFERENCES

AL-HARBI, K. S. Treatment-resistant depression: Therapeutic trends, challenges, and future

directions. Patient Preference and Adherence, v. 6, p. 369–388, 2012.

BADHANI, B.; SHARMA, N.; KAKKAR, R. Gallic acid: a versatile antioxidant with

promising therapeutic and industrial applications. RSC Advances, v. 5, n. 35, p. 27540–

27557, 18 mar. 2015.

BAI, Y. et al. Antidepressant effects of magnolol in a mouse model of depression induced by

chronic corticosterone injection. Steroids, v. 135, n. 155, p. 73–78, 2018.

BANUELOS, J.; LU, N. Z. A gradient of glucocorticoid sensitivity among helper T cell

cytokines. Cytokine Growth Factor Reviews, v. 31, p. 27–35, 2016.

BAO, A. M.; MEYNEN, G.; SWAAB, D. F. The stress system in depression and

neurodegeneration: Focus on the human hypothalamus. Brain Research Reviews, v. 57, n. 2,

Page 97: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

95

p. 531–553, 2008.

BARBOSA-FILHO, J. M.; DA SILVA, E. C.; BHATTACHARYYA, J. Synthesis of Several

New Phenylethylamides of Substituted Benzoic Acids. Quimica Nova, v. 13, n. 4, p. 332–

334, 1990.

BARIK, J. et al. Chronic stress triggers social aversion via glucocorticoid receptor in

dopaminoceptive neurons. Science, v. 339, n. 6117, p. 332–335, 2013.

BAUNE, B. T.; LI, X.; BEBLO, T. Short- and long-term relationships between

neurocognitive performance and general function in bipolar disorder. Journal of Clinical and

Experimental Neuropsychology, v. 35, n. 7, p. 759–774, 2013.

BAUNE, B. T.; RENGER, L. Pharmacological and non-pharmacological interventions to

improve cognitive dysfunction and functional ability in clinical depression – A systematic

review. Psychiatry Research, v. 219, n. 1, p. 25–50, 2014.

BEAUCHAMP, C.; FRIDOVICH, I. Superoxide dismutase: Improved assays and an assay

applicable to acrylamide gels. Analytical Biochemistry, 1971.

BENDER, C. L. et al. Prior stress promotes the generalization of contextual fear memories:

Involvement of the gabaergic signaling within the basolateral amygdala complex. Progress in

Neuro-Psychopharmacology and Biological Psychiatry, v. 83, p. 18–26, 20 abr. 2018.

BIRNIE-GAUVIN, K. et al. Short-term and long-term effects of transient exogenous cortisol

manipulation on oxidative stress in juvenile brown trout. The Journal of experimental

biology, v. 220, n. Pt 9, p. 1693–1700, 1 maio 2017.

BORA, E. et al. Cognitive impairment in euthymic major depressive disorder: A meta-

analysis. Psychological Medicine, v. 43, n. 10, p. 2017–2026, 2013.

BORTOLATO, B. et al. The Involvement of TNF-α in Cognitive Dysfunction Associated

with Major Depressive Disorder: An Opportunity for Domain Specific Treatments. Current

neuropharmacology, v. 13, n. 5, p. 558–76, 2015.

Page 98: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

96

BOUAYED, J.; RAMMAL, H.; SOULIMANI, R. Oxidative stress and anxiety: relationship

and cellular pathways. Oxidative medicine and cellular longevity, v. 2, n. 2, p. 63–7, 2009.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram

quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,

v. 72, n. 1–2, p. 248–254, maio 1976.

BRAFF, D. L.; GEYER, M. A.; SWERDLOW, N. R. Human studies of prepulse inhibition of

startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology,

v. 156, n. 2–3, p. 234–258, 2001.

CHANCE, B.; MAEHLY, A. C. Assay of catalases and peroxidases. Methods in

Enzymology, v. 2, n. C, p. 764–775, 1955.

CHATTARJI, S. et al. Neighborhood matters: Divergent patterns of stress-induced plasticity

across the brain. Nature Neuroscience, v. 18, n. 10, p. 1364–1375, 2015.

CHAVES, R. DE C. et al. Reversal effect of Riparin IV in depression and anxiety caused by

corticosterone chronic administration in mice. Pharmacology Biochemistry and Behavior,

v. 180, n. October 2018, p. 44–51, 2019.

DARCET, F. et al. Learning and memory impairments in a neuroendocrine mouse model of

anxiety/depression. Frontiers in behavioral neuroscience, v. 8, n. May, p. 136, 2014.

DARCET, F. et al. Cognitive dysfunction in major depressive disorder. A translational review

in animal models of the disease. Pharmaceuticals, v. 9, n. 9, p. 1–42, 2016.

DE LA CASA, L. G.; MENA, A.; RUIZ-SALAS, J. C. Effect of stress and attention on startle

response and prepulse inhibition. Physiology and Behavior, v. 165, p. 179–186, 2016.

DEAN, J.; KESHAVAN, M. The neurobiology of depression: An integrated view. Asian

Journal of Psychiatry, v. 27, n. 2017, p. 101–111, 2017.

DIAS, M. L. Atividade antinociceptiva da riparina IV: participação dos receptores

Page 99: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

97

TRPV1, TRPM8, receptores glutamatérgicos e do óxido nítrico. Fortaleza: Universidade

Federal do Ceará, 2012.

DIRKS, A. et al. Reduced startle reactivity and plasticity in transgenic mice overexpressing

corticotropin-releasing hormone. Biological Psychiatry, v. 51, n. 7, p. 583–590, 1 abr. 2002.

DOWLATI, Y. et al. A Meta-Analysis of Cytokines in Major Depression. Biological

Psychiatry, v. 67, n. 5, p. 446–457, 1 mar. 2010.

DRAPER, H. H.; HADLEY, M. Malondialdehyde determination as index of lipid

peroxidation. Methods in enzymology, v. 186, p. 421–31, 1990.

DULEY, A. R. et al. Sensorimotor gating and anxiety: Prepulse inhibition following acute

exercise. International Journal of Psychophysiology, v. 64, n. 2, p. 157–164, 2007.

DUMBELL, R.; MATVEEVA, O.; OSTER, H. Circadian clocks, stress, and immunity.

Frontiers in Endocrinology, v. 7, n. MAY, p. 1–8, 2016.

FILE, S. E.; SETH, P. A review of 25 years of the social interaction test. European Journal

of Pharmacology, v. 463, n. 1–3, p. 35–53, 2003.

FILHO, C. B. et al. Chronic Unpredictable Mild Stress Decreases BDNF and NGF Levels and

Na+, K+ -ATPase Activity in The Hippocampus and Prefrontal Cortex of Mice:

Antidepressant Effect Of Chrysin. Neuroscience, v. 289, p. 367–380, 2015.

FLANAGAN, S. D. et al. The Effects of a Korean Ginseng, GINST15, on Hypo-Pituitary-

Adrenal and Oxidative Activity Induced by Intense Work Stress. Journal of Medicinal Food,

v. 21, n. 1, p. 104–112, jan. 2018.

GOLD, P. W. The organization of the stress system and its dysregulation in depressive illness.

Molecular Psychiatry, v. 20, n. 1, p. 32–47, 2015.

GRECH, A. M. et al. Sex-Dependent Effects of Environmental Enrichment on Spatial

Memory and Brain-Derived Neurotrophic Factor (BDNF) Signaling in a Developmental

Page 100: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

98

“Two-Hit” Mouse Model Combining BDNF Haploinsufficiency and Chronic Glucocorticoid

Stimulation. Frontiers in Behavioral Neuroscience, v. 12, p. 227, 9 out. 2018.

GREEN, L. C. et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids.

Analytical biochemistry, v. 126, n. 1, p. 131–8, out. 1982.

GROVES, S. J.; DOUGLAS, K. M.; PORTER, R. J. A systematic review of cognitive

predictors of treatment outcome in major depression. Frontiers in Psychiatry, v. 9, n.

August, p. 382, 2018.

GUENZEL, F. M.; WOLF, O. T.; SCHWABE, L. Stress disrupts response memory retrieval.

Psychoneuroendocrinology, v. 38, n. 8, p. 1460–1465, 2013.

GUPTA, D.; RADHAKRISHNAN, M.; KURHE, Y. Effect of a novel 5-HT3 receptor

antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice.

Steroids, v. 96, p. 95–102, 2015.

HERNÁNDEZ, M. E. et al. Variations in circulating cytokine levels during 52 week course of

treatment with SSRI for major depressive disorder. European Neuropsychopharmacology,

v. 18, n. 12, p. 917–924, 2008.

HERRERA-GUZMÁN, I. et al. Effects of selective serotonin reuptake and dual serotonergic-

noradrenergic reuptake treatments on memory and mental processing speed in patients with

major depressive disorder. Journal of Psychiatric Research, v. 43, n. 9, p. 855–863, 2009.

JÖRGENS, S.; AROLT, V. Does Inflammation Link Clinical Depression and Coronary

Artery Disease? In: BAUNE, B. T. (Ed.). . Inflammation and Immunity in Depression:

Basic Science and Clinical Applications. [s.l.] Academic Press, 2018. p. 393–409.

JOSHI, H.; PARLE, M. Brahmi rasayana Improves Learning and Memory in Mice. eCAM, v.

3, n. 1, p. 79–85, 2006.

KAS, M. J. et al. Advancing the discovery of medications for autism spectrum disorder using

new technologies to reveal social brain circuitry in rodents. Psychopharmacology, v. 231, n.

Page 101: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

99

6, p. 1147–1165, 13 mar. 2014.

KIM, Y. K. et al. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis

and the neuroendocrine system in major depression. Progress in Neuro-

Psychopharmacology and Biological Psychiatry, v. 64, p. 277–284, 2016.

KOMORI, T. The significance of proinflammatory cytokines and Th1/ Th2 balance in

depression and action of antidepressants. Neuropsychiatry (London), v. 07, n. 01, p. 57–60,

2017.

KUBERA, M. et al. Effects of serotonin and serotonergic agonists and antagonists on the

production of tumor necrosis factor alpha and interleukin-6. Psychiatry research, v. 134, n.

3, p. 251–258, 2005.

