2
15.5. 1968 Specialia 431 The Effect of ATP and Carnitine on the Endogenous Respiration of Mitochondria from Brown Adipose Tissue Brown adipose tissue has a very high oxygen consump- tion in vitro z and electron microscopic data show its cells to possess numerous mitochondria with many intramito- chondrial cristaeL The main role of brown adipose tissue is to produce heat 3. The lipid droplets surrounding the mitochondria 2 indicate that this heat may be produced to a large extent from lipids. Yet there are very few data on the oxidation of fatty acids by mitochondria from brown adipose tissue. Since brown adipose tissue is particulary important for heat production in the new-born period 3, the aim of this work was to define the optimum conditions for fatty acid oxidation and to search for developmental changes in the oxidation of fatty acids. Mitochondria from brown adipose tissue of rats were isolated in 0.25M saccharose, 0.01M Tris-HC1 pH 7.4, and 0.00121~r EDTA pH 7.4 in the usual way ~. Oxygen consumption by these mitochondria was determined with a Clark platinum electrode. The total volume was 3 ml, temperature 30°C, mitochondrial protein 1-2 mg/ml. Proteins were determined according to LowRY et al. ~, fatty acids according to NOVAK% CX40, was absorbed on a mixture of methyl-celosolve and ethanolamine (2:1) and radioactivity determined in a liquid scintillation counter. In agreement with the work oI SMITH et al. ~ and LI~DBERG et al. s, we have not observed phosphorylation coupled to the respiratory chain oxidation in brown-fat mitochondria isolated from 6- to 30-day-old rats. In con- trast to liver mitochondria, maximum respiratory rates were found after substrate addition (succinate or keto- glutarate) and no further activation was observed after addition of ADP or 2, 4-dinitrophenol. Exogenously supplied palmitate alone or together with malate, carnitine or CoA had no effect on the endogenous respiration of these uncoupled mitochondria. If, however, ATP and carnitin were added, the respiratory rate was increased considerably .(Figure A). This activation was much more pronounced if malate was also added (Figure B). The slight activating effect of carnitin alone (Figure C) might indicate the amount of fatty acids present as acyl- CoA esters in brown-fat mitochondria. Addition of palmi- tare in the presence of ATP and carnitin was without any effect on the respiratory rate. The fact that ATP and carnitin alone increase the respiratory rate of mitochondria from brown adipose tissue indicates that these substances make endogenous fatty acids available for oxidation. This conclusion is supported by the effect of serum albumin on the ATP- carnitin activated respiration. Addition of bovine serum albumin decreases the high respiratory rate induced by ATP and carnitin from 248 to 64 nano-atoms of oxygen per min/mg (Figure B and D) suggesting that exogenous fatty acids are bound to that substance. Palmitate added to the medium in the presence of albumin has an activa- tion effect on the respiratory rate (Figure D). Palmitate added in the absence of serum albumin evidently enters the endogenous fatty acid pool and is oxidized without further increase of overall fatty acid oxidation. This is indicated by the fact that exogenously added palmi- tate-l-C z~ is oxidized to C~4Oz, this oxidation being ATP- carnitin dependent. When 0.12 mM palmitate-l-C ~ was incubated with mitochondria from 8-day-old rats, 1700 c.p.m./mg protein were found as C140~, compared with the 12,500 c.p.m./mg in the presence of 3.3 mM ATP and 1.7 mM carnitin. During postnatal development, maximum values of respiration after addition of ATP and carnitin were found in 6- to 30-day-old rats, i.e. 205-280 nano-atoms of oxygen/min/mg protein. In new-born and old rats this activation was much smaller. In 6- to 30-day-old rats A B 0 Are~, C D CAR \ PAL ~ Arp ~o lnan0-a~m~0 \ \ , nlin , The effect of ATP, carnitine {CAR), malate (MAL), palmitate (PAL) and serum albumine on respiration of mitochondria from brown adipose tissue of 10-day-old rats. The following was added to the incubation mixture without malate (see Table): (A) ATP 3.3 mM and earnitine 1.66 raM; (B) K-malate 3.3 raM, ATP and carnitin; (C) K-malate added before mitochondria and carnitine and ATP as indicated; (D) K-malate, ATP, carnitine and bovine serum albumin 0.2% added belore mitochondria and palmitate 0.12 mM as indicated. M indicates addition of mitoehondria. The numerals indicate respira- tion expressed as nano-atoms of oxygen/min/mg protein. Respiration of brown-fat rnitochondria (nano-atoms of oxygen per mln/mg protein) Age No. of No ATP ATP Patmitate (days) experi- additions carnitin carnitin ATP ments SA" carnitin SA~ 1-2 3 19-4-2 1544-12 138 -u 8 1624-22 6-10 5 324-4 2804-53 66-4-12 1334-30 30 5 214.5 205-t-42 75-t-16 118-4-38 60 2 94.4 664. 3 62:::1= 3 55-4- I Brown adipose tissue from 8-16 rats was used for I experiment. The incubation medium contained: 56 mM KCI, 6.7 mM MgC12, 9 mM Tris.HC1 pH 7.4, 15.6 mM K-phosphate pH 7.4, 1 mM EDTA, 3.3 mM K-malate, 8 mM saecharose, 3.3 mM ATP, 1.66 mM earnitin, 0.2% SA (bovine serum albumin) and 0.12 mM palmitate added where indicated. ~ Bovine serum albumin. I C. D. JOEL) J- biol. Chem. 241,841 (1966). 2 L. NAPOLITANO and D. t~AWCETT,J. biochem, biophys. Cytol. d, 685 (1958). z M. J. R. DAWKIr~Sand D. HULL, J. Physiol. 172, 216 (1964). a W. C. SCHNEIDER and N. Y. Hoc~.noom, J. biol. Chem. 183, 123 (1950). H. O, Lowi~Y, N. Y. ROSEBROUGH, A. L. FARRand A. L RANDALL, J. biol. Chem. 193, 265 (1951). M. NOVAE, J. Lipid Res. 6, 431 (1965). 7 Ro E. SMITH, J. C. ROBERTS and K. J. HITTELI',IAN, Science 154, 635 (1966). S O. LINDBERG, J. DEPIERRE, E, RYLA.NDI~R and B, A, AFZELIUSI J. Cell Biol. 34, 293 (1967),

