The biodegradation of monomeric and dimeric alkylammonium surfactants

Embed Size (px)

Text of The biodegradation of monomeric and dimeric alkylammonium surfactants

  • R

    Ta

    BL

    h

    a

    ARRAA

    KBQGW

    C

    mcthcDEits

    h0

    Journal of Hazardous Materials 280 (2014) 797815

    Contents lists available at ScienceDirect

    Journal of Hazardous Materials

    j o ur nal ho me pa ge: www.elsev ier .com/ locate / jhazmat

    eview

    he biodegradation of monomeric and dimericlkylammonium surfactants

    ogumi Brycki , Magorzata Waligrska, Adrianna Szulcaboratory of Microbiocides Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznan 60-780, Poland

    i g h l i g h t s

    The biodegradation of alkylammonium surfactants is described and discussed.The degradation process is very complex and depends on many factors.Monomeric and dimeric alkylammonium surfactants are hard to be degraded.Amide, peptide or carbohydrate substituents facilitate the biodegradation.

    r t i c l e i n f o

    rticle history:eceived 20 May 2014eceived in revised form 29 July 2014ccepted 6 August 2014vailable online 24 August 2014

    eywords:iodegradationuaternary alkylammonium salts

    a b s t r a c t

    Quaternary ammonium compounds (QACs) are salts known for having antiseptic and disinfectant prop-erties. These compounds are toxic to aquatic organisms and should thus be removed from wastewaterbefore its discharge into surface waters. The biodegradation of QACs takes place in the presence ofmicroorganisms under aerobic conditions. The susceptibility of these compounds to degradation dependson numerous parameters. A number of them, such as the structure-adsorption on solids, and con-centration of the QACs, as well as the presence of additional substances, have been reviewed in thisarticle. Moreover, the biodegradability of new dimeric alkylammonium salts, i.e., cationic gemini surfac-tants, has been discussed and compared with that of anionic and nonionic geminis. The biodegradationemini surfactantsastewater treatment

    study of monomeric and dimeric alkylammonium surfactants show that they are not easily degraded.The degradation process is very complex and strongly depends on the structure of the compound,adsorptiondesorption processes on sludge, type of microorganism consortia and the presence of anions.Alkylammonium surfactants with biological motifs, like amide, peptides or carbohydrates, are muchbetter degraded.

    2014 Elsevier B.V. All rights reserved.ontents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Biodegradation of quaternary alkylammonium salts . . . . . . . . . . . . . . . . . . . . . .

    Abbreviations: ACh-Cl, acetylcholine chloride; AnBUSDiC, test anaerobic biodeonium compounds; BAC, benzalkonium chloride; BNR, biologic nitrogen removahloride; C10TMAC, decyltrimethylammonium chloride; C12BAC, dodecylbenzyldimethyetradecylbenzyldimethylammonium chloride; C14TMAC, tetradecyltrimethylammoniuexadecyltrimethylammonium bromide; C16TMAC, hexadecyltrimethylammonium chyltrimethylammonium chloride; C22TMAC, docosyltrimethylammonium chloride; CMC,EEDMAC, diethylesterdimethylammonium chloride; DOC, dissolved organic carbon; Dcotoxicology and Toxicology of Chemicals; FEC, first effect concentration; HEQ, Hamburgnhibition constant; LAS, linear alkylbenzene sulphonate; LCh-Cl, lauroylcholine chloride; Mional Trade and Industry-Japan; OECD, Organization for Economic Co-operation and Develudge; SDS, sodium dodecyl sulphate; SRT, solid retention time; VSS, volatile suspended Corresponding author. Tel.: +48 61 829 1314; fax: +48 61 829 1505.

    E-mail address: brycki@amu.edu.pl (B. Brycki).

    ttp://dx.doi.org/10.1016/j.jhazmat.2014.08.021304-3894/ 2014 Elsevier B.V. All rights reserved.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

    gradation under sludge digester conditions test; ATMAC, alkyltrimethylam-l; BOD, biochemical oxygen demand; C10DMAC, didecyldimethylammoniumlammonium chloride; C12TMAC, dodecyltrimethylammonium chloride; C14BAC,m chloride; C16BAC, hexadecylbenzyldimethylammonium chloride; C16TMAB,loride; C18DMAC, dioctadecyldimethylammonium chloride; C18TMAC, octade-

    critical micelle concentration; DADMAC, dialkyldimethylammonium compounds;TDMAC, ditallowdimethylammonium chloride; ECETOC, European Centre for the

    ester quat; ISO, International Organization for Standardization; KI , half-saturatione, methyl group; MIC, minimal inhibitory concentration; MITI, Ministry of Interna-

    lopment; QAC, quaternary ammonium compound; SCAS, semicontinuous activated solids; WWTP, wastewater treatment plant.

    dx.doi.org/10.1016/j.jhazmat.2014.08.021http://www.sciencedirect.com/science/journal/03043894http://www.elsevier.com/locate/jhazmathttp://crossmark.crossref.org/dialog/?doi=10.1016/j.jhazmat.2014.08.021&domain=pdfmailto:brycki@amu.edu.pldx.doi.org/10.1016/j.jhazmat.2014.08.021

  • 798 B. Brycki et al. / Journal of Hazardous Materials 280 (2014) 797815

    2.1. Microorganisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8002.2. Biodegradation technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8002.3. Biodegradation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8012.4. QAC biodegradation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8022.5. Influence of QAC structure on its biodegradation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8032.6. Influence of QAC adsorption on its biodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8032.7. Influence of anions on the biodegradation of QACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8042.8. Influence of QAC concentration and microbial adaptation on QAC biodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

    3. Biodegradation of gemini surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8054. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

    . . . . . .

    1

    wpmToagipmpaitPoE

    piefsmitomsef

    iatippb

    o

    F

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . Introduction

    Quaternary ammonium compounds (QACs, quats) are moleculesith at least one long hydrophobic hydrocarbon chain linked to aositively charged nitrogen atom (Fig. 1). The other alkyl groups areostly short-chain substituents such as methyl or benzyl groups.he counter ions can be either inorganic or organic. QACs havever 10% share in a large group of surfactants, where anionicnd non-ionic surfactants combined account for roughly 85% oflobal demand for surfactants. [1]. Despite the global trend to non-onic surfactants, QACs will remain the widely used surfactants inharmaceutical and fabric softener formulations, cosmetics, com-ercial disinfectants, industrial saniters, food preservatives, andhase transfer catalysts [2]. Global demand for non-ionic, anionic,mphoteric and cationic surfactants was over 12 million tonnesn 2010 and is projected to rise by 4.5% per year until 2018o generate revenues of more than US$41 billion in 2018. Asia-acific is the largest surfactant outlet, with a roughly 37% sharef global consumption, followed by North America and Westernurope [1].Residual surfactants are discharged to wastewater treatment

    lants (WWTPs) or directly to s