KUPFERBERG, A.; BICKS, L.; HASLER, G. Social functioning in major depressive

disorder. Neuroscience and Biobehavioral Reviews, v. Volume 69, n. October 2016, p. 313–

332, 2016.

KV, A. et al. Antidepressant activity of vorinostat is associated with amelioration of oxidative

stress and inflammation in a corticosterone-induced chronic stress model in mice.

Behavioural Brain Research, v. 344, n. July 2017, p. 73–84, 2018.

LEVIN, R. et al. Spontaneously Hypertensive Rats (SHR) present deficits in prepulse

inhibition of startle specifically reverted by clozapine. Progress in Neuro-

Psychopharmacology and Biological Psychiatry, v. 35, n. 7, p. 1748–1752, 2011.

LIU, W. et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal

Cortex. Neural Plasticity, v. 2017, n. Article ID 6871089, p. 11 pages, 2017.

LOPES, I. S. et al. Riparin II ameliorates corticosterone-induced depressive-like behavior in

mice: Role of antioxidant and neurotrophic mechanisms. Neurochemistry International, v.

120, p. 33–42, 2018.

LOTRICH, F. E. Inflammatory cytokine-associated depression. Brain Research, v. 1617, p.

Page 102: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

100

113–125, 2015.

LOTRICH, F. E.; ALBUSAYSI, S.; FERRELL, R. E. Brain-derived neurotrophic factor

serum levels and genotype: Association with depression during interferon-α treatment.

Neuropsychopharmacology, v. 38, n. 6, p. 985–995, 2013.

MAES, M. Depression is an inflammatory disease, but cell-mediated immune activation is the

key component of depression. Progress in Neuro-Psychopharmacology and Biological

Psychiatry, v. 35, n. 3, p. 664–675, 2011.

MALEK, H. et al. Dynamics of the HPA axis and inflammatory cytokines: Insights from

mathematical modeling. Computers in Biology and Medicine, v. 67, p. 1–12, 2015.

MANIKOWSKA, K. et al. The influence of mianserin on cytokines plasma levels in rats

under chronic mild stress. Pharmacological Reports, p. 22–27, 2014.

MARKS, W. N. et al. The effect of chronic corticosterone on fear learning and memory

depends on dose and the testing protocol. Neuroscience, v. 289, p. 324–333, 19 mar. 2015.

MARTEL, G.; JAFFARD, R.; GUILLOU, J. Identification of hippocampus-dependent and

hippocampus independent memory components in step-down inhibitory avoidance tasks.

Behavioural Brain Research, v. 207, p. 138–143, 2010.

MARTINO, M. et al. Immunomodulation Mechanism of Antidepressants: Interactions

between Serotonin/Norepinephrine Balance and Th1/Th2 Balance. Current

Neuropharmacology, v. 10, n. 2, p. 97–123, 2012.

MCINTYRE, R. S. et al. Cognitive deficits and functional outcomes in major depressive

disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, v.

30, n. 6, p. 515–527, 2013.

MICOULAUD-FRANCHI, J.-A. et al. Sensory Gating Capacity and Attentional Function in

Adults With ADHD. Journal of Attention Disorders, p. 108705471662971, 19 fev. 2016.

Page 103: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

101

MOY, S. S. et al. Sociability and preference for social novelty in five inbred strains: An

approach to assess autistic-like behavior in mice. Genes, Brain and Behavior, v. 3, n. 5, p.

287–302, 2004.

MOYLAN, S. et al. Oxidative & nitrosative stress in depression: Why so much stress?

Neuroscience and Biobehavioral Reviews, v. 45, p. 46–62, 2014.

MYINT, A. M. et al. Th1, Th2, and Th3 cytokine alterations in major depression. Journal of

Affective Disorders, v. 88, n. 2, p. 167–173, 2005.

MYINT, K. et al. Cortisol, β-endorphin and oxidative stress markers in healthy medical

students in response to examination stress. Biomedical Research (India), v. 28, n. 8, p.

3774–3779, 2017.

NASCIMENTO, O. A. et al. Pharmacological Properties of Riparin IV in Models of Pain and

Inflammation. Molecules (Basel, Switzerland), v. 21, n. 12, p. 1–14, 2016.

NIKKHESLAT, N. et al. Insufficient glucocorticoid signaling and elevated inflammation in

coronary heart disease patients with comorbid depression. Brain, Behavior, and Immunity,

v. 48, p. 8–18, 1 ago. 2015.

NIKKHESLAT, N.; PARIANTE, C. M.; ZUNSZAIN, P. A. Neuroendocrine Abnormalities

in Major Depression: An Insight Into Glucocorticoids, Cytokines, and the Kynurenine

Pathway. In: BAUNE, B. T. (Ed.). . Inflammation and Immunity in Depression: Basic

Science and Clinical Applications. [s.l.] Elsevier Inc., 2018. p. 45–60.

O’BRIEN, S. M. et al. Plasma cytokine profiles in depressed patients who fail to respond to

selective serotonin reuptake inhibitor therapy. Journal of Psychiatric Research, v. 41, n. 3–

4, p. 326–331, 2007.

OLESCOWICZ, G. et al. Antidepressant and pro-neurogenic effects of agmatine in a mouse

model of stress induced by chronic exposure to corticosterone. Progress in Neuro-

Psychopharmacology and Biological Psychiatry, v. 81, n. August 2017, p. 395–407, 2018.

Page 104: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

102

OLIVEIRA, I. C. M. Riparina-I na reversão dos Efeitos Centrais Induzidos por

Corticosterona em Camundongos: Possível Envolvimento do Estresse Oxidativo e da Via

Nitrérgica. [s.l.] Universidade Federal do Ceará, 2017.

PEREIRA-FIGUEIREDO, I. et al. Sex Differences in the Effects of Sertraline and Stressors

in Rats Previously Exposed to Restraint Stress. Journal of Biomedical Science and

Engineering, v. 8, p. 399–419, 2015.

PEREIRA-FIGUEIREDO, I. et al. Long-Term Sertraline Intake Reverses the Behavioral

Changes Induced by Prenatal Stress in Rats in a Sex-Dependent Way. Frontiers in

Behavioral Neuroscience, v. 11, n. May, p. 1–11, 2017.

PEREIRA, M. M. et al. The antioxidant gallic acid induces anxiolytic-, but not

antidepressant-like effect, in streptozotocin-induced diabetes. Metabolic Brain Disease, v.

33, n. 5, p. 1573–1584, 2018.

PHILLIPS, M. A. et al. The effects of some antidepressant drugs on prepulse inhibition of the

acoustic startle (eyeblink) response and the N1/P2 auditory evoked response in man. Journal

of Psychopharmacology, v. 14, n. 1, p. 40–45, 1 jan. 2000.

PRASAD, S. et al. Impact of stress on oocyte quality and reproductive outcome. Journal of

Biomedical Science, v. 23, p. 36, 29 mar. 2016.

QI, C. C. et al. Interaction of basolateral amygdala, ventral hippocampus and medial

prefrontal cortex regulates the consolidation and extinction of social fear. Behavioral and

Brain Functions, v. 14, n. 1, p. 1–13, 2018.

QUERVAIN, D. J. F. DE et al. Glucocorticoids and the regulation of memory in health and

disease. Frontiers in Neuroendocrinology, v. 30, n. 3, p. 358–370, 2009.

QUERVAIN, D. DE; SCHWABE, L.; ROOZENDAAL, B. Stress, glucocorticoids and

memory: implications for treating fear-related disorders. Nature Reviews Neuroscience, v.

18, n. 1, p. 7–19, 2017.

Page 105: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

103

RASHIDY-POUR, A. et al. The effects of acute restraint stress and dexamethasone on

retrieval of long-term memory in rats: An interaction with opiate system. Behavioural Brain

Research, v. 154, n. 1, p. 193–198, 2004.

ROHLEDER, C. et al. The Functional Networks of Prepulse Inhibition: Neuronal

Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats. Frontiers in

Behavioral Neuroscience, v. 10, n. July, p. 1–10, 2016.

ROOMRUANGWONG, C. et al. Activated neuro-oxidative and neuro-nitrosative pathways at

the end of term are associated with inflammation and physio-somatic and depression

symptoms, while predicting outcome characteristics in mother and baby. Journal of Affective

Disorders, v. 223, n. June, p. 49–58, 2017.

SANDI, C.; HALLER, J. Stress and the social brain: Behavioural effects and neurobiological

mechanisms. Nature Reviews Neuroscience, v. 16, n. May, p. 290–304, 2015.

SAVEANU, R. V.; NEMEROFF, C. B. Etiology of Depression: Genetic and Environmental

Factors. Psychiatric Clinics of North America, v. 35, n. 1, p. 51–71, mar. 2012.

SCHILLING, T. M. et al. For whom the bell ( curve ) tolls : Cortisol rapidly affects memory

retrieval by an inverted U-shaped dose — response relationship. Psychoneuroendocrinology,

v. 38, p. 1565–1572, 2013.

SCHOLES, K. E.; MARTIN-IVERSON, M. T. Relationships between prepulse inhibition and

cognition are mediated by attentional processes. Behavioural Brain Research, v. 205, n. 2,

p. 456–467, 2009.

SCHWABE, L.; WOLF, O. T.; OITZL, M. S. Memory formation under stress: Quantity and

quality. Neuroscience and Biobehavioral Reviews, v. 34, n. 4, p. 584–591, 2010.

SCHWARCZ, R. et al. Kynurenines in the mammalian brain: when physiology meets

pahtology. Nature Reviews Neuroscience, v. 13, n. 7, p. 465–477, 2012.

SEDLAK, J.; LINDSAY, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl

Page 106: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

104

groups in tissue with Ellman’s reagent. Analytical biochemistry, v. 25, n. 1, p. 192–205, 24

out. 1968.

SINGHAL, G. et al. Inflammasomes in neuroinflammation and changes in brain function: a

focused review. Frontiers in Neuroscience, v. 8, n. October, p. 1–13, 2014.

SKÓRZEWSKA, A. et al. The effects of acute and chronic administration of corticosterone

on rat behavior in two models of fear responses, plasma corticosterone concentration, and c-

Fos expression in the brain structures. Pharmacology Biochemistry and Behavior, v. 85, n.

3, p. 522–534, 2006.