The effect of ATP and carnitine on the endogenous respiration of mitochondria from brown adipose tissue

Embed Size (px)

Citation preview

15.5. 1968 Specialia 431

T h e Effect of A T P and Carn i t ine on the E n d o g e n o u s R e s p i r a t i o n of M i t o c h o n d r i a f r o m B r o w n A d i p o s e T i s s u e

B r o w n ad ipose t i ssue ha s a v e r y h i g h o x y g e n c o n s u m p - t ion in v i t ro z a n d e lec t ron microscopic d a t a show i ts cells to possess n u m e r o u s m i t o c h o n d r i a w i t h m a n y i n t r a m i t o - c h o n d r i a l c r i s t aeL T h e m a i n role of b r o w n adipose t i ssue is to p roduce h e a t 3. T he l ip id d rop le t s s u r r o u n d i n g t h e m i t o c h o n d r i a 2 i nd i ca t e t h a t th i s h e a t m a y b e p r o d u c e d to a large e x t e n t f rom lipids. Y e t t h e r e a re v e r y few d a t a o n t h e o x i d a t i o n of f a t t y ac ids b y m i t o c h o n d r i a f rom b r o w n ad ipose t issue.

S ince b r o w n ad ipose t i s sue is p a r t i c u l a r y i m p o r t a n t for h e a t p r o d u c t i o n in t h e n e w - b o r n pe r iod 3, t he a i m of t h i s work was to def ine t h e o p t i m u m cond i t ions for f a t t y acid o x i d a t i o n a n d to sea rch for d e v e l o p m e n t a l changes in t h e o x i d a t i o n of f a t t y acids.

