5
Lecture 23 Modularity lifting theorem It Wiles 3 5 trick and finish of the proof Jan 6 Fermat Last Theorem The equation al be I fer l 35 prime has no nonzero integer soltis case when l 34 are treated by elementarymeans Suppose there's a sofa may assume that a b a coprime and b even a I mod 4 Steps Consider the Frey curve E y x x al x be General theory E y x e x ez x es has discriminant DE 16 e ez ea e es e So for Frey curve Oe 16 all b l El check that at p I ab c p z has multiplicative reduction e g p l a y x 2 x be plc y x x al 5 so µy at p z Use a different Weierstrass model y xy x't b x bl multiplicativereduction TE Timid 2 XZ or 0 General recipe conductor of E is NE square freeproduct of all primes dividing abc key lemma fee Gallo Aut Ell Gk Fe is unramified atodd primes pl Ne p te Proof Analogousto thecomplex theory that E E 142 z E q2 The value of q is determined by the j invariant of E j E

The al Ibicmr.pku.edu.cn/~lxiao/2020fall/Lecture23.pdf · 2020. 12. 31. · Lecture 23 Modularityliftingtheorem It Wiles 3 5trickandfinishoftheproof Jan6 FermatLastTheorem Theequation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Lecture23 Modularity liftingtheorem It Wiles 3 5trickandfinishoftheproofJan 6

    FermatLastTheorem Theequation al be I fer l 35 primehasno nonzerointegersoltiscasewhen l 3 4 are treatedbyelementarymeans

    Supposethere's asofa mayassumethat a b a coprime and b even a Imod4

    Steps Considerthe Freycurve E y x x al x be

    Generaltheory E y x e x ez x es hasdiscriminant

    DE 16 e ez ea e es e

    SoforFreycurve Oe 16 all b l Elcheckthat at pIabc p z hasmultiplicativereduction

    e g pl a y x2 x be

    plc y x x al5 so µyat p z Use a differentWeierstrassmodel

    y xy x'tb

    x blmultiplicativereduction

    TE Timid2XZor 0Generalrecipe conductorof E is NE squarefreeproductofallprimesdividingabckeylemma fee Gallo Aut Ell GkFe isunramifiedatoddprimesplNe

    pteProof AnalogoustothecomplextheorythatE E 142 z E q2Thevalueofq isdeterminedbythej invariantofE j E

  • g g j of jas of j t 744J t

    when Ehasmultiplicativereductionat p we canwrite

    E Otp OFFIga note yfqj.eu upo zlThentheGal pactinon Ele canbeseenusing1 a pep Ele Ip get74g 1

    U

    Cpefte e p UH

    Theinertiasubgroupcutstrivially ongte ifVpCj werenotdivisiblebyetheng'tI pureIqswillhaveSo fee is unramifiedat p non trivialcutin

    Remade Similarargument butmoresophiscated showsthat

    if e labc ECe corresponds to aFontaineLaffittemoduleofwto 1

    Steps Modularitytheorem Wileswork

    theorem E ismodular i e E is associatedto acuspidaleigenformf in Sa TowStep Continuousoddirreduciblerephsp Gatos aGk ft ismodular

    Biginput LanglandsTunnell supposethatp Gato Gk E is acontinuousinedrepnwhoseimage in PGL IC is asubgroupofS4 detCpCa t

    Thenthereexists a normalized cuspidaleigenformglop Ebitofweight 1 level Ti Nst.bg trace pffrobof for9TN

    Coincidencefor l There's afaithfulrepresentation4 Gb Fz GHZFT E G Es.t trlycgD trig modGtf tgeGutsdet CgD detg mod3

    Explicitly 4 f i 1 f 1 x 1 El

  • I J t kaol f o 447 f oSogiven f Hop Galo GkCFD Gk ICE eGh

    7modularformglopofweight 1st by trCfCFrobot modEtf wheffnMoreover as pi is ramifiedat 3 as deff Kydmod3 whichisramified

    31 level NofgConsider a weight1 level IT 3 Eisensteinseries

    EH It 6 X d eint where X d f f ifif D IG

    Sotheproductglzs.EE hasweight 2 e eSafTolNDMoreover aq GG EG boy trCpFrobop mod Itf

    Sog z EG C SzTocNDmp

    e

    I canfind an eigenformflophere

    f ismodular

    Step2b If for our elliptic curve E Fez is irreducible then E ismodularTabsolutely irreducible

    otherwiseuptoconjugation fe.siGal Ff E G Gfs

    Y x Idetcomplex Asconjugal

    mustmapto 1yetdetcfe.deD 1

    ByStep2 a fe s ismodularmodularityliftingtheorem E is also

    modular

    Step Supposethat fez isreducibleTheoen Wiles 3 5trick In thiscase wehavethefollowing

    Either E is alreadymodular

  • or a pang

    E 5 irreducible

    b 7 A 10 anotherellipticcurve semistable s t

    FE5 E FA5

    FAis irreducible

    Proof Firstassumethatpens isreduciblethen Els has a nontrivialsubgroupfixedbyGato

    E15 GalQEdefines a Q point on Xo45

    Xo 15 y2txy y x31 2 tox to

    Tact Xo15 Q C t o 8 I8 7 7422 7442

    fouroftherationalpoints are cusps 0 co toTheotherfourpoints a ellipticcurves areknowntobemodular

    LMFDB.org labeling 50at 50a2 50 a3 50a4

    If E isnoneofabove Fes isabsolutelyirreducibleProofof b Consider Y 5 EX't5

    asmodulispare p f Afp AIR elliptic curvesEC53 Af5 preservingWeilpairingThis is an innerformof XGGDassociated to

    f Es Gato Gk Es E Auto XfCsssuchinnerforms are classifiedby H Gato Antos XGGha

    Yetgenus x 5 genus XC5 oE EX't5 QXIsHoi PYothere are infinitemanyelliptic curves satisfying b

    For b consideranothermodular curve

  • Y't5 3 i R ta f AIR gAB 4 EYE51GEAID gelicsulgpoforder3

    SoanyQ pointof y153 willsatisfies b butnotCbsYet genus YC5,3 1

    bio over E YC5 3 T 5 nToDTfByFaltingsproofofModell'sconjecture YCs3 hasonlyfinitelymanyQptsinfinitelymanyelliptic curves satisfiesCbs

    Rmd Semistableconditions are openconditions

    Steps E s f ESa ToN1 yet Fee Ffe is unramifiedat odd primesplNRibet's level loweringthan a gESaTOG st f g mod l

    needmorebackgroundthat wecan'tcovergiventhetimeofthissemester

    StephThere's no nonzero cuspfour on XoG of wt 2