SKÓRZEWSKA, A. et al. The effect of chronic administration of corticosterone on anxiety-

and depression-like behavior and the expression of GABA-A receptor alpha-2 subunits in

brain structures of low- and high-anxiety rats. Hormones and Behavior, v. 65, n. 1, p. 6–13,

2014.

SMEETS, T. et al. True or false ? Memory is differentially affected by stress-induced cortisol

elevations and sympathetic activity at consolidation and retrieval.

Psychoneuroendocrinology, v. 33, p. 1378–1386, 2008.

SOLÉ, B. et al. Cognition as a target in major depression: New developments. European

Neuropsychopharmacology, v. 25, n. 2, p. 231–247, 2015.

SOUSA, C. N. S. DE et al. Reversal of corticosterone-induced BDNF alterations by the

natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on

the neurotrophic hypothesis of depression. Psychiatry Research, v. 230, n. 2, p. 211–219,

2015.

STANIĆ, D. et al. Hydrogen peroxide-induced oxidative damage in peripheral blood

lymphocytes from rats chronically treated with corticosterone: The protective effect of

oxytocin treatment. Chemico-Biological Interactions, v. 256, p. 134–141, 2016.

STIER, K. S. et al. Effects of corticosterone on innate and humoral immune functions and

oxidative stress in barn owl nestlings. Journal of Experimental Biology, v. 212, p. 2085–

Page 107: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

105

2091, 1 jul. 2009.

STURM, K. Prepulse Inhibition of the Acoustic Startle Reflex: Comparing Low and

High Trait Anxious Individuals. [s.l.] University of Mississipi, 2014.

SUTCIGIL, L. et al. Pro- and anti-inflammatory cytokine balance in major depression: Effect

of sertraline therapy. Clinical and Developmental Immunology, v. 2007, p. Article ID

76396, 2007.

SWERDLOW, N. R. et al. Realistic expectations of prepulse inhibition in translational

models for schizophrenia research. Psychopharmacology (Berl), v. 199, n. 3, p. 331–388,

2009.

SWERDLOW, N. R. Prepulse Inhibition of Startle in Humans and Laboratory Models.

Encyclopedia of Neuroscience, p. 947–955, 2009.

TAFET, G. E.; BERNARDINI, R. Psychoneuroendocrinological links between chronic stress

and depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 27,

n. 6, p. 893–903, 2003.

TERFEHR, K. et al. Hydrocortisone impairs working memory in healthy humans, but not in

patients with major depressive disorder. Psychopharmacology, v. 215, n. 1, p. 71–79, 16

maio 2011.

THOMAS, J.; KHANAM, R.; VOHORA, D. Augmentation of antidepressant effects of

venlafaxine by agomelatine in mice are independent of kynurenine pathway. Neurochemistry

International, v. 99, p. 103–109, 2016.

VASCONCELOS, A. S. et al. Subchronic administration of riparin III induces antidepressive-

like effects and increases BDNF levels in the mouse hippocampus. Fundamental and

Clinical Pharmacology, v. 29, n. 4, p. 394–403, 2015.

VERÍSSIMO, G.; BAST, A.; WESELER, A. R. Monomeric and oligomeric flavanols

maintain the endogenous glucocorticoid response in human macrophages in pro-oxidant

Page 108: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

106

conditions in vitro. Chemico-Biological Interactions, v. 291, p. 237–244, 1 ago. 2018.

WALESIUK, A.; TROFIMIUK, E.; BRASZKO, J. J. Ginkgo biloba normalizes stress- and

corticosterone-induced impairment of recall in rats. Pharmacological Research, v. 53, p.

123–128, 2006.

WIGNER, P. et al. The molecular aspects of oxidative & nitrosative stress and the tryptophan

catabolites pathway (TRYCATs) as potential causes of depression. Psychiatry Research, v.

262, n. April 2017, p. 566–574, 2018.

WINGENFELD, K.; WOLF, O. T. Effects of cortisol on cognition in major depressive

disorder, posttraumatic stress disorder and borderline personality disorder - 2014 Curt Richter

Award Winner. Psychoneuroendocrinology, v. 51, p. 282–295, 2015.

WORKMAN, J. L.; CHAN, M. Y. T.; GALEA, L. A. M. Prior high corticosterone exposure

reduces activation of immature neurons in the ventral hippocampus in response to spatial and

nonspatial memory. Hippocampus, v. 25, n. 3, p. 329–344, 1 mar. 2015.

YILMAZ, Y.; TOLEDO, R. T. Major Flavonoids in Grape Seeds and Skins: Antioxidant

Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food

Chemistry, v. 52, n. 2, p. 255–260, 2004.

YOUNG, J. J.; BRUNO, D.; POMARA, N. A review of the relationship between

proinflammatory cytokines and major depressive disorder. Journal of Affective Disorders,

v. 169, p. 15–20, 2014.

ZAFIR, A.; BANU, N. Modulation of in vivo oxidative status by exogenous corticosterone

and restraint stress in rats. Stress, v. 12, n. 2, p. 167–177, 2009a.

ZAFIR, A.; BANU, N. Induction of oxidative stress by restraint stress and corticosterone

treatments in rats. Indian Journal of Biochemistry and Biophysics, v. 46, n. 1, p. 53–58,

2009b.

ZENI, A. L. B.; CAMARGO, A.; DALMAGRO, A. P. Ferulic acid reverses depression-like

Page 109: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

107

behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids,

v. 125, n. May, p. 131–136, 2017.

ZHAO, Y. et al. A mouse model of depression induced by repeated corticosterone injections.

European Journal of Pharmacology, v. 581, n. 1–2, p. 113–120, 2008.

ZUNSZAIN, P. A. et al. Glucocorticoids, cytokines and brain abnormalities in depression.

Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 3, p. 722–

729, 2011.

Page 110: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

108

4 CONSIDERAÇÕES FINAIS

A depressão é uma séria condição psiquiátrica crônica e incapacitante que afeta cerca

de 322 milhões de pessoas no mundo e que representa um problema de saúde pública. Esta

doença é um fenômeno complexo e de etiologia multifatorial que é alvo de diversos estudos,

essenciais para o desenvolvimento de fármacos com ação mais rápida e eficaz.

O modelo de estresse induzido pela administração de corticosterona permitiu avaliar o

efeito da riparina IV em inúmeras alterações comportamentais e neuroquímicas induzidas pelo

estresse crônico, incluindo o comprometimento cognitivo. Esta disfunção interfere na

capacidade produtiva e impacto psicossocial, prejudicando relações familiares e sociais,

podendo não ser revertida com alguns tipos de tratamentos antidepressivos.

Dessa forma, a riparina IV mostrou-se capaz de reverter o comprometimento cognitivo

e de memória em animais submetidos a estresse crônico, reduzindo o estresse oxidativo e

padrão inflamatório, além de restaurar vias neurotróficas mediadas por BDNF em regiões

cortico-límbicas.

Estes resultados colocam a riparina IV como um potencial alternativa terapêutico no

tratamento de distúrbios depressivos, entretanto, estudos pré-clínicos e clínicos utilizando a

riparina IV para o tratamento da depressão maior e outros distúrbios psiquiátricos precisam ser

encorajados.

Page 111: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

109

REFERÊNCIAS ABELAIRA, H. M.; RÉUS, G. Z.; QUEVEDO, J. Animal models as tools to study the pathophysiology of depression. Revista Brasileira de Psiquiatria, v. 35, n. Suppl 2, p. S112–S120, 2013. AL-HARBI, K. S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Preference and Adherence, v. 6, p. 369–388, 2012. ALFAREZ, D. N. et al. Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation. Neuroscience, v. 115, n. 4, p. 1119–1126, 2002. AMERICAN PSYCHIATRIC ASSOCIATION. Manual Diagnóstico e Estatístico de Transtornos Mentais - DSM-5. 5a edição ed. [s.l.] Artmed, 2014. ANISMAN, H.; MATHESON, K. Stress, depression, and anhedonia: Caveats concerning animal models. Neuroscience and Biobehavioral Reviews, v. 29, n. 4–5, p. 525–546, 2005. ARANGO-LIEVANO, M. et al. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment. Proceedings of the National Academy of Sciences, v. 112, n. 51, p. 15737–15742, 2015. ARCHER, J. Tests for emotionality in rats and mice: A review. Animal Behaviour, v. 21, n. 2, p. 205–235, 1973. ARNSTEN, A. F. T. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, v. 10, n. 6, p. 410–422, 2009. AUTRY, A. E.; MONTEGGIA, L. M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev, v. 64, n. 2, p. 238–258, 2012. BADHANI, B.; SHARMA, N.; KAKKAR, R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, v. 5, n. 35, p. 27540–27557, 18 mar. 2015. BAI, Y. et al. Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids, v. 135, n. 155, p. 73–78, 2018. BANERJEE, R. et al. Chronic Administration of Bacopa Monniera Increases BDNF Protein and mRNA Expressions: A Study in Chronic Unpredictable Stress Induced Animal Model of Depression. The Psychiatry Investigation, v. 11, n. 3, p. 297–306, 2014. BANUELOS, J.; LU, N. Z. A gradient of glucocorticoid sensitivity among helper T cell cytokines. Cytokine Growth Factor Reviews, v. 31, p. 27–35, 2016. BAO, A. M.; MEYNEN, G.; SWAAB, D. F. The stress system in depression and neurodegeneration: Focus on the human hypothalamus. Brain Research Reviews, v. 57, n. 2,