M i t o c h o n d r i a f rom b r o w n ad ipose t i ssue of r a t s were i so la ted in 0 . 2 5 M saccharose , 0 . 0 1 M Tris-HC1 p H 7.4, a n d 0.00121~ r E D T A p H 7.4 in t h e usua l w a y ~. O x y g e n c o n s u m p t i o n b y these m i t o c h o n d r i a was d e t e r m i n e d w i t h a C la rk p l a t i n u m elec t rode . T h e t o t a l v o l u m e was 3 ml, t e m p e r a t u r e 30°C, m i t o c h o n d r i a l p r o t e i n 1-2 mg /ml . P r o t e i n s were d e t e r m i n e d acco rd ing to LowRY et al. ~, f a t t y acids acco rd ing to NOVAK% CX40, was a b s o r b e d on a m i x t u r e of me thy l - ce loso lve a n d e t h a n o l a m i n e (2:1) a n d r a d i o a c t i v i t y d e t e r m i n e d in a l iquid sc in t i l l a t ion counte r .

I n a g r e e m e n t w i t h t h e w o r k oI SMITH e t al. ~ a n d LI~DBERG e t al. s, we h a v e n o t o b s e r v e d p h o s p h o r y l a t i o n coup led to t he r e s p i r a t o r y c h a i n o x i d a t i o n in b r o w n - f a t m i t o c h o n d r i a i so la ted f r o m 6- to 30-day-old ra ts . I n con- t r a s t to l iver m i t o c h o n d r i a , m a x i m u m r e s p i r a t o r y r a t e s were f o u n d a f t e r s u b s t r a t e a d d i t i o n ( succ ina te or ke to- g lu t a ra t e ) a n d no f u r t h e r a c t i v a t i o n was obse rved a f t e r a d d i t i o n of A D P or 2, 4 -d in i t ropheno l .

E x o g e n o u s l y suppl ied p a l m i t a t e a lone or t o g e t h e r w i t h ma la t e , c a r n i t i n e or CoA h a d n o effect on t he e n d o g e n o u s r e s p i r a t i o n of t he se u n c o u p l e d m i t o c h o n d r i a . If, however , A T P a n d c a r n i t i n were added , t h e r e s p i r a t o r y r a t e was inc reased c o n s i d e r a b l y . (Figure A). T h i s a c t i v a t i o n was m u c h more p r o n o u n c e d if m a l a t e was also a d d e d (F igure B). T h e s l igh t a c t i v a t i n g effect of c a r n i t i n a lone (F igure C) m i g h t i nd i ca t e t h e a m o u n t of f a t t y acids p r e s e n t as acyl- CoA es ters in b r o w n - f a t m i t o c h o n d r i a . A d d i t i o n of pa lmi - t a r e in t h e p resence of A T P a n d c a r n i t i n was w i t h o u t a n y effect on t h e r e s p i r a t o r y ra te .