Page 112: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

110

p. 531–553, 2008. BARBOSA-FILHO, J. M. et al. Benzoyl esters and amides, styrylpyrones and neolignans from the fruits of Aniba riparia. Phytochemistry, v. 26, n. 9, p. 2615–2617, 1987. BARBOSA-FILHO, J. M.; DA SILVA, E. C.; BHATTACHARYYA, J. Synthesis of Several New Phenylethylamides of Substituted Benzoic Acids. Quimica Nova, v. 13, n. 4, p. 332–334, 1990. BARBOSA, K. B. F. et al. Estresse oxidativo: avaliação de marcadores. Nutrire: rev. Soc. Bras. Alim. Nutr.= J. Brazilian Soc. Food Nutr., v. 33, n. 2, p. 111–128, 2008. BARIK, J. et al. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science, v. 339, n. 6117, p. 332–335, 2013. BARUA, A. et al. Prevalence of depressive disorders in the elderly. Annals of Saudi Medicine, v. 31, n. 6, p. 620–624, 2011. BAUNE, B. T.; LI, X.; BEBLO, T. Short- and long-term relationships between neurocognitive performance and general function in bipolar disorder. Journal of Clinical and Experimental Neuropsychology, v. 35, n. 7, p. 759–774, 2013. BAUNE, B. T.; RENGER, L. Pharmacological and non-pharmacological interventions to improve cognitive dysfunction and functional ability in clinical depression – A systematic review. Psychiatry Research, v. 219, n. 1, p. 25–50, 2014. BEAUCHAMP, C.; FRIDOVICH, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971. BEAUREPAIRE, R. DE. Questions raised by the cytokine hypothesis of depression. Brain, Behavior, and Immunity, v. 16, p. 610–617, 2002. BELLAVANCE, M. A.; RIVEST, S. The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Frontiers in Immunology, v. 5, n. MAR, p. 1–13, 2014. BENDER, C. L. et al. Prior stress promotes the generalization of contextual fear memories: Involvement of the gabaergic signaling within the basolateral amygdala complex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 83, p. 18–26, 20 abr. 2018. BERGNER, C. L. et al. Mouse Models for Studying Depression-Like States and Antidepressant Drugs. In: PROETZEL, G.; WILES, M. V. (Eds.). . Mouse Models for Drug Discovery: Methods and Protocol, Methods in Molecular Biology. New York, NY: Humana Press, 2016. v. 1438p. 255–269. BIRNIE-GAUVIN, K. et al. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout. The Journal of experimental biology, v. 220, n. Pt 9, p. 1693–1700, 1 maio 2017. BOGDAN, R.; PIZZAGALLI, D. A. Acute Stress Reduces Reward Responsiveness:

Page 113: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

111

Implications for Depression. Biological Psychiatry, v. 60, n. 10, p. 1147–1154, 2006. BONACCORSO, S. et al. Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotoninergic system. J Clin Psychopharmacol, v. 22, n. 1, p. 5, 2002. BORA, E. et al. Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychological Medicine, v. 43, n. 10, p. 2017–2026, 2013. BORTOLATO, B. et al. The Involvement of TNF-α in Cognitive Dysfunction Associated with Major Depressive Disorder: An Opportunity for Domain Specific Treatments. Current neuropharmacology, v. 13, n. 5, p. 558–76, 2015. BOUAYED, J.; RAMMAL, H.; SOULIMANI, R. Oxidative stress and anxiety: relationship and cellular pathways. Oxidative medicine and cellular longevity, v. 2, n. 2, p. 63–7, 2009. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, n. 1–2, p. 248–254, maio 1976. BRAFF, D. L.; GEYER, M. A.; SWERDLOW, N. R. Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology, v. 156, n. 2–3, p. 234–258, 2001. BRAMHAM, C. R.; MESSAOUDI, E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Progress in Neurobiology, v. 76, n. 2, p. 99–125, 2005. BRUMMELTE, S.; GALEA, L. A. M. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience, v. 168, n. 3, p. 680–690, 2010. CAN, A. et al. The mouse forced swim test. Journal of visualized experiments : JoVE, n. 59, p. e3638, 2012. CAPRIOTTI, T. Update on Depression and Antidepressant Medications. Medsurg nursing : official journal of the Academy of Medical-Surgical Nurses, v. 15, n. 4, p. 241–246, 222, 2006. CARVALHO, M. D. S. et al. Metabolismo Do Triptofano Em Transtornos Mentais: Um Enfoque Na Esquizofrenia. VITTALLE - Revista de Ciências da Saúde, v. 29, n. 2, p. 44–56, 2017. CASTAGNÉ, V. et al. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Current Protocols in Pharmacology, v. Unit 5.8, p. Unit 8.10A, abr. 2011. CASTRÉN, E.; RANTAMÄKI, T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental Neurobiology, v. 70, n. 5, p. 289–297, 2010a. CASTRÉN, E.; RANTAMÄKI, T. Role of brain-derived neurotrophic factor in the aetiology

Page 114: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

112

of depression: Implications for pharmacological treatment. CNS Drugs, v. 24, n. 1, p. 1–7, 2010b. CASTRÉN, E.; VÕIKAR, V.; RANTAMÄKI, T. Role of neurotrophic factors in depression. Current Opinion in Pharmacology, v. 7, n. 1, p. 18–21, 2007. CATÃO, R. M. R. et al. Avaliação da Atividade Antimicrobiana de Riparinas sobre Cepas de Staphylococcus aureus e Escherichia coli Multirresistentes *. Revista Brasileira de Análises Clínicas, v. 37, n. 4, p. 247–249, 2005. CERQUEIRA, J. J. et al. Morphological Correlates of Corticosteroid-Induced Changes in Prefrontal Cortex-Dependent Behaviors. Journal of Neuroscience, v. 25, n. 34, p. 7792–7800, 2005. CHANCE, B.; MAEHLY, A. C. Assay of catalases and peroxidases. Methods in Enzymology, v. 2, n. C, p. 764–775, 1955. CHARNEY, D. S.; MANJI, H. K. Life Stress, Genes, and Depression: Multiple Pathways Lead to Increased Risk and New Opportunities for Intervention. Science Signaling, v. 2004, n. 225, p. re5–re5, 2004. CHATTARJI, S. et al. Neighborhood matters: Divergent patterns of stress-induced plasticity across the brain. Nature Neuroscience, v. 18, n. 10, p. 1364–1375, 2015. CHAVES, R. DE C. et al. Reversal effect of Riparin IV in depression and anxiety caused by corticosterone chronic administration in mice. Pharmacology Biochemistry and Behavior, v. 180, n. October 2018, p. 44–51, 2019. CHIU, W. C. et al. Recurrence of depressive disorders after interferon-induced depression. Translational Psychiatry, v. 7, n. 2, 2017. COLUCCIA, D. et al. Glucocorticoid Therapy-Induced Memory Deficits: Acute versus Chronic Effects. Journal of Neuroscience, v. 28, n. 13, p. 3474–3478, 2008. COTTER, D. Reduced Neuronal Size and Glial Cell Density in Area 9 of the Dorsolateral Prefrontal Cortex in Subjects with Major Depressive Disorder. Cerebral Cortex, v. 12, n. 4, p. 386–394, 2002. CRYAN, J. F. et al. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience and Biobehavioral Reviews, v. 29, n. 4–5, p. 571–625, 2005. CRYAN, J. F.; MARKOU, A; LUCKI, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends in pharmacological sciences, v. 23, n. 5, p. 238–245, 2002. CRYAN, J. F.; VALENTINO, R. J.; LUCKI, I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neuroscience and Biobehavioral Reviews, v. 29, p. 547–569, 2005.

Page 115: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

113

DAI, T. T. et al. Apelin-13 Upregulates BDNF Against Chronic Stress-induced Depression-like Phenotypes by Ameliorating HPA Axis and Hippocampal Glucocorticoid Receptor Dysfunctions. Neuroscience, v. 390, p. 151–159, 2018. DARCET, F. et al. Learning and memory impairments in a neuroendocrine mouse model of anxiety/depression. Frontiers in behavioral neuroscience, v. 8, n. May, p. 136, 2014. DARCET, F. et al. Cognitive dysfunction in major depressive disorder. A translational review in animal models of the disease. Pharmaceuticals, v. 9, n. 9, p. 1–42, 2016. DAVID, D. J. et al. Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression. Neuron, v. 62, n. 4, p. 479–493, 2009. DE KLOET, E. R. From receptor balance to rational glucocorticoid therapy. Endocrinology, v. 155, n. 8, p. 2754–2769, 2014. DE KLOET, E. R.; DERIJK, R. H.; MEIJER, O. C. Therapy insight: Is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nature Clinical Practice Endocrinology and Metabolism, v. 3, n. 2, p. 168–179, 2007. DE KLOET, E. R.; JOËLS, M.; HOLSBOER, F. Stress and the brain: from adaptation to disease. Nature reviews. Neuroscience, v. 6, n. 6, p. 463–475, 2005. DE LA CASA, L. G.; MENA, A.; RUIZ-SALAS, J. C. Effect of stress and attention on startle response and prepulse inhibition. Physiology and Behavior, v. 165, p. 179–186, 2016. DE SOUSA, F. C. F. et al. Involvement of monoaminergic system in the antidepressant-like effect of riparin I from Aniba riparia (Nees) Mez (Lauraceae) in mice. Fundamental & clinical pharmacology, v. 28, n. 1, p. 95–103, fev. 2014. DEAN, J.; KESHAVAN, M. The neurobiology of depression: An integrated view. Asian Journal of Psychiatry, v. 27, n. 2017, p. 101–111, 2017. DELTHEIL, T. et al. Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: Studies in adult mice hippocampus. Pharmacology Biochemistry and Behavior, v. 90, n. 2, p. 174–183, 2008. DIAS, M. L. Atividade antinociceptiva da riparina IV: participação dos receptores TRPV1, TRPM8, receptores glutamatérgicos e do óxido nítrico. Fortaleza: Universidade Federal do Ceará, 2012. DIRKS, A. et al. Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biological Psychiatry, v. 51, n. 7, p. 583–590, 1 abr. 2002. DOWLATI, Y. et al. A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry, v. 67, n. 5, p. 446–457, 1 mar. 2010. DRAPER, H. H.; HADLEY, M. Malondialdehyde determination as index of lipid peroxidation. Methods in enzymology, v. 186, p. 421–31, 1990.