T h e f ac t t h a t A T P a n d c a r n i t i n a lone increase t h e r e s p i r a t o r y r a t e of m i t o c h o n d r i a f rom b r o w n ad ipose t i s sue ind ica t e s t h a t t h e s e s u b s t a n c e s m a k e e n d o g e n o u s f a t t y ac ids ava i l ab le for ox ida t ion . Th i s conc lus ion is s u p p o r t e d b y t he effect of s e r u m a l b u m i n o n t h e A T P - c a r n i t i n a c t i v a t e d resp i ra t ion . A d d i t i o n of b o v i n e s e r u m a l b u m i n decreases t h e h i g h r e s p i r a t o r y r a t e i nduced b y A T P a n d c a r n i t i n f rom 248 to 64 n a n o - a t o m s of oxygen pe r m i n / m g (Figure B a n d D) sugges t ing t h a t exogenous f a t t y acids are b o u n d to t h a t subs t ance . P a l m i t a t e a d d e d to t h e m e d i u m in t h e p resence of a l b u m i n ha s a n a c t i v a - t i o n ef fec t o n t h e r e s p i r a t o r y r a t e (F igure D). P a l m i t a t e a d d e d in t h e absence of s e r u m a l b u m i n e v i d e n t l y en t e r s t he e n d o g e n o u s f a t t y ac id pool a n d is ox id ized w i t h o u t f u r t h e r inc rease of overa l l f a t t y acid ox ida t ion . Th i s is i n d i c a t e d b y t h e fac t t h a t exogenous ly a d d e d p a l m i - t a t e - l - C z~ is ox id ized to C~4Oz, th i s o x i d a t i o n be ing A T P - c a r n i t i n d e p e n d e n t . W h e n 0.12 m M p a l m i t a t e - l - C ~ was i n c u b a t e d w i t h m i t o c h o n d r i a f rom 8-day-old ra ts , 1700 c . p . m . / m g p r o t e i n were f o u n d as C140~, c o m p a r e d w i t h t h e 12,500 c . p . m . / m g in t h e p resence of 3.3 m M A T P a n d 1.7 m M ca rn i t i n .

D u r i n g p o s t n a t a l d e v e l o p m e n t , m a x i m u m va lues of r e sp i r a t i on a f t e r a d d i t i o n of A T P a n d c a r n i t i n were found in 6- to 30-day-old rats , i.e. 205-280 n a n o - a t o m s of o x y g e n / m i n / m g pro te in . I n n e w - b o r n a n d old r a t s th i s a c t i v a t i o n was m u c h smal ler . I n 6- to 30-day-old r a t s

A B

0 Are~, C D CAR \

PAL ~

Arp ~o lnan0-a~m~0 \

\ , nlin ,

The effect of ATP, carnitine {CAR), malate (MAL), palmitate (PAL) and serum albumine on respiration of mitochondria from brown adipose tissue of 10-day-old rats. The following was added to the incubation mixture without malate (see Table): (A) ATP 3.3 mM and earnitine 1.66 raM; (B) K-malate 3.3 raM, ATP and carnitin; (C) K-malate added before mitochondria and carnitine and ATP as indicated; (D) K-malate, ATP, carnitine and bovine serum albumin 0.2% added belore mitochondria and palmitate 0.12 mM as indicated. M indicates addition of mitoehondria. The numerals indicate respira- tion expressed as nano-atoms of oxygen/min/mg protein.

Respiration of brown-fat rnitochondria (nano-atoms of oxygen per mln/mg protein)

Age No. of No ATP ATP Patmitate (days) experi- additions carnitin carnitin ATP

ments SA" carnitin SA~

1-2 3 19-4-2 1544-12 138 -u 8 1624-22 6-10 5 324-4 2804-53 66-4-12 1334-30

30 5 214 .5 205-t-42 75-t-16 118-4-38 60 2 9 4 . 4 664. 3 62:::1= 3 55-4- I

Brown adipose tissue from 8-16 rats was used for I experiment. The incubation medium contained: 56 mM KCI, 6.7 mM MgC12, 9 mM Tris.HC1 pH 7.4, 15.6 mM K-phosphate pH 7.4, 1 mM EDTA, 3.3 mM K-malate, 8 mM saecharose, 3.3 mM ATP, 1.66 mM earnitin, 0.2% SA (bovine serum albumin) and 0.12 mM palmitate added where indicated. ~ Bovine serum albumin.

I C. D. JOEL) J- biol. Chem. 241,841 (1966). 2 L. NAPOLITANO and D. t~AWCETT, J. biochem, biophys. Cytol. d,

685 (1958). z M. J. R. DAWKIr~S and D. HULL, J. Physiol. 172, 216 (1964). a W. C. SCHNEIDER and N. Y. Hoc~.noom, J. biol. Chem. 183, 123

(1950). H. O, Lowi~Y, N. Y. ROSEBROUGH, A. L. FARR and A. L RANDALL, J. biol. Chem. 193, 265 (1951). M. NOVAE, J. Lipid Res. 6, 431 (1965).

7 Ro E. SMITH, J. C. ROBERTS and K. J. HITTELI',IAN, Science 154, 635 (1966).

S O. LINDBERG, J . DEPIERRE, E, RYLA.NDI~R and B, A, AFZELIUSI J. Cell Biol. 34, 293 (1967),

432 Specialia EXPERIENTIA 24/5

albumin decreases the respiratory rate and added palmi- tare returns i t to higher levels.

In new-born and adult rats neither albumin nor palmi- tare has any effect (Table).

The age difference cannot be explained by a different fa t ty acid content because the amount of free fa t ty acids/rag of mitochondrial protein in new-born animals is about 60% higher than in 6- to 30-day-old rats (120 to 140 nmmole/mg protein) and adult animals have approxi- mately the same amount of fa t ty acids bound to the mitochondria as 6- to 30-day-old rats.

Our results show that for maximum act ivat ion of the respiratory rate in uncoupled brown-fat mitochondria both ATP and carnitin are necessary. The inhibitory effect of serum albumin indicates tha t endogenous fa t ty acids are oxidized. Evident ly the endogenous fa t ty acids are bound to the external mitochondrial membrane, where they are act ivated 9 and transported as carnitine esters into the mitochondria. Apparently, in our experi- ments, mitochondria contain such a large amount of endogenous fat ty acids tha t addition oI palmitate has no further act ivating effect on mitochondrial respiration.

Zusammenfassung. Nachweis der endogenen Atmungs- aktivierung yon Mitochondrien im braunen Fettgewebe dutch ATP und Karnitin. Eine maximale Aktivierung wird bei 6-30 Tage alten Rat ten gefunden, wghrend sic in neugeborenen und erwachsenen Tieren kleiner ist. Nur bei den 6-30 Tage alten Tieren hemmt Albumin die durch ATP und Karnit in erh6hte Atmung.

Z. DRAHOTA, EVA HONOV2k a n d P . H A h N

Institute o[ Physiology, Czechoslovak Academy o[ Sciences, Praha (Czechoslovahia), 21 September 1967.

9 K. R. NORUM, M. F&RST&D and J. BREMER, Biochem. Biophys. Res. Comm. 24, 797 (1966).

lOber die Hydrierung im Ringsystem ungesiittigter

In unseren friiheren Arbeiten 1, ', wurden zahlreiche Oxy- dationsprozesse beschrieben, die mit t l i l fe eines Mycobak- ter iumstammes durchgefiihrt werden k6nnen. Dutch Zu- gabe yon 8-Hydroxyehinolin kann der Abbau des Ring- systems verhindert werden; dadnrch hXufen sich A 1, 4-3- Keto-Verbindungen mit Androstangeriist an.

In der vorliegenden Arbeit berichten wit fiber einige ]3e- obachtungen der enzymatischen Hydrierung des Ring- systems unges/ittigter Steroide. In der Li teratur fanden wit Angaben fiber die mikrobielle S~Lttigung der I)oppel- bindungen A 1 a, A 44, 5, zl 60, A 7 x, ~, fiber die Umwandlung yon A t6-20-Ketosteroiden in 17-iso-Steroide s und fiber den Seitenkettenabbau der letztgenannten Verbindun- gen 0,10.