Page 116: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

114

DU, X.; PANG, T. Y. Is dysregulation of the HPA-axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? Frontiers in Psychiatry, v. 6, n. MAR, p. 1–33, 2015. DULEY, A. R. et al. Sensorimotor gating and anxiety: Prepulse inhibition following acute exercise. International Journal of Psychophysiology, v. 64, n. 2, p. 157–164, 2007. DUMBELL, R.; MATVEEVA, O.; OSTER, H. Circadian clocks, stress, and immunity. Frontiers in Endocrinology, v. 7, n. MAY, p. 1–8, 2016. DWIVEDI, Y.; RIZAVI, H. S.; PANDEY, G. N. Antidepressants reverse corticosterone-mediated decrease in brain-derived neurotrophic factor expression: Differential regulation of specific exons by antidepressants and corticosterone. Neuroscience, v. 139, n. 3, p. 1017–1029, 2006. EGELAND, M.; ZUNSZAIN, P. A.; PARIANTE, C. M. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nature Reviews Neuroscience, v. 16, n. 4, p. 189–200, 2015. FILE, S. E.; SETH, P. A review of 25 years of the social interaction test. European Journal of Pharmacology, v. 463, n. 1–3, p. 35–53, 2003. FILHO, C. B. et al. Chronic Unpredictable Mild Stress Decreases BDNF and NGF Levels and Na+, K+ -ATPase Activity in The Hippocampus and Prefrontal Cortex of Mice: Antidepressant Effect Of Chrysin. Neuroscience, v. 289, p. 367–380, 2015. FLANAGAN, S. D. et al. The Effects of a Korean Ginseng, GINST15, on Hypo-Pituitary-Adrenal and Oxidative Activity Induced by Intense Work Stress. Journal of Medicinal Food, v. 21, n. 1, p. 104–112, jan. 2018. FLECK, M. P. et al. Revisão das diretrizes da Associação Médica Brasileira para o tratamento da depressão (Versão integral). Revista Brasileira de Psiquiatria, v. 31 Suppl 1, n. Supl I, p. S7–S17, 2009. FLECK, M. P. DE A. et al. Diretrizes da Associação Médica Brasileira para otratamento da depressão (versão integral). Revista Brasileira de Psiquiatria, v. 25, n. 2, p. 114–122, 2003. FU, W. et al. Piromelatine ameliorates memory deficits associated with chronic mild stress-induced anhedonia in rats. Psychopharmacology, v. 233, n. 12, p. 2229–2239, jun. 2016. FUNAHASHI, S. Working memory in the prefrontal cortex. Brain Sciences, v. 7, n. 5, 2017. FURUSE, T.; HASHIMOTO, K. Fluvoxamine monotherapy for psychotic depression: the potential role of sigma-1 receptors. Annals of General Psychiatry, v. 8, p. 26, 2009. GLASER, R.; KIECOLT-GLASER, J. K. Science and society: Stress-induced immune dysfunction: implications for health. Nature Reviews Immunology, v. 5, n. 3, p. 243–251, 2005. GODSIL, B. P. et al. The hippocampal-prefrontal pathway: The weak link in psychiatric

Page 117: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

115

disorders? European Neuropsychopharmacology, v. 23, n. 10, p. 1165–1181, 2013. GOLD, P. W. The organization of the stress system and its dysregulation in depressive illness. Molecular Psychiatry, v. 20, n. 1, p. 32–47, 2015. GOMEZ-SANCHEZ, E.; GOMEZ-SANCHEZ, C. The Multifaceted Mineralocorticoid Receptor Elise. Comprehensive Physiology, v. 4, n. 3, p. 965–994, 2014. GORZALKA, B. B.; HANSON, L. A.; HONG, J. J. Ketanserin attenuates the behavioural effects of corticosterone: Implications for 5-HT2Areceptor regulation. European Journal of Pharmacology, v. 428, n. 2, p. 235–240, 2001. GOURLEY, S. L.; WU, F. J.; TAYLOR, J. R. Corticosterone regulates pERK1/2 map kinase in a chronic depression model. Annals of the New York Academy of Sciences, v. 1148, p. 509–514, 2008. GRECH, A. M. et al. Sex-Dependent Effects of Environmental Enrichment on Spatial Memory and Brain-Derived Neurotrophic Factor (BDNF) Signaling in a Developmental “Two-Hit” Mouse Model Combining BDNF Haploinsufficiency and Chronic Glucocorticoid Stimulation. Frontiers in Behavioral Neuroscience, v. 12, p. 227, 9 out. 2018. GREEN, L. C. et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical biochemistry, v. 126, n. 1, p. 131–8, out. 1982. GREGUS, A. et al. Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behavioural Brain Research, v. 156, n. 1, p. 105–114, 2005. GRILLO, L. A Possible Role of Anhedonia as Common Substrate for Depression and Anxiety. Depression Research and Treatment, v. 2016, p. 8 pages, 2016. GROVES, S. J.; DOUGLAS, K. M.; PORTER, R. J. A systematic review of cognitive predictors of treatment outcome in major depression. Frontiers in Psychiatry, v. 9, n. August, p. 382, 2018. GUENZEL, F. M.; WOLF, O. T.; SCHWABE, L. Stress disrupts response memory retrieval. Psychoneuroendocrinology, v. 38, n. 8, p. 1460–1465, 2013. GUPTA, A. et al. Various Animal Models to Check Learning and Memory - a Review. International Journal of Pharmacy and Pharmaceutical Sciences, v. 4, n. 3, p. 91–95, 2012. GUPTA, D.; RADHAKRISHNAN, M.; KURHE, Y. Effect of a novel 5-HT3 receptor antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice. Steroids, v. 96, p. 95–102, 2015. HALLIWELL, B. Biochemistry of oxidative stress. Biochemical Society transactions, v. 35, n. part 5, p. 1147–1150, nov. 2007. HAMMEN, C. Stress and Depression. Annual Review of Clinical Psychology, v. 1, n. 1, p.

Page 118: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

116

293–319, 2005. HAMODA, H. M.; OSSER, D. N. The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Update on Psychotic Depression. Harvard Review of Psychiatry, v. 16, n. 4, p. 235–247, jul. 2008. HANDLEY, S. L.; MITHANI, S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ’fear’-motivated behaviour. Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 327, n. 1, p. 1–5, ago. 1984. HAUSTEDT, L. et al. Rational approaches to natural-product-based drug design. Current Opinion in Drug Discovery & Development, v. 9, n. 4, p. 445–462, 2006. HENN, F.; VOLLMAYR, B.; SARTORIUS, A. Mechanisms of depression: The role of neurogenesis. Drug Discovery Today: Disease Mechanisms, v. 1, n. 4, p. 407–411, 2004. HERRERA-GUZMÁN, I. et al. Cognitive predictors of treatment response to bupropion and cognitive effects of bupropion in patients with major depressive disorder. Psychiatry Research, v. 160, n. 1, p. 72–82, 2008. HERRERA-GUZMÁN, I. et al. Effects of selective serotonin reuptake and dual serotonergic-noradrenergic reuptake treatments on memory and mental processing speed in patients with major depressive disorder. Journal of Psychiatric Research, v. 43, n. 9, p. 855–863, 2009. HERRERA-PÉREZ, J. J. et al. Young-Adult Male Rats’ Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors. Neuroscience Journal, v. 2016, p. 1–12, 2016. HINKELMANN, K. et al. Changes in cortisol secretion during antidepressive treatment and cognitive improvement in patients with major depression: A longitudinal study. Psychoneuroendocrinology, v. 37, n. 5, p. 685–692, 2012. HUANG, T. L.; LIN, C. C. Advances in Biomarkers of Major Depressive Disorder. In: MAKOWSKI, G. S. (Ed.). . Advances in Clinical Chemistry. 1. ed. [s.l.] Elsevier Inc., 2015. v. 68p. 177–204. HUBER, P. C.; ALMEIDA, W. P.; DE FÁTIMA, Â. Glutationa e enzimas relacionadas: Papel biologico e importancia em processos patologicos. Quimica Nova, v. 31, n. 5, p. 1170–1179, 2008. IHARA, K. et al. Serum BDNF levels before and after the development of mood disorders: a case-control study in a population cohort. Translational Psychiatry, v. 6, n. 4, p. e782, 2016. IIJIMA, M. et al. Pharmacological characterization of repeated corticosterone injection-induced depression model in rats. Brain Research, v. 1359, p. 75–80, 2010. IZAOLA, O. et al. Inflamación y obesidad (Lipoinflamación). Nutricion Hospitalaria, v. 31, n. 6, p. 2352–2358, 2015.

Page 119: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

117

JACOBSEN, J. P. R.; MØRK, A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Research, v. 1024, n. 1–2, p. 183–192, 2004. JACOBSEN, J. P. R.; MØRK, A. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain Research, v. 1110, n. 1, p. 221–225, 2006. JOELS, M.; SARABDJITSINGH, R. A.; KARST, H. Unraveling the Time Domains of Corticosteroid Hormone Influences on Brain Activity: Rapid, Slow, and Chronic Modes. Pharmacological Reviews, v. 64, n. 4, p. 901–938, 2012. JÖRGENS, S.; AROLT, V. Does Inflammation Link Clinical Depression and Coronary Artery Disease? In: BAUNE, B. T. (Ed.). . Inflammation and Immunity in Depression: Basic Science and Clinical Applications. [s.l.] Academic Press, 2018. p. 393–409. JOSHI, H.; PARLE, M. Brahmi rasayana Improves Learning and Memory in Mice. eCAM, v. 3, n. 1, p. 79–85, 2006. KALUEFF, A. V.; TUOHIMAA, P. Grooming analysis algorithm for neurobehavioural stress research. Brain Research Protocols, v. 13, n. 3, p. 151–158, 2004. KAS, M. J. et al. Advancing the discovery of medications for autism spectrum disorder using new technologies to reveal social brain circuitry in rodents. Psychopharmacology, v. 231, n. 6, p. 1147–1165, 13 mar. 2014. KESSLER, R. C. et al. The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys. Epidemiologia e Psichiatria Sociale, v. 18, n. 1, p. 23–33, 2009. KESSLER, R. C.; BROMET, E. J. The Epidemiology of Depression Across Cultures. Annual Review of Public Health, v. 34, n. 1, p. 119–138, 2013. KIM, K. S.; HAN, P. L. Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. Journal of Neuroscience Research, v. 83, n. 3, p. 497–507, 2006. KIM, Y. K. et al. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 64, p. 277–284, 2016. KIYOHARA, C.; YOSHIMASU, K. Molecular epidemiology of major depressive disorder. Environmental Health and Preventive Medicine, v. 14, n. 2, p. 71–87, 2009. KOEHN, F. E.; CARTER, G. T. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery, v. 4, n. 3, p. 206–220, 2005. KOGA, M. et al. Glutathione is a Physiologic Reservoir of Neuronal Glutamate. Biochemical and Biophysical Research Communications, v. 409, n. 4, p. 596–602, 2011.

Page 120: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

118

KOMORI, T. The significance of proinflammatory cytokines and Th1/ Th2 balance in depression and action of antidepressants. Neuropsychiatry (London), v. 07, n. 01, p. 57–60, 2017. KONARSKI, J. Z. et al. Volumetric neuroimaging investigations in mood disorders: Bipolar disorder versus major depressive disorder. Bipolar Disorders, v. 10, n. 1, p. 1–37, 2008. KORTE, S. M.; DE BOER, S. F. A robust animal model of state anxiety: Fear-potentiated behaviour in the elevated plus-maze. European Journal of Pharmacology, v. 463, n. 1–3, p. 163–175, 2003. KOZISEK, M. E.; MIDDLEMAS, D.; BYLUND, D. B. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacology and Therapeutics, v. 117, n. 1, p. 30–51, 2008. KRISHNAN, V.; NESTLER, E. J. The molecular neurobiology of depression. Nature, v. 455, n. 7215, p. 894–902, 2008. KRISHNAN, V.; NESTLER, E. J. Animal models of depression: molecular perspectives. Current Topics in Behavioral Neurosciences, v. 7, p. 121–47, 2011. KUBERA, M. et al. Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor alpha and interleukin-6. Psychiatry research, v. 134, n. 3, p. 251–258, 2005. KUHLMANN, S.; KIRSCHBAUM, C.; WOLF, O. T. Effects of oral cortisol treatment in healthy young women on memory retrieval of negative and neutral words. Neurobiology of Learning and Memory, v. 83, n. 2, p. 158–162, 2005. KUPFERBERG, A.; BICKS, L.; HASLER, G. Social functioning in major depressive disorder. Neuroscience and Biobehavioral Reviews, v. Volume 69, n. October 2016, p. 313–332, 2016. KV, A. et al. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behavioural Brain Research, v. 344, n. July 2017, p. 73–84, 2018. LEAL, G.; BRAMHAM, C. R.; DUARTE, C. B. BDNF and Hippocampal Synaptic Plasticity. In: LITWACK, G. (Ed.). . Vitamins and Hormones. [s.l.] Elsevier Inc., 2017. v. 104p. 153–195. LEAL, G.; COMPRIDO, D.; DUARTE, C. B. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology, v. 76, n. PART C, p. 639–656, 2014. LEVIN, R. et al. Spontaneously Hypertensive Rats (SHR) present deficits in prepulse inhibition of startle specifically reverted by clozapine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 7, p. 1748–1752, 2011. LI, Y. C. et al. Baicalin decreases SGK1 expression in the hippocampus and reverses depressive-like behaviors induced by corticosterone. Neuroscience, v. 311, p. 130–137, 2015.

Page 121: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

119

LIU, W. et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity, v. 2017, n. Article ID 6871089, p. 11 pages, 2017. LOPES, I. S. et al. Riparin II ameliorates corticosterone-induced depressive-like behavior in mice: Role of antioxidant and neurotrophic mechanisms. Neurochemistry International, v. 120, p. 33–42, 2018. LORENZETTI, V. et al. Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies. Journal of Affective Disorders, v. 117, n. 1–2, p. 1–17, 2009. LOTRICH, F. E. Inflammatory cytokine-associated depression. Brain Research, v. 1617, p. 113–125, 2015. LOTRICH, F. E.; ALBUSAYSI, S.; FERRELL, R. E. Brain-derived neurotrophic factor serum levels and genotype: Association with depression during interferon-α treatment. Neuropsychopharmacology, v. 38, n. 6, p. 985–995, 2013. LUSSIER, A. L. et al. The progressive development of depression-like behavior in corticosterone-treated rats is paralleled by slowed granule cell maturation and decreased reelin expression in the adult dentate gyrus. Neuropharmacology, v. 71, p. 174–183, 2013. MACLAUGHLIN, B. W. et al. Stress biomarkers in medical students participating in a Mind Body medicine skills program. Evidence-based Complementary and Alternative Medicine, v. 2011, n. Article ID 950461, p. 8 pages, 2011. MAES, M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 3, p. 664–675, 2011. MAHEU, F. S. et al. Differential Effects of Adrenergic and Corticosteroid Hormonal Systems on Human Short- and Long-Term Declarative Memory for Emotionally Arousing Material. Behavioral Neuroscience, v. 118, n. 2, p. 420–428, 2004. MALBERG, J. E. et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. The Journal of Neuroscience, v. 20, n. 24, p. 9104–9110, 2000. MALEK, H. et al. Dynamics of the HPA axis and inflammatory cytokines: Insights from mathematical modeling. Computers in Biology and Medicine, v. 67, p. 1–12, 2015. MANIKOWSKA, K. et al. The influence of mianserin on cytokines plasma levels in rats under chronic mild stress. Pharmacological Reports, p. 22–27, 2014. MARKS, W.; FOURNIER, N. M.; KALYNCHUK, L. E. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength. Physiology & Behavior, v. 98, n. 1–2, p. 67–72, 2009. MARKS, W. N. et al. The effect of chronic corticosterone on fear learning and memory depends on dose and the testing protocol. Neuroscience, v. 289, p. 324–333, 19 mar. 2015.

Page 122: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

120

MARTEL, G.; JAFFARD, R.; GUILLOU, J. Identification of hippocampus-dependent and hippocampus independent memory components in step-down inhibitory avoidance tasks. Behavioural Brain Research, v. 207, p. 138–143, 2010. MARTINO, M. et al. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance. Current Neuropharmacology, v. 10, n. 2, p. 97–123, 2012. MCEWEN, B. S. et al. Mechanisms of stress in the brain. Nature Neuroscience, v. 18, n. 10, p. 1353–1363, 2015. MCEWEN, B. S.; MORRISON, J. H. The Brain on Stress: Vulnerability and Plasticity of the Prefrontal Cortex over the Life Course. Neuron, v. 79, n. 1, p. 16–29, 2013. MCINTYRE, R. S. et al. Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, v. 30, n. 6, p. 515–527, 2013. MELO, C. T. V. et al. Evidence for the involvement of the serotonergic, noradrenergic, and dopaminergic systems in the antidepressant-like action of riparin III obtained from Aniba riparia (Nees) Mez (Lauraceae) in mice. Fundamental & Clinical Pharmacology, v. 27, n. 1, p. 104–112, fev. 2013. MELO, C. T. V. DE et al. Anxiolytic-like effects of (O-methyl)-N-2,6-dihydroxybenzoyl-tyramine (riparin III) from Aniba riparia (Nees) Mez (Lauraceae) in mice. Biological & pharmaceutical Bulletin, v. 29, n. 3, p. 451–454, 2006. MÉNARD, C.; HODES, G. E.; RUSSO, S. J. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, v. 321, p. 138–162, 2016. MICOULAUD-FRANCHI, J.-A. et al. Sensory Gating Capacity and Attentional Function in Adults With ADHD. Journal of Attention Disorders, p. 108705471662971, 19 fev. 2016. MILLER, A. H.; MALETIC, V.; RAISON, C. L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biological Psychiatry, v. 65, n. 9, p. 732–741, 2009. MILLER, B. R.; HEN, R. The Current State of the Neurogenic Theory of Depression and Anxiety. Current Opinions in Neurobiology, v. 0, n. February, p. 51–58, 2015. MILLER, E. K. The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, v. 1, n. 1, p. 59–65, 2000. MITRA, R.; SAPOLSKY, R. M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proceedings of the National Academy of Sciences, v. 105, n. 14, p. 5573–5578, 2008. MIURA, H. et al. A link between stress and depression: Shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress, v. 11, n. 3, p. 198–209, 2008.

Page 123: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

121

MORRIS, M. C.; COMPAS, B. E.; GARBER, J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clinical Psychology Review, v. 32, n. 4, p. 301–315, 2012. MOY, S. S. et al. Sociability and preference for social novelty in five inbred strains: An approach to assess autistic-like behavior in mice. Genes, Brain and Behavior, v. 3, n. 5, p. 287–302, 2004. MOYLAN, S. et al. Oxidative & nitrosative stress in depression: Why so much stress? Neuroscience and Biobehavioral Reviews, v. 45, p. 46–62, 2014. MÜLLER, C. et al. Effects of corticosterone pellets on baseline and stress-induced corticosterone and corticosteroid-binding-globulin. General and Comparative Endocrinology, v. 160, n. 1, p. 59–66, 2009. MURRAY, F.; SMITH, D. W.; HUTSON, P. H. Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. European Journal of Pharmacology, v. 583, n. 1, p. 115–127, 2008. MYINT, A. M. et al. Th1, Th2, and Th3 cytokine alterations in major depression. Journal of Affective Disorders, v. 88, n. 2, p. 167–173, 2005. MYINT, K. et al. Cortisol, β-endorphin and oxidative stress markers in healthy medical students in response to examination stress. Biomedical Research (India), v. 28, n. 8, p. 3774–3779, 2017. NASCIMENTO, O. A. et al. Pharmacological Properties of Riparin IV in Models of Pain and Inflammation. Molecules (Basel, Switzerland), v. 21, n. 12, p. 1–14, 2016. NESTLER, E. J. et al. Preclinical Models: Status of Basic Research in Depression. Biological Psychiatry, v. 52, p. 503–528, 2002. NIKKHESLAT, N. et al. Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain, Behavior, and Immunity, v. 48, p. 8–18, 1 ago. 2015. NIKKHESLAT, N.; PARIANTE, C. M.; ZUNSZAIN, P. A. Neuroendocrine Abnormalities in Major Depression: An Insight Into Glucocorticoids, Cytokines, and the Kynurenine Pathway. In: BAUNE, B. T. (Ed.). . Inflammation and Immunity in Depression: Basic Science and Clinical Applications. [s.l.] Elsevier Inc., 2018. p. 45–60. NOVKOVIC, T.; MITTMANN, T.; MANAHAN-VAUGHAN, D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus, v. 16, 2015. O’BRIEN, S. M. et al. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. Journal of Psychiatric Research, v. 41, n. 3–4, p. 326–331, 2007. OGŁODEK, E. et al. The role of the neuroendocrine and immune systems in the pathogenesis