Wir untersuchten den Metabolismus einiger im Ring a n , ungesiittigter, bzw. A16-20-Ketosteroide unter aero- ben Bedingungen. Die Umsetzungen wurden mit einer in wiissriger 0,4prozentiger Natriumchlorid-L6sung suspen- dierter Zfichtung yon Mycobacterium phlei bei 37°C durchgefiihrt, welche vorher in Maisquellwasser-Glycerin- Medium anwuchs und anschliessend yore Medium getrennt wurde. Die Substrat- und 8-Hydroxychinolin-Konzentra- t ionen betrugen 400/,g/ml, bzw. 100/,g/ml. Nach 48 h In- kubation wurden die Kulturf i l t rate der einzelnen Aus- gangsmaterialien mi t Chloroform extrahiert nnd das 8- Hydroxychinolin mit verdfinnter, wgssriger Oxals~ure entfernt. Schliesslich wurden die Ext rak te im Vakuum eingedampft. Im R~ckstand konnten wir Androsta- l ,4- dien-3,17-dion und geringe Mengen yon Androst-4-en- 3,17-dion Ms Umsetzungsprodukte naehweisen. Durch Kristallisation bzw. prgparat ive Dtinnschichtchromato- graphie wurde aus den folgenden Substraten Androsta-1,4- dien-3,17-dion erhalten. Ausbeuten (in % der Theorie): Androsta-4, 6-dien-3, 17-dion (60%), Pregna-4, 6-dien- 3, 20-dion (46%), Cholesta-4, 6-dien-3-on (32%), Ergosta- 4, 6, 22-trien-3-on (31%), 5~-Cholest-7-en-3fl-ol (25%), Cholesta-5,7-dien-3fl-ol (26%), 5m-Ergosta-7,22-dien-3fl- ol (29%), Ergosta-5, 7, 22-trien-3fl-ol (26%), Pregna-5,16- dien-3fl-ol-20-on (75%). Auch die Ester (Acetate, Ben_-

Steroide mit Mycobacterium phlei

zoate) der letztgenannten 5 Verbindungen wnrden in Androsta-1, 4-dien-3,17-dion iibergefiihrt.

V~rie man auf Grund der Versuche feststetlen kann, ist es m6glich, die Doppelbindungen A 6 and A 7 nnter aeroben Umst~nden mi t Mycobacterium phlei zu sAttigen, sowie A16-20-Keto-Steroide in 17-Ketosteroide zu fiberfiihren. Das aus den verschiedenen Ausgangsmaterialien isolierte Androsta-l ,4-dien-3,17-dion ist ein wertvoller Ausgangs- stoff fiir die (~stron- und Norsteroid-Synthesen.

Summary. Androsta-1, 4-diene-3, 17-dione was obtained from A6-, A7- and A-16-steroids by Mycobacterinm phlei. The breakdown of the steroid nucleus was inhibited by 8- hydroxyquinoline added to the culture medium.

G. AMBRUS, E. T(JM6RK~;NY und K.G. BOKI

Institut ]iir A rzneimittel[orschung, Budapest d (Ungarn), 13. November 1967.

I G.Wlx, K.G. BOm, E.TO~a6RK~Y und G.AMBRUS~ Ungarisehes Patent No. 153831 (I965).

z G.WIx, K.G.t3OK[, E.T6M6RK~NY und G.AMBRUS, Steroids, im Druck.

s A.BUTENANDT, H.DANNENBERG und L.A.SuR~.NYI, Chem. Ber. 73, 818 (1940).

4 L.MAMOLI, R. Koch und H.TESCHEN, Z. physiol. Chem. 261, 287 (1939). L. MAMOLI und G. SCHRAMM, Chem. Bet. 7J, 2698 (1938).

6 y .y . Tso~G, K.C. WAnG und CH. J. Sin, Bioehim. biophys. Acta 93, 398 (1964). R. DEGHE~Gm, S. RA~mT, K. SI~Ga, C.V~zINA und CH.J. Sm, Steroids 10, 313 (1967).

s P.D. MEISTER, D.H. PETERSON, H.C.MuRRAV, S.H. EPPSTEIN, L.M. REINEKE, A.~cVEINTRAUB und H.M.LEmlt, J. Am. chem. Soc. 75, 55 (1953).

Y G.Wtx und M. RADOS, Sehweizer Patent, No. 376499 (1959). 10 O. EL-TAYEB, S.G. KmGIIT und CH. J. Sin, Bioehim. biophys. Aeta

93~ 411 (1964).