Page 124: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

122

of depression. Pharmacological Reports, v. 66, n. 5, p. 776–781, 2014. OLESCOWICZ, G. et al. Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 81, n. August 2017, p. 395–407, 2018. OLIVEIRA, I. C. M. Efeitos centrais da riparina I de aniba riparia (Ness) Mez (Lauraceae) em modelos comportamentais de ansiedade, depressão, sono e convulsão em camundongos. [s.l.] Universidade Federal do Ceará, 2012. OLIVEIRA, I. C. M. Riparina-I na reversão dos Efeitos Centrais Induzidos por Corticosterona em Camundongos: Possível Envolvimento do Estresse Oxidativo e da Via Nitrérgica. [s.l.] Universidade Federal do Ceará, 2017. ORTIZ, J. B. et al. BDNF and TrkB Mediate the Improvement from Chronic Stress-induced Spatial Memory Deficits and CA3 Dendritic Retraction. Neuroscience, v. 388, p. 330–346, 2018. OZCAN, M. et al. Antioxidant enzyme activities and oxidative stress in affective disorders. Internation Clinical Psychopharmacological, v. 19, n. 2, p. 89–95, 2004. PALANZA, P. Animal models of anxiety and depression: how are females different? Neuroscience and Biobehavioural Reviews, v. 25, n. 3, p. 219–233, 2001. PALTA, P. et al. Depression and Oxidative Stress: Results From a Meta-Analysis of Observational Studies. Psychosomatic Medicine, v. 76, n. 1, p. 12–19, 2014. PARIANTE, C. M. et al. Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinology, v. 29, n. 4, p. 423–447, 2004. PATEL, P. The Efficacy of Antidepressants in Alleviating Anhedonia in Depressed Patients. Undergraduate Honors Thesis Collection, 350, 2016. PEREIRA-FIGUEIREDO, I. et al. Sex Differences in the Effects of Sertraline and Stressors in Rats Previously Exposed to Restraint Stress. Journal of Biomedical Science and Engineering, v. 8, p. 399–419, 2015. PEREIRA-FIGUEIREDO, I. et al. Long-Term Sertraline Intake Reverses the Behavioral Changes Induced by Prenatal Stress in Rats in a Sex-Dependent Way. Frontiers in Behavioral Neuroscience, v. 11, n. May, p. 1–11, 2017. PEREIRA, M. M. et al. The antioxidant gallic acid induces anxiolytic-, but not antidepressant-like effect, in streptozotocin-induced diabetes. Metabolic Brain Disease, v. 33, n. 5, p. 1573–1584, 2018. PHILLIPS, M. A. et al. The effects of some antidepressant drugs on prepulse inhibition of the acoustic startle (eyeblink) response and the N1/P2 auditory evoked response in man. Journal of Psychopharmacology, v. 14, n. 1, p. 40–45, 1 jan. 2000. PINTO, E. F.; ANDRADE, C. Interferon-Related Depression: A Primer on Mechanisms,

Page 125: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

123

Treatment, and Prevention of a Common Clinical Problem. Current Neuropharmacology, v. 14, p. 743–748, 2016. PORSOLT, R. D.; BERTIN, A.; JALFRE, M. Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Thérapie, v. 229, n. 2, p. 327–36, out. 1977. PRASAD, S. et al. Impact of stress on oocyte quality and reproductive outcome. Journal of Biomedical Science, v. 23, p. 36, 29 mar. 2016. PRUT, L.; BELZUNG, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, v. 463, n. 1, p. 3–33, 2003. QI, C. C. et al. Interaction of basolateral amygdala, ventral hippocampus and medial prefrontal cortex regulates the consolidation and extinction of social fear. Behavioral and Brain Functions, v. 14, n. 1, p. 1–13, 2018. QUERVAIN, D. J. F. DE et al. Glucocorticoids and the regulation of memory in health and disease. Frontiers in Neuroendocrinology, v. 30, n. 3, p. 358–370, 2009. QUERVAIN, D. DE; SCHWABE, L.; ROOZENDAAL, B. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nature Reviews Neuroscience, v. 18, n. 1, p. 7–19, 2017. RACAGNI, G.; POPOLI, M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues in Clinical Neuroscience, v. 10, n. 4, p. 385–400, 2008. RASHIDY-POUR, A. et al. The effects of acute restraint stress and dexamethasone on retrieval of long-term memory in rats: An interaction with opiate system. Behavioural Brain Research, v. 154, n. 1, p. 193–198, 2004. RIVEST, S. Interactions between the immune and neuroendocrine systems. In: MARTINI, L. (Ed.). . Progress in Brain Research. 1. ed. [s.l.] Elsevier, 2010. v. 181p. 43–53. ROHLEDER, C. et al. The Functional Networks of Prepulse Inhibition: Neuronal Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats. Frontiers in Behavioral Neuroscience, v. 10, n. July, p. 1–10, 2016. ROHLEDER, N.; WOLF, J. M.; WOLF, O. T. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neuroscience and Biobehavioral Reviews, v. 35, n. 1, p. 104–114, 2010. ROOMRUANGWONG, C. et al. Activated neuro-oxidative and neuro-nitrosative pathways at the end of term are associated with inflammation and physio-somatic and depression symptoms, while predicting outcome characteristics in mother and baby. Journal of Affective Disorders, v. 223, n. June, p. 49–58, 2017. SAHAY, A.; HEN, R. Adult hippocampal neurogenesis in depression. Nature Neuroscience, v. 10, n. 9, p. 1110–1115, 2007.

Page 126: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

124

SALIM, S. Oxidative Stress and the Central Nervous System. Journal of Pharmacology and Experimental Therapeutics, v. 360, n. January, p. 201–205, 2017. SANDI, C.; HALLER, J. Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nature Reviews Neuroscience, v. 16, n. May, p. 290–304, 2015. SAVEANU, R. V.; NEMEROFF, C. B. Etiology of Depression: Genetic and Environmental Factors. Psychiatric Clinics of North America, v. 35, n. 1, p. 51–71, mar. 2012. SCHIEPERS, O. J. G.; WICHERS, M. C.; MAES, M. Cytokines and major depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, v. 29, p. 201–217, 2005. SCHILLING, T. M. et al. For whom the bell ( curve ) tolls : Cortisol rapidly affects memory retrieval by an inverted U-shaped dose — response relationship. Psychoneuroendocrinology, v. 38, p. 1565–1572, 2013. SCHOENFELD, T. J.; CAMERON, H. A. Adult neurogenesis and mental illness. Neuropsychopharmacology Reviews, v. 40, n. 1, p. 113–128, 2015. SCHOLES, K. E.; MARTIN-IVERSON, M. T. Relationships between prepulse inhibition and cognition are mediated by attentional processes. Behavioural Brain Research, v. 205, n. 2, p. 456–467, 2009. SCHÜLE, C. et al. Hypothalamic-pituitary-adrenocortical system dysregulation and new treatment strategies in depression. Expert Review of Neurotherapeutics, v. 9, n. 7, p. 1005–1019, 2009. SCHWABE, L.; WOLF, O. T.; OITZL, M. S. Memory formation under stress: Quantity and quality. Neuroscience and Biobehavioral Reviews, v. 34, n. 4, p. 584–591, 2010. SCHWARCZ, R. et al. Kynurenines in the mammalian brain: when physiology meets pahtology. Nature Reviews Neuroscience, v. 13, n. 7, p. 465–477, 2012. SEDLAK, J.; LINDSAY, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical biochemistry, v. 25, n. 1, p. 192–205, 24 out. 1968. SEO, J. S. et al. Cellular and molecular basis for stress-induced depression. Molecular Psychiatry, v. 22, p. 1440–1447, 2017. SHEN, J. D. et al. Berberine up-regulates the BDNF expression in hippocampus and attenuates corticosterone-induced depressive-like behavior in mice. Neuroscience Letters, v. 614, p. 77–82, 2016. SHIMIZU, E. et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biological Psychiatry, v. 54, n. 1, p. 70–75, 2003. SILVA, M. C. C. et al. Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Progress in Neuro-Psychopharmacology

Page 127: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

125

and Biological Psychiatry, v. 64, p. 142–148, 2016. SILVA, M. T. et al. Prevalence of depression morbidity among Brazilian adults : a systematic review and meta-analysis. Revista Brasileira de Psiquiatria, v. 36, n. 3, p. 262–270, 2014. SINGHAL, G. et al. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Frontiers in Neuroscience, v. 8, n. October, p. 1–13, 2014. SKÓRZEWSKA, A. et al. The effects of acute and chronic administration of corticosterone on rat behavior in two models of fear responses, plasma corticosterone concentration, and c-Fos expression in the brain structures. Pharmacology Biochemistry and Behavior, v. 85, n. 3, p. 522–534, 2006. SKÓRZEWSKA, A. et al. The effect of chronic administration of corticosterone on anxiety- and depression-like behavior and the expression of GABA-A receptor alpha-2 subunits in brain structures of low- and high-anxiety rats. Hormones and Behavior, v. 65, n. 1, p. 6–13, 2014. SMEETS, T. et al. True or false ? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology, v. 33, p. 1378–1386, 2008. SOLÉ, B. et al. Cognition as a target in major depression: New developments. European Neuropsychopharmacology, v. 25, n. 2, p. 231–247, 2015. SOUSA, C. N. S. DE et al. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression. Psychiatry Research, v. 230, n. 2, p. 211–219, 2015. SOUSA, F. C. F. DE et al. Antianxiety Effects of Riparin I from Aniba riparia (Nees) Mez (Lauraceae) in Mice. Phyototherapy Research, v. 19, n. 1, p. 1005–1008, 2005. SOUSA, F. C. F. DE et al. Evaluation of effects of N-(2-hydroxybenzoyl) tyramine (riparin II) from Aniba riparia (NEES) MEZ (Lauracea) in anxiety models in mice. Biological & pharmaceutical bulletin, v. 30, n. 7, p. 1212–1216, 2007. SOUSA, F. C. F. et al. Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacology Biochemistry and Behavior, v. 78, n. 1, p. 27–33, 2004. SOUSA, N. et al. Reorganization of the Morphology of Hippocampal Neurites and Synapses After Stress-Induced Damage Correlates With Behavioral Improvement. Neuroscience, v. 97, n. 2, p. 253–266, 2000. SOUSA, N.; CERQUEIRA, J. J.; ALMEIDA, O. F. X. Corticosteroid receptors and neuroplasticity. Brain Research Reviews, v. 57, n. 2, p. 561–570, 2008. SOUSA, N.; MADEIRA, M. D.; PAULA-BARBOSA, M. M. Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An

Page 128: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

126

unbiased stereological study. Brain Research, v. 794, n. 2, p. 199–210, 1998. SOUTHWICK, S. M.; VYTHILINGAM, M.; CHARNEY, D. S. The Psychobiology of Depression and Resilience to Stress: Implications for Prevention and Treatment. Annual Review of Clinical Psychology, v. 1, p. 255–291, 2005. STANIĆ, D. et al. Hydrogen peroxide-induced oxidative damage in peripheral blood lymphocytes from rats chronically treated with corticosterone: The protective effect of oxytocin treatment. Chemico-Biological Interactions, v. 256, p. 134–141, 2016. STEPHENS, M. A. C.; WAND, G. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol research : current reviews, v. 34, n. 4, p. 468–83, 2012. STERNER, E. Y.; KALYNCHUK, L. E. Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: Relevance to depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 34, n. 5, p. 777–790, 2010. STERU, L. et al. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, v. 85, n. 3, p. 367–70, 1985. STIER, K. S. et al. Effects of corticosterone on innate and humoral immune functions and oxidative stress in barn owl nestlings. Journal of Experimental Biology, v. 212, p. 2085–2091, 1 jul. 2009. STREKALOVA, T. et al. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology, v. 29, n. 11, p. 2007–2017, nov. 2004. STURM, K. Prepulse Inhibition of the Acoustic Startle Reflex: Comparing Low and High Trait Anxious Individuals. [s.l.] University of Mississipi, 2014. SUTCIGIL, L. et al. Pro- and anti-inflammatory cytokine balance in major depression: Effect of sertraline therapy. Clinical and Developmental Immunology, v. 2007, p. Article ID 76396, 2007. SWAAB, D. F.; BAO, A. M.; LUCASSEN, P. J. The stress system in the human brain in depression and neurodegeneration. Ageing Research Reviews, v. 4, n. 2, p. 141–194, 2005. SWERDLOW, N. R. et al. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl), v. 199, n. 3, p. 331–388, 2009. SWERDLOW, N. R. Prepulse Inhibition of Startle in Humans and Laboratory Models. Encyclopedia of Neuroscience, p. 947–955, 2009. TAFET, G. E.; BERNARDINI, R. Psychoneuroendocrinological links between chronic stress and depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 27, n. 6, p. 893–903, 2003. TEIXEIRA, C. P. L. et al. Antidepressant-like effect of riparin II from Aniba riparia in mice:

Page 129: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

127

evidence for the involvement of the monoaminergic system. Fundamental and Clinical Pharmacology, v. 27, n. 2, p. 129–137, abr. 2013. TERFEHR, K. et al. Hydrocortisone impairs working memory in healthy humans, but not in patients with major depressive disorder. Psychopharmacology, v. 215, n. 1, p. 71–79, 16 maio 2011. THOMAS, J.; KHANAM, R.; VOHORA, D. Augmentation of antidepressant effects of venlafaxine by agomelatine in mice are independent of kynurenine pathway. Neurochemistry International, v. 99, p. 103–109, 2016. TREADWAY, M. T.; ZALD, D. H. Reconsidering Anhedonia in Depression: Lessons from Translational Neuroscience. Neuroscience and Biobehavioral Reviews, v. 35, n. 3, p. 537–555, 2011. TSIGOS, C.; CHROUSOS, G. P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, v. 53, n. 4, p. 865–871, 2002. VALLE, A.; OLIVER, J.; ROCA, P. Role of uncoupling proteins in cancer. Cancers, v. 2, n. 2, p. 567–591, 2010. VAN ERP, A. M. M. et al. Effect of environmental stressors on time course, variability and form of self-grooming in the rat: Handling, social contact, defeat, novelty, restraint and fur moistening. Behavioural Brain Research, v. 65, n. 1, p. 47–55, 1994. VASCONCELOS, A. S. et al. Subchronic administration of riparin III induces antidepressive-like effects and increases BDNF levels in the mouse hippocampus. Fundamental and Clinical Pharmacology, v. 29, n. 4, p. 394–403, 2015. VERÍSSIMO, G.; BAST, A.; WESELER, A. R. Monomeric and oligomeric flavanols maintain the endogenous glucocorticoid response in human macrophages in pro-oxidant conditions in vitro. Chemico-Biological Interactions, v. 291, p. 237–244, 1 ago. 2018. WAGER-SMITH, K.; MARKOU, A. Depression: A repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neuroscience and Biobehavioral Reviews, v. 35, n. 3, p. 742–764, 2011. WALESIUK, A.; TROFIMIUK, E.; BRASZKO, J. J. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacological Research, v. 53, p. 123–128, 2006. WANG, J. L. et al. The relationship between work stress and mental disorders in men and women: findings from a population-based study. Journal of Epidemiology and Community Health, v. 62, n. 1, p. 42–47, jan. 2008. WANG, Z.-J. et al. Correlations between depression behaviors and sleep parameters after repeated corticosterone injections in rats. Acta Pharmacologica Sinica, v. 35, p. 879–888, jul. 2014. WARNER-SCHMIDT, J. L.; DUMAN, R. S. Hippocampal neurogenesis: Opposing effects of

Page 130: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

128

stress and antidepressant treatment. Hippocampus, v. 16, n. 3, p. 239–249, 2006. WIGNER, P. et al. The molecular aspects of oxidative & nitrosative stress and the tryptophan catabolites pathway (TRYCATs) as potential causes of depression. Psychiatry Research, v. 262, n. April 2017, p. 566–574, 2018. WILKINS, K. M.; OSTROFF, R.; TAMPI, R. R. Efficacy of electroconvulsive therapy in the treatment of nondepressed psychiatric illness in elderly patients: A review of the literature. Journal of Geriatric Psychiatry and Neurology, v. 21, n. 1, p. 3–11, 2008. WILLNER, P. Chronic mild stress (CMS) revisited: Consistency and behavioural- neurobiological concordance in the effects of CMS. Neuropsychobiology, v. 52, n. 2, p. 90–110, 2005. WILLNER, P.; MUSCAT, R.; PAPP, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neuroscience & Biobehavioral Reviews, v. 16, n. 4, p. 525–534, 1992. WILLNER, P.; SCHEEL-KRÜGER, J.; BELZUNG, C. The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews, v. 37, n. 10, p. 2331–2371, 2013. WINGENFELD, K.; WOLF, O. T. Effects of cortisol on cognition in major depressive disorder, posttraumatic stress disorder and borderline personality disorder - 2014 Curt Richter Award Winner. Psychoneuroendocrinology, v. 51, p. 282–295, 2015. WOLKOWITZ, O. M. et al. Serum BDNF levels before treatment predict SSRI response in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 7, p. 1623–1630, 2011. WOO, N. H.; LU, B. BDNF in Synaptic Plasticity and Memory. Encyclopedia of Neuroscience, p. 135–143, 2009. WORKMAN, J. L.; CHAN, M. Y. T.; GALEA, L. A. M. Prior high corticosterone exposure reduces activation of immature neurons in the ventral hippocampus in response to spatial and nonspatial memory. Hippocampus, v. 25, n. 3, p. 329–344, 1 mar. 2015. WORLD HEALTH ORGANIZATION. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization, 2017. YAMADA, K. et al. The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice. Journal of Pharmacology and Experimental Therapeutics, v. 276, n. 2, p. 460–466, 1996. YANG, L. et al. The Effects of Psychological Stress on Depression. Current Neuropharmacology, v. 13, n. 4, p. 494–504, 2015. YILMAZ, Y.; TOLEDO, R. T. Major Flavonoids in Grape Seeds and Skins: Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food Chemistry, v. 52, n. 2, p. 255–260, 2004.

Page 131: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

129

YIN, X.; GUVEN, N.; DIETIS, N. Stress-based animal models of depression: Do we actually know what we are doing? Brain Research, v. 1652, n. May, p. 30–42, 2016. YOUNG, J. J.; BRUNO, D.; POMARA, N. A review of the relationship between proinflammatory cytokines and major depressive disorder. Journal of Affective Disorders, v. 169, p. 15–20, 2014. ZAFIR, A.; BANU, N. Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress, v. 12, n. 2, p. 167–177, 2009a. ZAFIR, A.; BANU, N. Induction of oxidative stress by restraint stress and corticosterone treatments in rats. Indian Journal of Biochemistry and Biophysics, v. 46, n. 1, p. 53–58, 2009b. ZANARDI, R. et al. Venlafaxine Versus Fluvoxamine in the Treatment of Delusional Depression: A Pilot Double-Blind Controlled Study. The Journal of Clinical Psychiatry, v. 61, n. 1, p. 26–29, 2000. ZENI, A. L. B.; CAMARGO, A.; DALMAGRO, A. P. Ferulic acid reverses depression-like behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids, v. 125, n. May, p. 131–136, 2017. ZHAO, Y. et al. A mouse model of depression induced by repeated corticosterone injections. European Journal of Pharmacology, v. 581, n. 1–2, p. 113–120, 2008. ZHAO, Y. et al. The varying effects of short-term and long-term corticosterone injections on depression-like behavior in mice. Brain Research, v. 1261, n. 1999, p. 82–90, 2009. ZHU, S. et al. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice. NeuroReport, v. 25, n. 14, 2014. ZOLADZ, P. R. et al. Tianeptine: an antidepressant with memory-protective properties. Current Neuropharmacology, v. 6, n. 4, p. 311–321, dez. 2008. ZUNSZAIN, P. A. et al. Glucocorticoids, cytokines and brain abnormalities in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 3, p. 722–729, 2011.

Page 132: Tese Raquell de Castro Chaves - UFC€¦ · mg/kg) or distilled water vehicle, by gavage, one hour after the subcutaneous injections. At the end of dosing schedule, neurobehavioral

130

ANEXO A – SUBMISSÃO DE ARTIGO CIENTÍFICO A REVISTA

Pharmacology, Biochemistry and Behavior